
1 Introduction
Teleconferencing systems, including audio-only and audio-and-
video conferencing systems, enable conversation between three
or more persons. In many teleconferencing systems, there are
multiple virtual conference rooms; i.e., two or more independent
conferences can be held simultaneously. Each conference room
has different users and different resources that must be managed
by the teleconferencing system.

We are developing a voice-centered communication medium
called voiscape [Kan 04]. Voiscape creates an auditory virtual
environment with spatial audio technologies. The sound envi-
ronment thus created is close to a face-to-face conversation
environment. People enter a 3-D space, which is shared among
the people in that space, to communicate with each other. This
space is called a sound room. Each person in a sound room is
represented by a spatially located sound, and people can move
freely (see Figure 1). If a person moves close to another person,
a localized conversation can be naturally initiated. A voiscape
system is an audio conferencing system and the sound rooms
that belong to the system are conference rooms. The sound
rooms must be managed by the voiscape system.

A voiscape system prototype called VPII (Voiscape Prototy-
pe II) has been developed [Kan 05]. Because the properties and
states of rooms, users, and objects that must be managed in VPII
can be regarded as “presence”, VPII manages them by using the
presence-related event-notification mechanism of SIMPLE (SIP
for Instant Messaging and Presence Leveraging Extensions)
[Roa 02][Ros 04]. This mechanism enables a presence watcher
to subscribe to a presence server, which notifies presence
changes, and enables a presentity to “publish” its presence
change to a presence server [Nie 04].

This paper explains the conference-room management func-
tions of voiscape and describes their implementation using
SIMPLE.

Private
conversation

Ad-hoc meeting

Hearing-only
communication

user user

terminal Free motion

Sound room

Figure 1. Sound-room concept

2 Outline of Communication Using Voiscape
The user interface of a user agent (UA, i.e., a terminal program)
is illustrated in Figure 2. The user first selects a room to enter
from the room list, shown on the left. The UA then displays a
map of the sound room, shown on the right. The walls are dis-
played in gray. The scale of the map can be changed using radio
buttons (or a slider). A unique icon can be used for each user.

Local user

Remote users

Figure 2. User interface of Voiscape Prototype II

A user moves one-foot forward by pushing the forward (ar-
row) key and one-foot backward by pushing the backward key.
The user turns left (18 degrees) by pushing the left (arrow) key

and right by pushing the right key. The user’s icon is always
displayed immediately below the screen center, and its orienta-
tion remains fixed. By moving, the user can select a person or
persons in the room and talk with them, or can select a sound
source in the room and hear them.

In the prototype, a Sharp Zaurus (a Linux-based PDA) or PCs
with Microsoft Windows or Linux are used as the terminals. Qt
middleware developed by TrollTech is used in the Zaurus to
provide a light-weight window system and some additional
functions such as XML parsing.
3 Room Management Functions
3.1 Room-list management
When a UA is activated, it requests the room list from a room-
list manager (RLM), which then returns the requested list to the
agent. The RLM stores the list in the room-list database. The
RLM also accepts requests for creating or deleting a room and
records them in the room database.
3.2 Room-property and object management
Room properties are managed by the room manager (RM). A
sound room has many properties. It is not just an abstract con-
ference room, but it is a 3-D virtual space and has sound-related
properties. The virtual space properties include room size (e.g.,
width, depth, and height). The room size is used as a sound
property and for the display. Another sound-related property is
the reflection ratio of the walls. This is used with the room size
for calculating early reflections (reverberations) [Kan 05].

A sound room can also contain silent objects such as tables or
plants (see Figure 2). They can be used as visual landmarks
from which users can distinguish their orientation in the room
and places to meet with other users. The objects in the room
have their locations and icons as their properties. A sound room
can contain a speaker object that plays a sound file has its ad-
dress (URL) as a property.
3.3 Room-user management
Room users are also managed by the RM. Two types of user
management are required.
(1) Membership management: Every user can enter a public

room, but users can enter a private room only if they are
members of that room. The RM manages the membership and
authorize users when they request room entry. The member
properties include the URLs of user’s visual and auditory
icons if the user specifies icons that are not default. The visu-
al icon is used in the map, and the auditory icon may be used
when the user moves close to another user [Kan 05]. The
member properties may include the default (virtual) locations
and orientations of a member. The default location represents
the location where he/she appears when he/she enters a room.

(2) Current-user management: A member can enter a room or
exit from it. The RM has a list of users currently in the room.
This list contains not only the identifiers of the users but also
contains their current virtual locations and orientations. These
properties are updated when the users move or turn around.

3.4 Policy management
Communication between room users and that from a speaker to
a room user can be controlled by policies [Kan 04], which are
also managed by the RM. Policies can be selected by the user
and the UA sends them to the RM.
4 Room Management Using SIMPLE
4.1 Outline
The properties and states of rooms, users, and objects that must
be managed in VPII can be regarded as “presence”. VPII thus
manages them by using the presence-related event notification
mechanism of SIMPLE. SIMPLE is an extension of SIP (Ses-
sion Initiation Protocol). Two request messages, i.e., SUB-
SCRIBE and NOTIFY, are added in this extension, and
PUBLISH request is added by another document [Nie 04]. In
VPII, the user agent (UA) sends a PUBLISH request to the RM
or RLM when a presence changes. The RM or RLM stores the
presence in a database and sends the updated presence by using
a NOTIFY request. The UA requests the room-presence infor-

SIP/SIMPLE-based Conference Room Management Method
for the Voice Communication Medium “voiscape”

Yasusi Kanada
Central Research Laboratory, Hitachi, Ltd.

Higashi-Koigakubo 1-280, Kokubunji, Tokyo 185-8601, Japan
kanada@crl.hitachi.co.jp

mation, which includes the presence of users and objects in the
room, to the RM by sending a SUBSCRIBE request.

User presence is expressed using an extended PIDF (Presence
Information Data Format [Sug 04]). Presence is usually regard-
ed as a status and is thus indicated by status tags. While a
status can be changed easily, presence, in a general sense, con-
tains properties that are not easily changed. Although it is not
necessary to propagate unchanged properties every time a
presence message produced by a status change is sent, they must
be propagated the first time the user or object appears. Such
properties should be distinguished from the status. However,
PIDF has no tag for properties. A new tag, vs:property, was
thus introduced. This tag includes new tags such as vs:type and
vs:room-size. The former indicates the type of entity, and the
latter indicates the coordinates of the object.

TCP, instead of UDP, is used for transmitting a presence
message, because the message size is usually larger than the
MTU of Ethernet. SIMPLE and PIDF are computationally quite
heavy, so if the status is updated frequently, presence propaga-
tion requires much computational resource. This problem and a
solution are explained in Section 4.4.
4.2 Room-list management
In addition to room users and objects, a room list is also regard-
ed as “presence” in VPII, and it is requested and sent by using
SIMPLE. If the UA requests one-time notification, the effect is
similar to a request-response protocol such as HTTP. However,
if the UA requests subsequent notifications, the RLM reports
room additions, changes, and deletions to the UA.

The following part of the PIDF document describes the
presence of a sound room.
<tuple id="Office@serverdomain">
 <nickname>Office</nickname>
 <contact>sip:Office@1.2.3.4:5060</contact>
 <status><basic>open</basic></status>
 <vs:property><vs:type>room</vs:type>
 <vs:room-size>50,30,5</vs:room-size>
 </vs:property></tuple>

The identifier (SIP URI) of this room is Office@serverdomain
and its short name is Office. The contact address is the IP ad-
dress and port of the RM. This enables direct access to the RM
and avoids high load of SIP proxies and the delay they cause. If
the IP address or port of the RM is changed, UAs are informed
about this change by sending a room-list notification message.
The type of this entity is room, and its size is 50 × 30 × 5 m.

A room creation or deletion can be ordered by a UA by using
a PUBLISH request. If the user is allowed to create a room with
the specified properties, a new room is created and its URI be-
comes ready to receive messages such as INVITE, BYE, or
SUBSCRIBE. The creating user is the owner of the room. Be-
cause this event notification mechanism is based on a soft-state
approach, i.e., the effects of SUBSCRIBE, NOTIFY, and PUB-
LISH requests disappear if these messages expire, the created
room is kept alive only while the RM continues receiving PUB-
LISH requests from the owner. This means that the room life-
cycle is managed by a soft-state approach. However, the interval
of the PUBLISH requests can be a month, a year, or longer.
This approach is applied to users and objects too.

Currently, the RLM and RM are integrated into a single ma-
chine. The room-creation and deletion requests have not yet
been implemented. The rooms are thus permanent and, at pres-
ent, can be added or removed only by the system administrator.
4.3 Room-user and object management
Both current room users and objects in the room are regarded as
parts of the room presence. A room PIDF document thus con-
tains both. An object can be added to or removed from a room
by a PUBLISH request. A room user can enter a room by send-
ing a PUBLISH request to the room, and the user can exit from
the room by sending an un-PUBLISH request to it in VPII.
When entering or exiting a room, INVITE and BYE requests are
used for opening or closing a voice stream between the UA and
the media server. The UA sends a SUBSCRIBE request con-
cerning room presence changes to the room URI, and they are
reported to users by sending NOTIFY requests. The NOTIFY
requests contain PIDF documents.

The following part of PIDF document (a tuple) describes the
presence of a user.
<tuple id="George@userdomain">
 <nickname>George</nickname>
 <icon>http://domain/icons/George.bmp</icon>
 <vs:auditory-icon>http://domain/auditory-icons/Geor
ge.wav</vs:auditory-icon>
 <status><basic>open</basic>
 <vs:location>10,5,0</vs:location></status>
 <vs:property><vs:type>human</vs:type></vs:property>
</tuple>

This tuple describes the user’s properties and status. The 2-D
and auditory icons of George are specified by their URLs. The
status includes George’s location and orientation.

A NOTIFY request must contain a list of all the users and
objects even if there is no presence change [Roa 02]. This
means that if the number of users and/or objects is large, the
message size becomes very large. In addition, if a user (or users)
moves very frequently, notification requests are sent very fre-
quently. The overheads of transmission, analysis, and creation
of such a message is thus very large. This problem has been
solved by the method described in the next subsection.

Currently, objects cannot be added/removed by using SIM-
PLE messaging but only by the system administrator, and room
membership management functions are not yet implemented.
4.4 Partial notification of users and objects
To reduce the overhead of communication and computation, a
partial notification mechanism [Lon 04a][Lon 04b] is used.
When the presence is updated, only the difference from the pre-
viously reported presence is sent to the UAs by using a partial
PIDF document; i.e., it does not contain unchanged parts. If
there is only a small change, the document size is much smaller
than the full notification message. For example, an update of
user location and orientation is notified by the following text.
<?xml version="1.0" encoding="UTF-8"?>
<pidf-diff xmlns="urn:ietf:params:xml:ns:pidf"
 xmlns:vs="urn:ietf:params:xml:ns:virtual-space"
 entity="pres:meetingA@serverdomain” version="2">
 <replace sel="presence/tuple[id="Listener51&
quot;]/status/vs:location/text()">5,4,0</replace>
</pidf-diff>

Presence changes always generate partial notification mes-
sages. However, full notification messages are also sent to a UA
when it sends a SUBSCRIBE request to the RM. Because SUB-
SCRIBE requests are sent periodically, full notification mes-
sages are also sent periodically.

Although the size of partial notification message is small,
RFC 3856 [Ros 04] states that the minimum interval for
presence notification should be five seconds. Thus, if a presence
change such as user motion is quick, the system cannot track the
change properly. In the current VPII, the interval is set to two
seconds. However, this response time is still not sufficient for
some applications. A protocol different from SIP/SIMPLE, such
as RTP (Real-time Transport Protocol), should be used for user
location and orientation notification in such applications.

Message sizes and corresponding processing times were
measured in the case of a simulated conference of five people
with four objects. The average TCP message size of a full noti-
fication was 2200 bytes, and that of a partial notification was
680-1150 bytes (with 1-5 replace tags). The message size was
thus reduced by 48-69%. The average elapsed time from when a
Zaurus UA receives a NOTIFY request to when an 200 OK
response is received for a full notification was 130 ms, and that
for a partial notification was 17-31 ms. Processing time was
thereby reduced by 66-87%. This reduction ratio is smaller than
the size reduction ratio because the XML part of the message,
which requires much more parsing time, is much smaller.

5 Conclusion
In VPII, SIMPLE was used for all the user, object, room, and
room list operations between an RMS and UAs. This makes the
room management natural and light-weight in terms of compu-
tational and programming resources. To reduce the messaging
overhead, the partial notification mechanism of SIMPLE is
used. This significantly reduced SIP message sizes and proc-
essing time in a simulated meeting.

References
[Kan 04] Kanada, Y., “Multi-Context Voice Communication Controlled

by using an Auditory Virtual Space”, 2nd Int’l Conf. on Communica-
tion and Computer Networks (CCN 2004), pp. 467-472, 2004.

[Kan 05] Kanada, Y., “Multi-Context Voice Communication In A
SIP/SIMPLE-Based Shared Virtual Sound Room With Early Reflec-
tions”, NOSSDAV 2005, pp. 45-50, 2005.

[Lon 04a]Lonnfors, M., Costa-Requena, J., Leppanen, E., and Khartabil,
H., “Partial Notification of Presence Information”, Work in progress,
IETF.

[Lon 04b]Lonnfors, M., Leppanen, E., and Khartabil, H., “Presence
Information Data Format (PIDF) Extension for Partial Presence”,
Work in progress, IETF.

[Nie 04] Niemi, A., Ed., “Session Initiation Protocol (SIP) Extension
for Event State Publication”, RFC 3903, IETF, October 2004.

[Roa 02] Roach, A. B., “Session Initiation Protocol (SIP)-Specific Event
Notification”, RFC 2543, IETF, June 2002.

[Ros 04] Rosenberg, J., “A Presence Event Package for the Session
Initiation Protocol (SIP)”, RFC 3856, IETF, August 2004.

[Sug 04] Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W.,
and Peterson, J., “Presence Information Data Format (PIDF)”, RFC
3863, IETF, August 2004

