メイン

3D 印刷 アーカイブ

Kanada, Y., International SFF Symposium 2013, 2013-8.
[ English page ]
[ ポスターの内容 + 説明 (英語) ]
[ 改訂したポスターの PDF ファイル ]
[ ポスターの写真 ]

IMG_3034_edited-1.jpgAbstract: Usually, objects are horizontally sliced when printed by 3D printers. Therefore, if an object to be printed, such as a collection of fibers, originally have natural direction in shape, the printed direction contradicts with the natural direction. By using proper tools, such as field-oriented 3D paint software, field-oriented solid modelers, field-based slicing algorithms, and non-horizontal FDM 3D printers, the natural direction can be modeled and objects can be printed in a direction that is consistent with the natural direction. This consistence results in embodiment of momentum or force in expressions of the printed object. To achieve this goal, several manufacturing problems, but not all, have been solved. An application of this method is (Japanese) 3D calligraphy.

このポスターをもとにしたオンライン・ジャーナル版の論文 があります.

研究テーマ紹介: 3D 造形技術

キーワード: 3D 印刷, 3 次元印刷, Solid Free-form Fabrication, SFF, Fused deposition modeling, FDM, Additive Manufacturing, 付加加工

Dasyn.com, Maker Faire Tokyo 2013, 2013/11/3-4.
[ 主フライヤー ]
[ 自然な方向によるオリンピック・マーク ]
[ ゆらぎ印刷 ]
[ ペンローズの 3 角形 ]
[ 中空ピラミッド ]
[ 中空多面体 ]
[ ポスター ]

Maker Faire Tokyo 2013 に Dasyn.com の名のもとに実演した 2 つの 3D 印刷について書いたフライヤーと,「自然な方向の印刷」,「ゆらぎ印刷」 など,個々のテーマに関するかんたんな説明を収録した.

キーワード:

Kanada, Y., 19th International Symposium on Artificial Life and Robotics (AROB 2014), 2014-1.
[ English page ]
[ 論文 (発表後改訂) ]
[ スライド ]
[ 印刷のようす (YouTube) ]

RIMG2281.jpg要旨: 3D printing technology usually aims reproducing objects deterministically designed by 3D CAD tools. However, 3D printing can generate patterns similar to randomized (non-deterministic) 1D or 2D cellular automata (CA). Cheap fused deposition modeling (FDM) 3D printers can be used for this purpose. By using an FDM 3D printer, melted plastic filament is extruded by a hot nozzle to shape a 3D object. They can generate CA-like patterns with constant head motion and constant filament extrusion and with unintended fluctuation but no explicit randomness. Because of fluctuation, every time the printer generates a different emergent pattern. This paper proposes a method for printing seaweed-like patterns of 1D and 2D CA using FDM, and computational CA models. This method will open a new horizon of 3D printing applications.

研究テーマ紹介: 3D 造形技術

キーワード: 3D 印刷, 3 次元印刷, 非同期セル・オートマトン, ランダム, ゆらぎ, Solid Free-form Fabrication, SFF, Fused deposition modeling, FDM

Kanada, Y., 8th International Workshop on Natural Computing (IWNC8), 2014-3.
[ English page ]
[ ]
[ スライド ]
[ 印刷のようす (YouTube) ]

RIMG2281.jpgAbstract: Fused deposition modeling (FDM) is a 3D-printing method that shapes 3D objects by layering melted plastic filament. The process of this type of 3D printing can be regarded as asynchronous cellular-automata because it generates 1D on-off pattern per a head motion. Especially, by a constant head-motion at reduced constant extrusion-velocity, a 3D printer can generate self-organized grids or similar structures, which is much finer than artificial (i.e., program-controlled) patterns. Depending on the parameter values, i.e., layer depth, extrusion velocity, and so on, the generated pattern varies among regular stripes, stripes with crossing waves, and splitting and merging patterns. Some of the patterns can be simulated by a computational model, i.e., asynchronous cellular automata.

研究テーマ紹介: 3D 造形技術

キーワード: 3D 印刷, 3 次元印刷, 非同期セル・オートマトン, ランダム, ゆらぎ, Solid Free-form Fabrication, SFF, Fused deposition modeling, FDM

Kanada, Y., BIT’s 1st Annual International Congress of 3D Printing, Dalian, China, June 27-29, 2014.
[ English page ]
[ 動画なしのスライド (PDF), (旧版) ]
[ 動画つきのスライド (Keynote 用, 65 MB) (旧版) ]
[ 印刷のようす 1 (YouTube) ]
[ 印刷のようす 2 (YouTube) ]

要旨 – Conventional 3D design methods design only the surface of 3D objects and conventional 3D printing methods only slice and print 3D objects horizontally. We in Dasyn.com develop new 3D design methods that enable designing real 3D objects including the internal structures and textures, and develop new 3D printing methods that enable printing patterns with non horizontal directions. The “real 3D design method” makes transparent objects and objects with holes much more realistic, and the non-horizontal 3D printing method enables naturally-directed objects such as 3D calligraphies. We also develops a naturally randomized or fluctuated 3D printing method. We seek partners who will develop applications of these methods.

RIMG2281.jpg 1011-04c.jpg

OlympicSymbol.jpg

研究テーマ紹介: 3D 造形技術

キーワード: 3D 印刷, 3 次元印刷, Solid Free-form Fabrication, SFF, Fused deposition modeling, FDM

Kanada, Y., 20th International Workshop on Cellular Automata and Discrete Complex Systems (Automata 2014), July 2014.
[ English page ]
[ 論文 PDF ファイル ]
[ 論文 PDF ファイル (拡張版, IWNC8 用原稿) ]
[ スライド (減量版) ]
[ スライド (動画つき, Keynote) ]


Abstract: 3D printers are usually used for printing objects designed
by 3D CAD exactly, i.e., deterministically. However, 3D printing process
contains stochastic self-organization process that generate emergent
patterns. A method for generating fully self-organized patterns using a
fused deposition modeling (FDM) 3D printer has been developed. Melted
plastic filament is extruded constantly in this method; however, by using
this method, various patterns, such as stripes, splitting and/or merging
patterns, and meshes can be generated. A cellular-automata-based
computational model that can simulate such patterns have also been
developed.



研究テーマ紹介:
3D 造形技術

キーワード: 3D 印刷, 3 次元印刷, 非同期セル・オートマトン, ランダム, ゆらぎ, Solid Free-form Fabrication, SFF, Fused deposition modeling, FDM

Kanada, Y., 2014 International Symposium on Flexible Automation (ISFA 2014), 2014-7.
[ English page ]
[ 論文 PDF ファイル ]
[ スライド PDF ファイル (w/o video) ]
[ スライド (Keynote (Macintosh) 用ファイル.ビデオつき) ]
[ 印刷のようす 1 (YouTube) ]
[ 印刷のようす 2 (YouTube) ]



要旨: Although 3D objects to be printed may have “natural direction” or intended direction for printing, most 3D printing methods slice and print them horizontally. This causes staircase effect on the surface and prevents expression of the natural or intended direction; that is, the natural direction and the printing direction contradict. This paper proposes a methodology for direction-specified 3D printing and methods for designing, partitioning, and printing 3D objects with specified printing direction using a fused deposition modeling (FDM) printer. By using these methods, printed objects do not only have unnatural steps but also enables to express the direction explicitly. By developing and evaluating a set of methods based on this methodology, chained rings of an Olympic symbol are designed, partitioned, and printed by a delta-type 3D printer, which is cheaper but can move quick vertically. The rings were well designed and printed rings look well. Although there are still several unsolved problems including difficulty in deciding part partition points and weakness in the partition points, this methodology will probably enable new applications of 3D printing, such as 3D calligraphy.



研究テーマ紹介:
3D 造形技術



OlympicSymbol.jpg

キーワード: 3D 印刷, 3 次元印刷, Solid Free-form Fabrication, SFF, Fused deposition modeling, FDM

金田 泰, 情報処理学会 夏のプログラミング・シンポジウム 2014, 2014-8.
[ English page ]
[ スライド (日本語 PDF 版, 動画なし) ]
[ スライド (日本語 Keynote 版, 動画つき, Macintosh 用) ]
[ スライド (英語 PDF 版, 動画なし) ]
[ スライド (英語 Keynote 版, 動画つき, Macintosh 用) ]
[ 論文 PDF ファイル ]
[ 印刷のようす (YouTube) ]

[ “3 次元タートル・グラフィクス” Python ライブラリと使用例 ]

English version of this paper (IJERA)

skewedPyramid.jpg要旨: 3D プリンタで造形するとき,通常は 3D CAD で設計した静的 (宣言的) なモデルのデータを加工してプリンタにおくる. しかし,普及している FDM 型 3D プリンタが入力するのはプリント・ヘッドの移動とフィラメントの射出を制御する動的な手続きであり,これをより素直にプログラミング言語化ないしライブラリ化すれば,タートル・グラフィクスのような方法で 3D オブジェクトが生成できる. この 「タートル 3D 印刷」 のライブラリを Python によって記述し試用してみた. このライブラリは公開している. 3D プリンタでは宙に印刷できないことがネックになるが,その問題をうまくクリアできれば 3D タートル・グラフィクスでえがいた図形を実物にすることができる.

研究テーマ紹介: 3D 造形技術

キーワード: 3D 印刷, 3 次元印刷, Solid Free-form Fabrication, SFF, Fused deposition modeling, 3 次元タートル・グラフィクス, 3D Turtle Graphics, FDM 型 3D プリンタ,タートル・グラフィクス,Fused Deposition Modeling,熱溶解積層型 3D プリンタ

Kanada, Y., 4th International Conference on Additive Manufacturing and Bio-Manufacturing
(ICAM-BM 2014, Beijing)
, 2014-11.
[ English page ]
[ スライド PDF ファイル (w/o video) to be uploaded ]
[ スライド (Keynote (Macintosh) 用ファイル.ビデオつき) ]
[ 論文 PDF ファイル - 会議では公開していない ]

[ "Generative art" の店 (国内だけ) ]

Abstract: Direction-specified 3D modeling and FDM-based printing methods enable expression of natural directions, such as hairs, fabric, or other directed textures, in modeled objects. This paper describes a method for creating various shapes of generative artistic objects with several specialized attributes by applying three new techniques to the direction-specified methods for better artistic expressions. The most important technique is “deformation”, which enables deforming simple 3D models to create varieties of shapes much more easily in generative design processes. The second technique is called the spiral/helical printing method, which enables consistent print-direction vector field, i.e., filament directions, of the surface consistent with those of the interior portion and enables seamless or less-seam printing results. The third technique controls light reflection while printing by using the spiral/helical printing method with transparent PLA. It enables the printed objects reflect light brilliantly. The proposed method with these three techniques was implemented as a Python library and evaluated by printing various shapes, and it is confirmed that this method works well and objects with attractive attributes can be created.

deformation-3dp.jpg

研究テーマ紹介: 3D 造形技術

キーワード: Fused deposition modeling, FDM, Direction-specified 3D printing, Direction-specified 3D modeling, Spiral/helical printing, Light reflection control, Generative art, Algorithmic design

Kanada, Y., Artificial Life and Robotics, Vol. 19, No. 4, pp. 311-316, November 2014, http://dx.doi.org/10.1007/s10015-014-0182-9
[ English page ]
[ Springer's page (preprint) ]
[ 論文 (原稿) ]
[ 原版 (ISAROB 2014) ]
[ 印刷のようす (YouTube) ]

RIMG2281.jpg要旨: 3D printing technology usually aims at reproducing objects deterministically designed by 3D CAD tools; however, the author has discovered that 3D printing can also generate self-organizing patterns similar to stochastic (or randomized) 1D cellular automata (CA). A method for generating patterns similar to randomized 1D or 2D CA by using a fused deposition modeling 3D printer is thus proposed. With constant head motion and constant filament extrusion and without explicit randomness, this method generates very fine emergent patterns with natural fluctuation. By means of this method, each time a different pattern is generated. In addition, a computational CA model that simulates the above process is also proposed. The proposed method will open a new horizon of 3D printing applications.

研究テーマ紹介: 3D 造形技術

キーワード: 3D printing, self-organization, asynchronous cellular automata (CA), natural randomness, fluctuation, fused deposition modeling (FDM)

金田 泰, I/O 2015-4.

[ English page ]
[ 日本語 PDF ファイルなし ]

要旨: 3D プリンタを使ってひらたい皿をつくるとき,普通は「サポート」という,印刷がおわると捨ててしまう材料をいっしょに印刷して,それで皿をささえる必要があります.でも,そんなもったいないものをつかわずに,うすい皿を造形してみましょう.ちょっとした工夫が必要ですが,そんなに難しいことではありません.

IO201504dish1.jpg IO201504dish2.jpg

この記事は改訂して英語の論文にした: 3D-Printing Plates without “Support”

研究テーマ紹介: 3D 造形技術

キーワード:

Kanada, Y., Int. Journal of Engineering Research and Applications (IJERA), Vol. 5, No 4, Part-5, April 2015, pp.70-77.
[ English page ]
[ 論文 PDF ファイル (IJERA) ]
[ 論文 PDF ファイル (local) ]

この論文の日本語版 (情報処理学会)

skewedPyramid.jpg要旨: When creating shapes by using a 3D printer, usually, a static (declarative) model designed by using a 3D CAD system is translated to a CAM program and it is sent to the printer. However, widely-used FDM-type 3D printers input a dynamical (procedural) program that describes control of motions of the print head and extrusion of the filament. If the program is expressed by using a programming language or a library in a straight manner, solids can be created by a method similar to turtle graphics. An open-source library that enables “turtle 3D printing” method was described by Python and tested. Although this method currently has a problem that it cannot print in the air; however, if this problem is solved by an appropriate method, shapes drawn by 3D turtle graphics freely can be embodied by this method.

研究テーマ紹介: 3D 造形技術

キーワード: 3D printer, Turtle graphics, Fused Deposition Modeling, FDM

Kanada, Y., International Journal of Computer, Control, Quantum and Information Engineering, WASET, Vol. 9, No. 4, pp. 689-693, 2015.
[ English page ]
[ 論文 PDF ファイル (出版社のサイト) ]
[ 論文 PDF ファイル (このサイト) ]

要旨: Objects are usually horizontally sliced when printed by 3D printers. Therefore, if an object to be printed, such as a collection of fibers, originally has natural direction in shape, the printed direction contradicts with the natural direction. By using proper tools, such as field-oriented 3D paint software, field-oriented solid modelers, field-based tool-path generation software, and non-horizontal FDM 3D printers, the natural direction can be modeled and objects can be printed in a direction that is consistent with the natural direction. This consistence results in embodiment of momentum or force in expressions of the printed object. To achieve this goal, several design and manufacturing problems, but not all, have been solved. An application of this method is (Japanese) 3D calligraphy.

これは 2013 年に開始した 3D 印刷に関する研究開発のポジション・ペーパであり,つぎのポスターのオンライン・ジャーナル版です: SFF 2013 のポスター

研究テーマ紹介: 3D 造形技術

キーワード: 3D printing, Three-dimensional printing, Solid free-form fabrication, SFF, Fused deposition modeling, FDM, Additive manufacturing

NaturalDesign3DP.jpg
金田 泰, I/O 2015-8.

[ English page ]
[ 日本語 PDF ファイルなし ]

要旨: 「3D プリンタ」では通常は人工的にデザインしたものを印刷しますが,意図せずに出来るパターンもあります.こういう「自然のデザイン」を,積極的に楽しんでみましょう.

研究テーマ紹介: 3D 造形技術

キーワード:

Kanada, Y., International SFF Symposium 2015, 2015-8.
[ English page ]
[ Preliminary paper PDF file ]
[ Slide PDF file ]

1201-03-01-P1311432c.jpgAbstract: Material is stacked vertically and layer-by-layer in conventional additive manufacturing (AM) methods. An object with overhang or skewed stacking structure, such as a plain dish or an empty sphere, is difficult to be created by these methods without support material. This paper proposes a layer-less fused-deposition-modeling (FDM) method that enables mostly horizontal stacking of filament without support material. Such filament-stacking is enabled by increasing the height of the print head gradually, i.e., without layer transitions that make horizontal stacking difficult. The proposed method also allows controlling printing directions and various printing-direction-dependent expressions, such as fiber-like textures or brilliance, which make AM products attractive as final products for consumers or as some kinds of industrial products. Objects to be printed can be modeled as directed solid models designed by a component-based method (i.e., a new CAD based method) or a generative method, which are completely different from conventional CAD based methods.

研究テーマ紹介: 3D 造形技術

キーワード:

Kanada, Y., International Journal of Computer, Control, Quantum and Information Engineering, WASET, Vol. 9, No. 5, pp. 568-574, 2015.
[ English page ]
[ 論文 PDF ファイル (出版社のサイト) ]
[ 論文 PDF ファイル (このサイト) ]

要旨: When printing a plate (or dish) by an FDM 3D printer, the process normally requires support material, which causes several problems. This paper proposes a method for forming thin plates without using wasteful support material. This method requires several extraordinary parameter values when slicing plates. The experiments show that the plates can, for the most part, be successfully formed using a conventional slicer and a 3D printer; however, seams between layers spoil them and the quality of printed objects strongly depends on the slicer.

研究テーマ紹介: 3D 造形技術

キーワード: Fused deposition modeling (FDM), 3D printing, Support-less, Layer seam, Slicer

金田 泰, 日本機械学会 2015 年度年次大会, S044 次世代 3D プリンティング, 2015-9.

[ English page ]
[ 論文 PDF ファイル ]

要約: FDM などの 3D 印刷においては印刷の方向が印刷物の見ばえや性質をきめるが,従来の方法では設計時に方向を指定することがで きない.この発表では方向指定つき 3D 印刷・設計法とその利点をのべる.

研究テーマ紹介: 3D 造形技術

キーワード: 印刷方向指定, 方向設計, 付加加工, 付加製造, AM, CAD

金田 泰, 日本機械学会 2015 年度年次大会, G120 設計工学・システム部門一般セッション, 2015-9.

[ English page ]
[ 論文 PDF ファイル ]

要約: コンピュータ・プログラミングと同様に工業製品の設計でも宣言的方法と手続き的方法があってしかるべきだが,他の工業分野と同様に 3D 印刷においても設計はほとんど宣言的な CAD によっ ている.この発表ではジェネラティブな (手続き的な) 方法による 設計法について報告する.

研究テーマ紹介: 3D 造形技術

キーワード: 宣言的方法, 手続き的方法, 生成的デザイン, ジェネラティブ・デザイン, 付加加工, 付加製造, AM, CAD

Kanada, Y., 8th International Conference on Leading Edge Manufacturing in 21st Century (LEM 21), 2015-10.
[ English page ]
[ Paper PDF file ]

1201-03-01-P1311432c.jpgAbstract: Instead of printing layer by layer, thin 3D objects can be printed in better quality (without seams between layers) by printing helically or spirally by fused deposition modeling (FDM). When printing helically or spirally, the amount of extruded filament can be modulated using a bitmap; that is, “zero” in bitmap means “thin” and “one” means “thick” (or vice versa). This process generates a thin object, such as a sphere, pod, or dish, with a bitmapped picture or characters. A typical example is a globe, which is printed using a bitmapped world map.

研究テーマ紹介: 3D 造形技術

キーワード: Computer-Aided Manufacturing (CAM), Additive manufacturing, Fused deposition modeling (FDM), Helical/spiral 3D printing, Bitmap, Texture

Kanada, Y., XIIIV Generative Art Conference (GA 2015), 2015-12.
[ English page ]
[ Paper PDF file ]
[ Slides PDF file ]

Abstract: 3D models are usually designed by 3D modelling tools, which are not suited for generative art. This presentation proposes two methods for designing and printing generative 3D objects. First, by using a turtle-graphics-based method, the designer decides self-motion (self-centered motion) of a turtle and print a trajectory of the turtle as a 3D object (Fig. A). The trajectory is printed using a fused-deposition-modelling (FDM) 3D printer, which is the most popular type of 3D printer. Second, by using the assembly-and-deformation method, the designer assembles parts in a palette, each of which represents stacked filaments, applies deformations to the assembled model, and prints the resulting object by an FDM 3D printer. The designer can also map textures, characters, or pictures on the surface of the object. Various shapes can be generated by using the assembly-and-deformation method. If the initial model is a thin helix with a very low cylinder (i.e., an empty cylinder with a bottom), shapes like cups, dishes, or pods with attractive brilliance can be generated, and a globe and other shapes can be generated from a helix (Fig. B).

研究テーマ紹介: 3D 造形技術

キーワード: Design, Directed 3D printing, Fused deposition modelling (FDM)

Kanada, Y., in Y. Suzuki and M. Hagiya, ed., Recent Advances in Natural Computing, 2016.
[ English page ]
[ Springer.com のページ ]
[ Amazon.co.jp のページ ]

Abstract:
3D printers are usually used for printing objects designed by 3D CAD exactly, i.e., deterministically.However, 3Dprinting process contains stochastic selforganization process that generate emergent patterns. A method for generating fully self-organized patterns using a fused depositionmodeling (FDM) 3D printer has been developed. Melted plastic filament is extruded constantly in this method; however, by using thismethod, various patterns, such as stripes, splitting and/or merging patterns, and meshes can be generated. A cellular-automata-based computational model that can simulate such patterns have also been developed.

研究テーマ紹介: 3D 造形技術

キーワード: 3D printing, Asynchronous cellular automata (CA), Randomness, Fluctuation, Fused deposition modeling (FDM)

金田 泰, 情報処理学会 プログラミング研究会 2015 年度 第 5 回, 2016-2.

[ English page ]
[ 論文 PDF ファイル ]
[ スライド Keynote ファイル (Mac 用, ビデオつき) ]
[ スライド PowerPoint ファイル (ビデオつき) ]

要約: 機械加工や 3D 印刷をコンピュータを使用しておこなうとき, 工作機械や 3D プリンタを手続き的 に制御するためのプログラムが必要になる. この目的のためにひろく使用されているのが G コードである. G コードはもともと切削加工の制御のために開発され,当初は設計者がそれによるプログラムを記述 していたが, 現在は設計者は CAD によって宣言的なモデルを記述し, それをコンピュータが G コードに 変換する. しかし, 3D 印刷のような付加加工のプロセスは切削加工より直観的なので, 設計者が抽象化された手続き的記述をすることが場合によっては利点があるとかんがえられる. そこでこの論文では手続き 的な 3D 設計用ライブラリを使用した抽象化された Python プログラムによって G コードのプログラムを 生成し 3D プリンタで印刷する方法とその使用例を示す. この方法では印刷可能な形状は限定されるが, 層をなくして層のつぎめもなくし, 従来の方法においてはオーバハングがあるときに必要だった支持材料 (サポート) もなくして, シームレスでより美的な印刷を実現した.

研究テーマ紹介: 3D 造形技術

キーワード: 3D 印刷, 付加加工, 宣言的モデル, 宣言的記述, 手続き的記述, 3D プリンタ, G コード

Kanada, Y., Rapid Prototyping Journal, Vol. 22, No. 4, 2016.
[ English page ]
[ Paper PDF file ]
[ Manuscript PDF file ]

要約された梗概:
A methodology for designing and printing 3D objects with specified printing-direction using fused deposition modelling (FDM), which was proposed by a previous paper, enables the expression of natural directions, such as hairs, fabric, or other directed textures, in modelled objects. This paper aims to enhance this methodology for creating various shapes of generative visual objects with several specialized attributes.
The proposed enhancement consists of two new methods and a new technique. The first is a method for “deformation.” It enables deforming simple 3D models to create varieties of shapes much more easily in generative design processes. The second is the spiral/helical printing method. The print direction (filament direction) of each part of a printed object is made consistent by this method, and it also enables seamless printing results and enables low-angle overhang. The third, i.e., the light-reflection control technique, controls the properties of filament while printing with transparent PLA. It enables the printed objects to reflect light brilliantly.
...

研究テーマ紹介: 3D 造形技術

キーワード: 3D printing, Computer aided manufacturing, Fused deposition modelling, Manufacturing, Rapid manufacturing, Deformation

Kanada, Y., IPSJ Transactions on Programming, Vol. 9, No. 4, pp. 1–9, 2016-9.

[ English page ]
[ 論文 PDF ファイル ]
[ 論文 PDF ファイル ドラフト ]
[ 論文 PDF ファイル 日本語版 (査読原稿) -- 未出版) ]


梗概 (E): When manufacturing or 3D-printing a product using a computer, a program that procedurally controls manufacturing machines or 3D printers is required. G-code is widely used for this purpose. G-code was developed for controlling subtractive manufacturing (cutting work), and designers have historically written programs in G-code, but, in recently developed environments, the designer describes a declarative model by using computer-aided design (CAD), and the computer converts it to a G-code program. However, because the process of additive manufacturing, of which FDM-type 3D-printing is a prominent example, is more intuitive than subtractive manufacturing, it is some- times advantageous for the designer to describe an abstract procedural program for this purpose. This paper therefore proposes a method for generating G-code by describing a Python program using a library for procedural 3D design and for printing by a 3D printer, and it presents use cases. Although shapes printable by the method are restricted, this method can eliminate layers and layer seams as well as support, which is necessary for conventional methods when an overhang exists, and it enables seamless and aesthetic printing.



梗概 (J): 機械加工や 3D 印刷をコンピュータを使用しておこなうとき,工作機械や 3D プリンタを手続き的に制御するためのプログラムが必要になる.この目的のためにひろく使用されているのが G コードである.G コードはもともと切削加工の制御のために開発され,当初は設計者がそれによるプログラムを記述 していたが,現在は設計者は CAD によって宣言的なモデルを記述し,それをコンピュータが G コードに変換する.しかし,3D 印刷のような付加加工のプロセスは切削加工より直観的なので,設計者が抽象化された手続き的記述をすることが場合によっては利点があるとかんがえられる.そこでこの論文では手続き 的な 3D 設計用ライブラリを使用した Python プログラムによって G コードのプログラムを生成し 3D プ リンタで印刷する方法とその使用例を示す.この方法では印刷可能な形状は限定されるが,層をなくして層のつぎめもなくし,従来の方法においてはオーバハングがあるときに必要だった支持材料 (サポート) もなくして,シームレスでより美的な印刷を実現した.



研究テーマ紹介:
3D 造形技術

キーワード: 3D printing, additive manufacturing, declarative model, declarative description, procedural description, 3D printer, G-code, 3D 印刷, 付加加工, 宣言的モデル, 宣言的記述, 手続き的記述, 3D プリンタ, G コード

Kanada, Y., Journal of Information Processing, Vol. 24, No. 6, pp. 908–916, 2016-11.

[ English page ]
[ Paper PDF file ]
[ Paper PDF file (Japanese version (refereed) -- not published) ]

Abstract: When manufacturing or 3D-printing a product using a computer, a program that procedurally controls manufacturing machines or 3D printers is required. G-code is widely used for this purpose. G-code was developed for controlling subtractive manufacturing (cutting work), and designers have historically written programs in G-code, but, in recently developed environments, the designer describes a declarative model by using computer-aided design (CAD), and the computer converts it to a G-code program. However, because the process of additive manufacturing, of which FDM-type 3D-printing is a prominent example, is more intuitive than subtractive manufacturing, it is some- times advantageous for the designer to describe an abstract procedural program for this purpose. This paper therefore proposes a method for generating G-code by describing a Python program using a library for procedural 3D design and for printing by a 3D printer, and it presents use cases. Although shapes printable by the method are restricted, this method can eliminate layers and layer seams as well as support, which is necessary for conventional methods when an overhang exists, and it enables seamless and aesthetic printing.

Introduction to this research theme: 3D shape formation technologies

キーワード: 3D printing, additive manufacturing, declarative model, declarative description, procedural description, 3D printer, G-code

Kanada, Y., 情報処理, Vol. 58, No. 6, pp. 17–23, 2017-6.

[ English page ]
[ 論文 PDF ファイル ]


梗概: 現在主流の 3D 設計・印刷法は汎用性があるが万能ではないから,ほかの方法が必要なこともある.表面形状を指定するだけでは不十分なこともあり,主流の方法ではうまく印刷できない形状もある.このような際にはモデル上の各点で方向(印刷方向)を指定できる場指向オブジェクト・モデルや,手続き的なプログラムを使用した設計法,水平方向に限定されない印刷法などが有効である.これらの方法は主流の方法が持つ汎用性はないが,それが適する目的たとえば中空立体の造形においては有効である.この方法の概要や使用するライブラリ draw3dp については別の論文に記述したが,この記事ではその背景,関連動向,応用などを紹介する.



研究テーマ紹介:
3D 造形技術

キーワード: 3D設計, 3D印刷, ジェネラティブ・デザイン, ジェネレーティブデザイン