Multi-Context Voice Communication
In A SIP/SIMPLE-Based
Shared Virtual Sound Room
With Early Reflections

Yasusi Kanada
Hitachi Ltd., Central Research Laboratory
Japan

Background

■ Voice is the original and a most important communication medium among people.

■ Various voice communication media (VCM)
 ◆ Telephone
 ■ “Inconvenient” user interface kept unchanged for 130 years.
 ◆ Teleconference systems
 ■ Solved some inconvenience of telephone.
 ■ Introduced other inconvenience.
 ◆ Others: transceivers, amateur radio, ...

A telephone set in 1878
(http://www.atcaonline.com/phone/coffin.html)
Background (cont’d)

- **VCM should be innovated.**
 - In face-to-face communication, various communication patterns are available.
 - E.g., free conversation with two or more talkers.
 - Communication patterns through VCM are limited.

- **Specific problems in VCM**
 - Speaker identification problem
 - Difficult to identify and to remember the speaker especially in conventional audio only environments.
 - Multiple talker problem
 - In face-to-face communication, parallel conversations often occur.
 - They are difficult through VCM.

Introduction to voiscape

- **“Sound room”**
 - A virtual space is expressed by sound directions and distances (i.e., by spatially located sounds).
 - People in the room can move freely.

- **voiscape is a type of VCM that uses sound rooms.**
 - “Places of communication” are created in a sound room.

![Diagram of voiscape](image)
Prototypes of voiscape

■ Jasper:
The first prototype was presented in CCN 2004.
 ◆ Java-based (JMF, Java3D, and LWJGL (light-weight Java Game Library))
 ◆ Built-in VoIP and 3-D audio
 — sound quality was not good

■ VPII (Voiscape Prototype II):
This presentation focuses on the second prototype.
 ◆ C++ and C based — to get better performance
 ◆ VoIP (RTP) and 3-D audio are developed from scratch.

Architecture of VPII

■ Three major elements of VPII
 ◆ User Agent (UA)
 ■ Terminal software on Linux PDA (Zaurus) or Windows PC
 ■ Ethernet or wireless LAN
 ◆ Management Server Collection (RMS, RLS, SIP registrar)
 ■ Room, user locations, and room list management by using SIP and SIMPLE (SIP for Instant Messaging and Presence Leveraging Extensions).
 ◆ 3D Voice Server (or media server)
 ■ Spatialization and mixing
 ■ No DSP now

User Agent

3D Voice Server (Pentium 4 / Xeon PC)
RTP (G.711, upward 64 kbps, downward 2x64 kbps)
IP network
SIP
User Agent
User Interface of VPII

- User select a sound room from a list.
 - RLS sends the room list to UA.

- UA displays the sound room.
 - Auditory display — the main display.
 - Visual map — a supplementary display.
 - Combination
 - User can map a voice and an icon.

User Interface of VPII (cont’d)

- User can move by using cursor keys or other pointing devices.
 - This motion is independent from real-world motion.
Features of VPII

- **Low-delay motion-tracking spatial audio**
 - The sampling rate is 8 kHz.
 - HRIR (HRTF) and early reflections are computed.
 - Spatialization delay is minimized to enable bi-directional communication.
 - User motion is reflected in the sound in real time.

- **Virtual-place-based selective communication**
 - User can select a “place of communication” by using a map and icons.
 - Icons can be used as “landmarks”.

- **SIMPLE-based sound room management**
 - User’s location and orientation are treated as part of room presence.
 - SIMPLE is used for presence event (motion) notification.

More on Low-delay Motion-tracking Spatial Audio

- **HRIR (head-related impulse response)**
 - To minimize the delay, HRIR is applied to direct sounds in time domain.
More on Low-delay Motion-tracking Spatial Audio (cont’d)

Reverberations

- Reverberations consist of
 - Early reflections
 - Late reverberations
- Only early reflections by the sound room walls are computed in VPII by a 2-D image source method.
- Early reflections are added because they cause
 - Out-of-head localization.
 - Feel of distance.
- No late reverberations because they have
 - No explicit advantage
 - They are unnecessary for out-of-head localization or feel of distance.
 - Harms
 - They tend to make the voices unclear.
 - They are computationally expensive.

Motion tracking

- Problems caused by a quick user motion
 - Click noises
 - Users’ identity misses: fail to identify a user before and after a motion.
- Three interpolation methods for solving the problems
 - Interpolation of user locations and orientations (ULO)
 - Interpolation of direct sounds
 - Interpolation of reflections

- Interpolation of reflections is omitted in VPII because it is expensive and noises caused are small.
More on Virtual-place-based Selective Communication

- A 2-D view is used because
 - Easier to map sound sources in auditory and visual displays than 3-D views.
 - Mapping the direction
 - Mapping the distance

Icons and landmarks (cont’d)

- Three types of objects in VPII
 - Persons (users)
 - Speakers (streaming sources)
 - Stationary objects — tables, plants, etc.

- Objects are represented by icons.
 - Visual icons are shown on the map.
 - Auditory icons are heard in some situations.
 - Each user can use a default icon or his/her own icon.

- Stationary objects can be used as landmarks.
 - You can specify a place by a landmark: “Let’s meet at the pink table.”
 — a new place of communication will be created.
More on Virtual-place-based Selective Communication (cont’d)

■ Other features
 ◆ Distance-based communication and awareness control
 ■ Each user is surrounded by a circular area called an *aura*.
 ■ If a remote user comes into the aura,
 – Both the local and remote user is made aware of this.
 – The local user hears the remote user’s auditory icon.
 – The remote user hears a warning sound.
 ◆ Privacy protection
 ■ Distance-based communication *policies* can be specified.
 – Connection and disconnection policies, etc. [Kanada 2004]
 ◆ User-motion control
 ■ Long motion (long push of a cursor key)
 ■ No warping should not be allowed based on Benedikt’s cyber space principles.

More on SIMPLE-based Sound Room Management

■ Three types of messaging
 ◆ Room entrance and exit
 ■ To enter a room, UA sends INVITE to RMS.
 ■ To exit from a room, UA sends BYE to RMS.
 ◆ Room presence management
 ■ UA sends PUBLISH that contains the ULO to RMS.
 ■ UA sends SUBSCRIBE that requests other users’ ULO to RMS.
 ■ RMS “replies” with NOTIFY that contains other users’ ULO.
 ◆ Room list management
 ■ UA sends SUBSCRIBE that requests a room list to RLS.
 ■ RLS “replies” with NOTIFY that contains the room list.
Informal Evaluation

VPII was informally evaluated with more than 200 people (who tried VPII mostly for only 5 to 10 minutes).

Speaker identification and multiple talker problems
- People understand VPII can be used for cocktail-party-like conversations.
- People could distinguish parallel conversations
 - by paying attention to, or
 - by moving toward one of them.

Informal Evaluation (cont’d)

Three features of VPII
- Low-delay motion-tracking spatial audio
 - Most people were satisfied with 8-kHz sampling sound.
 - Vertical localization was not good (no vertical cue in 8-kHz sampling sound).
- Virtual-place-based selective communication
 - Not yet evaluated.
- SIMPLE-based sound room management
 - Presence propagation was delayed several seconds.
 - This delay should not be a major problem in conversation because no quick motion is required for conversation.
Conclusion and Future Work

■ Conclusion
◆ VPII enabled parallel conversations in a sound room.
◆ SIMPLE-based management generally works well in VPII.

■ Future work
◆ The user interface requires much more evaluation and improvements.
 ■ A more detailed evaluation is ongoing.

No real demo is available here, but prerecorded sound samples are available.

User Interface of VPII (cont’d)

■ Position and direction of local user on the screen is fixed.
◆ The room rotates when the user turns.
Sampling rate is 8 kHz.

The reasons why 8 kHz is used are:

- Reasonable communication bandwidth and delay.
- Real-time signal processing.
- Narrow bandwidth of voice.

Method of calculating early reflections

- 2-D image source method with 12 reflections is used.
- To reduce the amount of computation,
 - Early reflections are spatialized by controlling ITD and IID.
 - ITD = interaural time difference
 - IID = interaural intensity difference
 - Same HRTF is used regardless of the direction of early reflections.

![Diagram of sound room and sound source with listener]
The reasons why SIP and SIMPLE are used.

- **Standard protocol**
 - SIP and SIMPLE are IETF standards.
 - SIP can be used for interconnection with IP telephony systems.

- **Flexibility**
 - VPII functions can easily be implemented by SIP/SIMPLE.

- **Economy**
 - Other protocols are not necessary; SIP/SIMPLE can be used throughout VPII.