
Abstract
This paper presents a vectorized algorithm for entering
data into a hash table. A program that enters multiple
data could not be executed on vector processors by
conventional vectorization techniques because of data
dependences. Our method enables execution of multiple
data entry by conventional vector processors and im-
proves the performance by a factor of 12.7 when
entering 4099 pieces of data on the Hitachi S-810,
compared to the normal sequential method. This method
is applied to the address calculation sorting and the
distribution counting sort, whose main part was un-
vectorizable by previous techniques. It improves
performance by a factor of 12.8 when n = 214 on the S-
810.

1. Introduction
Hashing is a fast and widely-used method for entering data and
searching for it. A processing of entering one piece of data to
a hash table or searching it for one piece of data is quite fast
and there seems to be no need for parallel processing nor
possibility of it. However, if a lot of data to be entered or
searched for are given, parallel processing seems necessary for
performance improvement and it seems possible.

Vector processing by pipelined vector processors, such as
the Hitachi S-810 or Cray 2, or SIMD parallel processors,
such as CM-2 (Connection Machine 2), is a promising method
of parallel processing. In most cases, a program must be
transformed to a sequence of vector operations in order to
execute it by vector processing. This program transformation
is called vectorization. It is possible to vectorize a program
that searches a hash table for multiple pieces of data by
previous vectorization techniques [Kuc 81] if the program is
written in an appropriate style, because there are no data
dependences unsuitable for vectorization [Kuc 81] among the
processing of each piece of data. However, in the case of data
entry into a hash table, there are data dependences intrinsically
unsuitable for vectorization, thus it is impossible to be
compiled for vector processors by conventional methods.
These data dependences are caused by collisions. The detailed
reason of unvectorizability will be explained in Section 2.

The address calculation sorting [Flo 60] [Gon 84] is one of
the fastest sorting algorithms for sequential processing. When
the distribution of data values is known, the data can be sorted
in O(n) in average by this method [Gon 84]. If this algorithm
is vectorized, it may be the fastest algorithm for vector
processing when certain conditions hold, because the order of
execution time of the address calculation sorting is lower than
most of the previous vectorized and parallelized sorting
algorithms [Sto 78] [Bro 81] [Fla 83] [Roe 87] [Ish 88] (In
the case of SIMD processors, the execution time of the
vectorized address calculation sort will be O(1)). However, the
main part of this algorithm cannot be vectorized by previous
vectorization techniques, because the main part “hashes” the
data and enters them into a work table, producing collisions
that may cause data dependences unsuitable for vectorization
[Ish 88]. Therefore, this algorithm will be vectorized if and
probably only if multiple data entry into a hash table is vector-
ized. There are other sorting algorithms, such as the
distribution counting sort, that could not be vectorized for the
same reason.

* The author's current address is as follows: Center for Machine
Translation, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, USA. The e-mail address is yk@a.nl.cs.cmu.edu.

This paper presents a vectorization technique of hashing,
the algorithm for data entry into a hash table, and its
application to an address calculation sorting and the
distributing counting sort. These algorithms require no special
hardware for hashing nor sorting. Section 2 describes the
vectorization technique and the vectorized algorithm of data
entry. Section 3 describes the vectorized algorithm of an
address calculation sorting. Section 4 describes the results of
performance evaluations of both the vectorized hashing and
the above sorting algorithms.

2. Vectorized Algorithm of Hashing
We will first explain the reason why a program that enters
multiple data into a hash table is not vectorizable by
conventional vectorization techniques. When entering data,
the hashed values of the data are calculated first. Some pieces
of data may have equal hashed values, namely collision may
occur. There are data dependences among the processings of
colliding data because each processing reads and rewrites the
same entry of the hash table. Therefore, these processings
must be performed sequentially.

However, there is a possibility of vector processing.
Uncolliding data can be processed in parallel. So, if colliding
data are detected and their entries are suppressed or are made
ineffective, the rest of the data can be entered by vector
processing. The colliding data can be processed later in the
same manner.

Figure 1 explains the above process conceptually. There
are six keys, k1 through k6, to be entered in the hash table in
this example. The hashed values of keys k1, k3 and k6 are the
same, and those of keys k4 and k5 are the same, but others are
different. Because the hashed values of keys k1, k2 and k4 are
different, they can be processed in parallel, so they are
classified to set S1. The hashed value of key k3 is the same as
that of k1, and that of key k5 is the same as that of k4, so k3
and k5 cannot be processed in parallel with the keys in S1 .
However, they can be processed in parallel each other. So they
are classified to set S2. The hashed value of key k6 is the same
as that of k1 and k3, so it cannot be processed in parallel with
the keys in neither S1 nor S2, so it is classified to set S3. If
the elements in S1, S2 and S3 are organized into vectors as
shown in Figure 1, each of these vectors can be processed
using vector operations.

353 5

3

5

1

1

5

621

911

415

779

k1
k2

k3

k4

k5

k6

S

S2

S3

S1

779

505
505

911 911

415
415

621 621

353
353

779
hashed
valuesSet of

keys S

Parallel-processable
sets S1, S2, S3

Parallel-process-
able vectors V1,

V2, V3

V1

V2

V3
505

Broken arrows show the data dependences
unsuitable for parallel processing.

Figure 1: Possibility of parallel processing in multiple data
entry into a hash table

A Vectorization Technique of Hashing and its
Application to Several Sorting Algorithms

Yasusi Kanada*

Central Research Laboratory, Hitachi Ltd.
Kokubunji, Tokyo 185, Japan.

Figure 2 shows the vectorized version of an open-hashing
algorithm [Knu 73] that enters colliding keys into different
entries of the hash table. A chain-hashing algorithm [Knu 73]
that enters colliding keys into an entry as a chain of keys can
be vectorized using the same technique, but it is not shown in
this paper. In this algorithm, vectors 2 and 3 in Figure 1 will
not be generated explicitly, but it conceptually implements the
above method. Normally, a key is entered with a piece of data
into a hash table, but this is omitted in the algorithm in
Figure 2, and the values of all the keys are asserted to be
different because of simplicity. We will argue about the elimi-
nation of this assertion in the next section. Each unused entry
of the hash table is initialized to a special value unentered,
which is not used as a key value. Value unentered is used for the
purpose of displaying whether the entry is used or not.

The algorithm is written in a language with the parallel array
assignment statement, and the where statement such as that of
Fortran 8X. Each assignment in each parallel array assignment
statement may be performed in parallel. However, no two
statements can be executed in parallel, if the parallel execution
may cause a wrong result. For example: If A = (1, 2, 3), B =
(10, 11, 12), and M is a mask vector, which is a boolean vector
used for controlling vector operations, and the value is (true,
false, true), the following statement updates the value of A as
(10, 2, 12);

where M do A := B; end where;

This language also has the countTrue function and the
where operator. If M is a mask vector, expression
countTrue(M) returns the number of trues in M. For example, if
M is array (true, false, true), then countTrue returns 2 .
Expression A where M means a vector of elements of A which
corresponds to true elements of M. For example, if A = (1, 2 ,
3) and M = (true, false, true), A where M returns (1, 3).
Expression A[x : y] in Figure 2 means a slice (subarray) of A ,
(A[x], A[x+1], …, A[y]).

In Figure 2, keys are stored into the hash table at
Statements 2.1 and 2.4. However, if there are collisions
between these keys, some stored keys are overwritten by other
keys. So the entries to which these keys are written are
checked at Statement 2.2. If table entry table[hashedValue[i]]
is overwritten in Statement 2.1 after key[i] was assigned,
condition key[i] = table[hashedValue[i]] does not hold. That
means key[i] was not really entered. The above condition
holds only when the value of key[i] is stored and kept in
table[hashedValue[i]], because of the assumption that each
value of the key is unique. The keys are used as identifiers;
they can be used as such because of the above assumption that
each is unique. The above check can be done by “vector-
compare” operation of vector processors. It generates a mask
vector. Then, the unentered elements are collected at State-
ment 2.3. They are stored into other entries of the hash table
at Statement 2.4. The collection is done by a vector-compress
(compressing store) operation in vector processors such as the
S-810 [Nag 84]. The above process is repeated until all the
keys are entered.

The above check and reassignment guarantee that this
algorithm enters all the keys correctly regardless of order of
assignments, even if there are collisions. That means each
element in statements 2.1 and 2.4 can be assigned completely
in parallel. No serialization is necessary. We will call the
technique used for vectorizing the hashing algorithm the
overwrite-and-check technique. A very closer technique i s
implicitly used in Appel and Bendiksen’s vectorized garbage
collection algorithm [App 89].

Figure 3 shows an execution example of the program in
Figure 2. For simplicity’s sake, the hash table in the example
is small. The hashing function hash(x) used here is x mod 6 .
The keys to be entered are 353, 621, 415 and 911, so the input
of the algorithm is an array contains these values. There is an
entered key, 103, in the hash table at the beginning.

The execution process will be explained below. The hashed
value of each key is computed first. Then, the first type o f
collisions, collisions between the keys to be entered and the
keys already entered in the hash table, are checked at the

condition expressions of the where statements in Figure 2.
In this example, only the third element, 415, is colliding, so
the third element of the mask vector becomes false and other
elements become true. Other keys, 353, 621 and 911 are
entered into the hash table. Keys 353 and 911 are written into
the same table entry. Key 911 overwrites key 353 here because
the hashed values are the same.

The second type of collisions, that is, collisions among
elements to enter, is detected in the next step. Key 353 i s
detected as a colliding key. As the result, keys 353 and 415 are
detected as unentered keys, and they are re-packed (compressed)
into the array of keys. Hashed values are also re-packed and
used for calculating the alternative hashed values. The two
types of collisions are checked for the new hashed values. No
collision occur in this time, so all the keys are successfully
entered, and the iteration of the for loop stops.

Most of the above operations can be performed using vector
operations efficiently in vector processors such as the S-810.

3. Application to Sorting
There is a variation of address calculation sorting that is called
the linear probing sort [Gon 84]. This algorithm uses a work
array, C. Data are “hashed” and stored into C. The “hashing
function” has the following property.

data[i] ≤ data[j] ⇒ hash(data[i]) ≤ hash(data[j]) ;
(1 ≤ i ≤ n, 1 ≤ j ≤ n).

Because of this property, it is not really a hashing function,
but overwrite-and-check technique can be applied in the same
way. The order of data stored in array C is sorted because of
this function, if it is not disordered by the processing of
colliding data. The data in C are not contiguously stored, so
they are packed into another array. The original array, data,
can be used for this purpose. The algorithm is shown in
Appendix.

–––––––––––––––––––––––––––––––
input table : the hash table.

key[1 : n] : A set of keys to be entered {only keys are
entered in this algorithm}.

output table : the hash table which key[1 : n] are entered in.
–––––––––––––––––––––––––––––––
local hashedValue[1 : n], entered[1 : n]. /* local variables */

/* Computing hashed values and entering data into the table */
hashedValue[1 : n] := hash(key[1 : n]);

/* calculate hashed values {for example, hash(x) = x mod size(table)}.
where table[hashedValue[1 : n]] = unentered do

/* detection of confliction among the data to enter and */
/* already entered data. */

table[hashedValue[1 : n]] := key[1 : n]; (2.1)
/* enter the keys only where unentered. More than one */
/* data may be written in a hash table entry. */

end where;

for i in 1 .. size(table) loop
/* Checking unentered elements and collecting them */

entered[1 : n] := (key[1 : n] = table[hashedValue[1 : n]]);
nrest := countTrue(entered[1 : n]); (2.2)

/* count number of trues in boolean array ‘entered’. */
hashedValue[1 : nrest] := hashedValue[1 : n] where not entered[1 : n];

/* pack unentered elements in hashedValue[1 : n]. */
key[1 : nrest] := key[1 : n] where not entered[1 : n]; (2.3)

/* pack unentered elements in key[1 : n]. */

/* Testing whether data entry is finished */
if nrest = 0 then exit loop; /* exit the for-loop */
n := nrest;

/* Computing the subscripts for the next step and entering data */
hashedValue[1 : n] := (hashedValue[1 : n] + 1) mod size(table);
where table[hashedValue[1 : n]] = unentered do

table[hashedValue[1 : n]] := key[1 : n]; (2.4)
/* enter the keys only where unentered. More than one */
/* data may be written in a hash table entry. */

end where;
end loop;

Figure 2: The vectorized algorithm for entering data into a
hash table

(omitted)

Figure 3: An example of the vectorized data entry into a hash
table

This algorithm can be vectorized using the overwrite-and-
check technique. Figure 4 shows the vectorized algorithm.
The data to be sorted are asserted to be non-negative here. This
program consists of six parts, A through F. They correspond
to the same name parts in the scalar algorithm except E, which
is specific to vector processing which is based on the
overwrite-and-check technique. The new data are inserted into
the sorted array C in part C. However, if old data are already
stored in the places, they are saved to array work in part C and
restored to the next available places of C in part D.

There are two major differences between the hashing used in
this address calculation sorting and the simple hashing shown
in Section 2. One difference is that same values (keys) are
allowed for input data in this algorithm. Thus data values
cannot be used as identifiers when checking the collisions, so
the negated indices of data (—ι in Figure 4) are used instead.
The data are stored after overwrite-and-check in the same place
where their indices were stored when checking. The assertion
that the data are non-negative is necessary because of the
sharing of array between identifiers and data to be sorted, but
this assertion can be eliminated if a different array is used for
each purpose.

The other difference is the processing of colliding data.
Colliding data must be inserted to an appropriate place in the
sequence of sorted data. All the colliding data are attempted to
insert in parallel using vector operations. Each unused entry of
C is initialized to a special value unentered which is greater
than any data value. This makes the above insertion possible.

Figure 5 shows an example of the address calculation
sorting process comparing to the original sequential sorting
process. Though this algorithm uses a lot of local arrays, the
size of these arrays, except C, can be remarkably reduced by an
optimizing transformation. However, the size of C must be at
least twice as large as n.

 The distribution counting sort [Knu 73] can also be
vectorized using the overwrite-and-check technique. The
vectorized distribution counting sort algorithm is not shown
here because of page limitations.

––––––––––––––––––––––––––––––
input A[1 : n]: array to sort {the element values should be in [0, Vmax)}.
output A[1 : n]: sorted array.
––––––––––––––––––––––––––––––
local C[0 : 3*n — 1], uninsertable[1 : n], work[1 : n], entered[1 : n],

toShift[1 : n], index[1 : n], next[1 : n], nonempty[1 : n].

C[0 : size(C) — 1] := unentered; /* initialize C (unentered = Vmax) */

/* A. Computing “hashed” values */
hashedValue[1 : n] := int(float(2 * size(C) * A[i]) / Vmax); nrest := n;

repeat
 /* B. Finding the table entries to insert the data */

repeat
uninsertable[1 : nrest] := (C[hashedValue[1 : nrest]] ≤ A[1 : nrest]);

/* check the first type of collision with stored data. */
/* If hashedValue[i] ≠ unentered, the right-hand side */
/* condition holds, i.e., there is a first type of collision. */

Nuninsertable := countTrue(uninsertable[1 : nrest]);
/* count the number of uninsertable (colliding) data. */

where uninsertable[1 : nrest] do
hashedValue[1 : nrest] := hashedValue[1 : nrest] + 1;

end where;
until Nuninsertable = 0;

/* repeat until there is no first type of collision. */

/* C. Inserting the data */
work[1 : nrest] := C[hashedValue[1 : nrest]];

/* save the original values of C to work. */
C[hashedValue[1 : nrest]] := —ι ;

/* store the identifiers to check {—ι is array (—1, —2, …, —nrest)}. */
/* An entry of C may be written twice or more (overwritten). */

entered[1 : nrest] := C[hashedValue[1 : nrest]] = —ι ;

/* check the second type of collision between newly entered data. */
where entered[1 : nrest] do

C[hashedValue[1 : nrest]] := A[1 : nrest];
end where; /* enter */

/* D. Shifting the work array elements {only for successfully inserted data} */
toShift[1 : nrest] := entered[1 : nrest] and (work[1 : nrest] ≠ unentered);
NtoShift := countTrue(toShift[1 : nrest]);
work[1 : NtoShift] := work[1 : nrest] where toShift[1 : nrest];
index[1 : NtoShift] := (hashedValue[1 : nrest] + 1)

where toShift[1 : nrest];
while NtoShift > 0 do

next[1 : NtoShift] := C[index[1 : NtoShift]];
C[index[1 : NtoShift]] := work[1 : NtoShift];
nonempty[1 : NtoShift] := (next[1 : NtoShift] ≤ unentered;
count := countTrue(nonempty[1 : NtoShift]);
work[1 : count] := next[1 : NtoShift]

where nonempty[1 : NtoShift]; /* pack work. */
index[1 : count] := index[1 : NtoShift] + 1

where nonempty[1 : NtoShift]; /* pack index. */
NtoShift := count;

end while;

/* E. Collecting the uninserted data for the next iteration */
irest := countTrue(not entered);
hashedValue[1 : irest] := hashedValue[1 : nrest]

where not entered[1 : nrest];
A[1 : irest] := A[1 : nrest] where not entered[1 : nrest];
nrest := irest;

until nrest = 0; /* until all the data are inserted. */

/* F. Packing the sorted data into A */
A[1 : n] := C[0 : size(C) — 1] where (C[0 : size(C) — 1] ≠ unentered);

Figure 4: The vectorized algorithm of the address calculation sorting

 A (array to sort) C (work array)

Step 1 2 3 4 0 1 2 3 4 5 6 7 8 9 10 11 Index

0. (38 11 42 39) (* * * * * * * * * * * *) The range of the keys is [0, 100). hash(x) = [(8/100)x]. (*

= Vmax).

1. (|38 11 42 39) (* * * 38 * * * * * * * *) hash(38) = 3.

2. (38|11 42 39) (11 * * 38 * * * * * * * *) hash(11) = 0.

3. (38 11|42 39) (11 * * 38 42 * * * * * * *) hash(42) = 3. Entered to C[4] because C[3] < 39 < C[4].

4. (38 11 42|39) (11 * * 38 39 42 * * * * * *) hash(39) = 3. 42 is shifted because C[3] < 42.

⇒ shifted

5. (11 38 39 42) The sorted result is packed into A.

(a) The sequential version

 A (array to sort) C (work array)

Step Phase† 1 2 3 4 0 1 2 3 4 5 6 7 8 9 10 11 Index

0. A (38 11 42 39) (* * * * * * * * * * * *) The range of the keys is [0, 100). hash(x) = [(8/100)x]. (*

= Vmax).

1. B&C1 (38 11 42 39) (—2 * * —4 * * * * * * * *) Store the negated indices of A to C. —1, —3 and —4 are

written to C[3].

2. C2 (38 11 42 39) (11 * * 39 * * * * * * * *) Store the data whose indices are succeeded to store into C.

3. D&E (38 42) (11 * * 39 * * * * * * * *) Collect the data that are failed to store into C.

4. B&C1 (38 42) (11 * * -1 -2 * * * * * * *) Store the negated indices of A to C. 39 is saved to work[1].

5. C2 (38 42) (11 * * 38 42 * * * * * * *) Store the data whose negated index is successfully stored

into C.

6. D1 (38 42) (11 * * 38 39 * * * * * * *) 42 is saved to next[1] and 39 is stored to C[4].

7. D2&E (38 42) (11 * * 38 39 42 * * * * * *) 42 is stored to C[5].

8. F (11 38 39 42) The sorted result is packed into A.

† Indicated in Figure 4.

(b) The vectorized version

Figure 5: An example of the sequential and vectorized address calculation sorting

4. Performance Evaluation
This section presents a performance model of the vectorized
hashing, the result of performance evaluation of hashing and
sorting using the overwrite-and-check technique.

4.1 A Performance Model
We will show an execution model of vectorized hashing and the
performance model. If the average number of hash table
accesses for a key is c, and the number of keys to enter is n, the
scalar execution time, ts, is modeled as follows:

ts = acn,

where a is a constant whose value is dependent on
implementation. If the number of hash table access is c' for the
worst case in the n keys, the vector execution time, tv, i s
modeled as follows:

tv = a'cn + b'c',

where a' and b' are constants whose values are implementation
dependent. The value of constant a' should be smaller than that
of a for the sake of performance improvement. The number of
iterations performed by the for loop in Figure 2 is equal to c'.
The first term of the vector execution time is the part that i s
proportional to the vector length. The second term is the over-
head of vector execution. The overhead is independent of the
vector length, and it is nearly proportional to the number of
vector instructions. The acceleration ratio, α , is the quotient of
the scalar time by the vector time:

α = 1 / (
a'
a

 +
b'c'
acn

) .

4.2 Evaluation of Hashing
F i g u r e s 6 and 7 show the result of evaluation of multiple
data entry into a hash table on the S-810 model 20. The hash
table is initially empty, and various number of uniformly
random keys are entered. Two hash table sizes, 521 and 4099,
are tested. The results of the former are shown in Figure 6, and
that of the latter in Figure 7. The horizontal axis in
Figures 6(a) and 7(a) shows the load factor after all the keys

are entered. The load factor is the ratio of filled entries in the
hash table. Figures 6(a) and 7(a) show the time to enter all the
keys in an array, and Figures 6(b) and 7(b) show the
acceleration ratios. An optimized version of the algorithm in
Figure 2 is used for this performance evaluation.

The peak acceleration ratios, 5.6 and 12.7, are obtained when
the load factor is between 0.1 and 0.5. The reason why the ac-
celeration ratio is lower when the load factor is less than 0.1 i s
that the vector length is not enough for using the vector
pipeline of the S-810 efficiently. The reason why the
acceleration ratio is lower when the load factor is more than 0.5
can be explained as follows: when the load factor is increased,
c'/c is also increased because c' increases faster than c. Then the
second term of tv is increased and the acceleration ratio i s
decreased.

(omitted)

(a) The execution time (b) The acceleration ratio

Figure 6: The vector execution time and the acceleration ratio
of multiple data entry (n = 521)

(omitted)

(a) The execution time (b) The acceleration ratio

Figure 7: The vector execution time and the acceleration ratio
of multiple data entry (n = 4099)

(omitted)

(a) n = 521 (b) n = 4099

Figure 8: The acceleration ratio of multiple data search

Performance of multiple data search is also evaluated. The
result is shown in Figure 8. The acceleration ratio is 5 to 10
in most cases when the vector length is enough and the
collision rate is not high. The acceleration ratio is lower than
that of the data entry, because there are more arrays to re-pack
in the case of search.

4.3 Evaluation of Sorting
Both the address calculation sorting and the distribution

counting sort are evaluated. T a b l e 1 shows the result. The
acceleration ratio of the address calculation sorting is 7.65
when n = 210 and it is 12.84 when n = 214

.

Table 1: The CPU time and the acceleration ratio of vectorized
sorting algorithms

*The size of the work array C is 3n.
**The size of the work array is 216, which is the range of the data.

5. Conclusion
The vectorization technique of hashing, presented in this paper
and called the overwrite-and-check technique, enables
execution of multiple data entry by vector processing and
improves performance by a factor of 12.7 when entering 4099
pieces of data on the Hitachi S-810, compared to the conven-
tional sequential method. Applied to the address calculation
sorting, this technique improves performance by a factor of
12.8 when n = 214

 on the S-810.
The application of the vectorized hashing is limited because

performance is improved only when many pieces of data are
entered or searched at once. However, in applications such as
the address calculation sorting, the performance is remarkably
improved. The overwrite-and-check technique may become a
general technique for pipelined vector processors and SIMD
parallel processors, and they may be helpful for reducing locked
time or serialized accesses of shared resources among
processing units in parallel processing systems.

Acknowledgement
The author wishes to thank Dr. Sakae Takahashi and Seiichi
Yoshizumi of Hitachi Ltd. for their continuing support of his
research, and to thank Dr. Michiaki Yasumura and Masahiro
Sugaya of Hitachi Ltd. for their useful comments.

References
[App 89] Appel, A. W., and Bendiksen, A.: Vectorized

Garbage Collection, J. Supercomputing, Vol. 3, pp. 151-
160, 1989.

[Bro 81] Brock, H. K., Brooks, B. J., and Sullivan, F.:
DIAMOND: A Sorting Method for Vector Machines, BIT,
Vol. 21, pp. 142-152, 1981.

[Fla 83] Flanders, P. M., and Reddaway, S. F.: Sorting on
DAP, Parallel Computing 83, pp. 247-252, Elsevier
Science Publishers B. B., North-Holland, 1984.

[Flo 60] Flores, I.: Computer Times for Address Calculation
Sorting, J. ACM, Vol. 7, No. 4, pp. 389-409, 1960.

[Gon 84] Gonnet, G. H.: Handbook of Algorithms and Data
Structures, Addison-Wesley, 1984.

[Ish 88] Ishiura, N., Takagi, N., and Yajima, S.: Sorting on
Vector Processors, Transaction of Association o f
Information Processing, Vol. 29, No. 4, pp. 378-385,
1988 (in Japanese).

[Knu 73] Knuth, D. E.: Sorting and Searching, The Art o f
Computer Programming, Vol. 3, Addison-Wesley, 1973.

[Kuc 81] Kuck, D. J., Kuhn, R. H., Pauda, D. A., Leause, B. R.,
and Wolfe, M. J.: Dependence Graphs and Compiler
Optimizations, Eighth ACM Symposium on Principles o f
Programming Languages, pp. 207-218, 1981.

[Nag 84] Nagashima, S., et al.: Design Consideration for
High-Speed Vector Processor: S-810, Proc. IEEE
International Conference on Computer Design, pp. 238-
242, 1984.

[Roe 87] Roensch, W., and Strauss, H.: Timing Results of
Some Internal Sorting Algorithms on Vector Computers,
Parallel Computing, Vol. 4, pp. 49-61, 1987.

[Sto 78] Stone, H. S.: Sorting on STAR, IEEE Transaction on
Software Engineering, Vol. 4, No. 2, pp. 138-146, 1978.

Appendix: The Scalar Address Calculation Sorting
Algorithm

–––––––––––––––––––––––––––––––
input A[1 : n]: array to sort {the element values should be in [0, Vmax)}.
output A[1 : n]: sorted array.
–––––––––––––––––––––––––––––––
local C[0 : 3*n — 1];

for i in 0 .. size(C) — 1 loop C[i] := unentered; end loop; /* Initialize C. */

/* Scatter the data into C: */
for i in 1 .. n loop
/* A. Computing a “hashed” value of A[i]. */

hashedValue := int(float(2 * size(C) * A[i]) / Vmax);

/* B. Finding the table entry to insert the new data A[i]: */
while C[hashedValue] ≤ A[i] loop

hashedValue := hashedValue + 1;
end while;

/* C&D. Inserting the new data and shifting the data in C: */
w := C[hashedValue]; C[hashedValue] := A[i];
while w ≠ unentered loop

hashedValue := hashedValue + 1;
x := C[hashedValue]; C[hashedValue] := w; w := x;

end while;
end for;

/* F. Packing the sorted data into A. */
count := 0;
for i in 0 .. size(C) — 1 loop

if C[i] ≠ unentered then
count := count + 1; A[count] := C[i];

end if;
end for;

Algorithm n S-810/20 CPU time (µs) Acceleration
Sequential Vectorized ratio

Address
Calculation
Sorting*

26

210

214

289
4,286

66,955

110
560

5,215

2.62
7.65

12.84

Distributio
n Counting
Sort**

26

210

214

12,206
13,072
30,089

 1,522
1,738
5,667

8.02
7.52
5.31

