
Vectorization Techniques for Prolog

Yasusi Kanada, Keiji Kojima, and Masahiro Sugaya

Central Research Laboratory, Hitachi Ltd.

Kokubunji, Tokyo 185, Japan.

Abstract
Several techniques for running Prolog programs on pipeline<!

vector processors, such as the Hitachi $-820 or the Cray-2, are
developed. This paper presents an automatic JU'ogram
transformation (vectorh;ation) method of Prolog, which enables a
type of or-parallel execution of Prolog programs using vector
operations. Performance is evalulILed on the Hitachi S-SIO using
the Eight-Queens problem. Its vector execution speed is •. 5
MLIPS (18 ms). This is eight or nine times faster than scalnr
execution. Thi. result confirms the erreetivenC&5 of veeloriz.ation
leehniques lind applicability o f vector processors to Prolog
execution and to symbol processing applieo.lions.

1. Introduc�ion

1.1 Prolog and Its High.Speed Execution

Prolog is 8 language with unification and automatic

backtracking ('Prolog' is hereafter used to indicate logic

programming languages in generall. Unification is a very

powerrul paltern matching ror data structures such as lists.

AutomaLic backtracking makes programming of search problems

easy. With theS(' reatures, Prolog is quite suitable ror symbol
processing such 8S list processing, natural longuuge processing,

knowledge-base processing, and so on.

Although Prolog is a very powerful language, its I!Iuculion

speed is rather low. Thus, achieving high.speed execution ;.

required. Many Prolog optimizing compilers in large scale

general· purpose computers have been developed. However, higher

speed requires parallel execution. There 8re t o possible methods

ror parallel execution of Prolog. One is execution by parallel

processors. The other i� execution by pipelined vector processor!

such as the Hitachi 5.820 or the Cray.2.

f"eilllis:5ion 10 copy wilhout ree all Of" pan of thIS malen.al is granted provided

thattnc copies � not m..:le or distributed for din:ct commercial advantag,e.
!he ACM copyri&ht notice Ind the title or the publication Ind its date sppear.
and notice is given that cop)ing is by pu ,,,iJSion 0(thc A"$Oriation for
Computmg Machinery. To copy otherwise. or 10 rtpublish. requires a fcc and/

or specific pe, ",i.on.

1988 ACM 0-89791-272-1/88/0007/0539 $1.50

539

The (ormer approach has been widely studied, (or example, in

the PIM (Parallel Inference Machine) [Ito 86, Ona 86] and Kabu.

wake method (Kum 861, etc.

The latter approach is proposed by Kanada [Kan 84, Kan 85)

and attacked by him [Kan 87} using the Hitachi 5·810 [Nag 84).

This spproach is also being tried by Nilsson [Nil 86] also using the

5.810. and by Talsuguchi a!'ld Muraoka (Tat 87] using the IBM

3090 Vector Facility. However, their wrget is different (rom

Kanada's (ours). Our target is 1.0 improve perrormance of Prolog

.... ith changing its semantics as little &s possible. But their target

is to improve performance or a logic programming languags

without backtracking, i.e., a so·called paruliel logic programming

language GHC IUed 85) or its subset.

1.2 Difficulties in Improving Performance

Currently, most vector processors can only be used by Portron

or assembly language. Vectorizing compilers perform a program

u-ans(ormation called II«lorilotion to generate the object progrom,

which is a U<juence of vl!C!tor operations, (rom fortran programs.

In the case of Fortran, vectorization techniques for most

numerical programs have been established, and the program

transformation is rather easy. This is because their main data

structures are arrays that the vector processors Bre speciolized to

process. and because their cO!llrol structures are simple 00 loops

in moslcases.

Ho ever. the same technique! cannot be applied to Prolog, and

drastic program transformations, such as introducing arrays and

loops, are inevitable. There are three reaso,ms for this.

The first reuson is that it is difficult to accelerate data

structure processing or PrololJ, i.e .. li5tS. runctors, and so on.

Prolog programs do not proc:ess array5, but process Oinked) lists

which cannot be processed directly by vector operation5.

The 5e(:ond reason is that Prolog programs do not have loops

because Prolog lacks control structures like DO loops or GO TO

.tatements. Instead, Prolog contains sophisticated control

mechaniBms like recursive call or automatic backtracking, whose

vectorization techniques are undeveloped.

The third reason is that a unification is mapped to various

operations case-by-case at machine level, These operations cannot

be executed by a single uni-function vector instruction because

unification is a bidirectional (multi-function) operation.

1.3 Contents ofthis Paper

This paper shows program transformation (vectorization)

techniques of Prolog programs and the result of their performance

evaluation. Section 2 gives a brief description of Prolog language
,

and suggests possible veetoriJ,ation strategies for Prolog programs,

Section 3 outlines the veciorization methods. Section 4 gives the

result of the performance eva luation of these methods. Section 5

gives the conclusion.

2. Prolog Language

Before explaining the vectorhation of Prolog programs. a brief

explanation of Prolog language. will be given. A detailed

explanation is found in Clocksin ond Mellish IClo 81\, for example.

2.1 Basics of Prolog

A Prolog program consists of protedures (subroutines). [ath

procedure consists of claUB(!s. The form of a clause is as follows:

p{a'.a/ • ...• 8n):- {,,{Z,···,Cm·

The lefthand-sidc of: - (a n(!cn symbol) is called the head of he

clause, and the righlhand-side is called the body. p is the name of

the procedure, and a"� aI, ... , an are the formal arguments. Thus a

procedure consists of clauses that have the same name and the

same number of formal nguments. The body consists of procedure

ca!ls C,. C/, ... , Cm. Some of them are calls of user·defined procedure

and some o f them are calls of system -defined ones.

When the procedure is called, one of the clauses whose head

mat�hes (can be unified with) the caller's pattern is seleded Hnd

the body of thc clause is executed. If no head matches, the

execution is said to have (oiled. If one of the procedure calis in the

body has failed, execution of the clause has also failed. Otherwise.

it is !Wid to be succeeded. If execution of a clause fails, another

clause whose head matches is selected and executed. This action is

called oll!omatic backtracking.

Two examples will be shown in the next two sections. One of

the m is a deterministic procedure, wh ich means that the

procedure has a single solution. or always only one clause of the

procedure succeed. The other is a nondeterministic procedure ,

which means that it has multiple solutions, or more than one

claUSe of the procedure may succeed. They are included beta use

the exeeution and the veclorization methods of nondeterministic

procedures are different from those of deterministic procedures.

540

Mode declaration, which plays an important role on checking

determinacy, is explained in Section 2.4.

2.2 A Deterministic E:umple

The following example is the well-known append procedure,

which concatenates two lists.

append([J, X. X).
append{[H I R), Y. [I-! I R1J): - append(R, Y. RI).

······ {2.1)
.. (2.2)

For example. the execution of the following question results in

Z '" [a. b, c, d. eJ:

? - append{la. b. C], [d, el. ZJ. (2.3)

This question means "what is the concatenation of list la. b. eI,

and list [d. eJ.� The answer is listla. b, c, d, el (A list is bracketed

in Prolog). In this question, [a. b. c] and Id, e] are constant lists (all

the elements are atomic symbols) and Z is a variable. As far as the

first argument is used as input, only one clause always success

during the execution of the above procedure. Thus the append

procedure is deterministic.

The append procedure has no lcoops, but has a tail
•

recurSIve

call. This means that the righthand-sidc of the second clause is a

procedure call of append itself . The recursive cal! appears at the

end of the procedure, so it is called a tail recursive call. A loop

cannot be expressed by Prolog, but a procedure with a tail

recursive call can be transformed into a loop in procedural

languages. such as fortra n or Pascal . Such a loop may be

vectorized. This fact suggests a possible strategy for vectorizalion.

2.3 A Nondeterministic Example

The append procedurc can also be u�ed to split a list.

? - app end(X, Y. la. blJ. (2.4)

Question 2.3 results in a single answer. but que 9tio n 2.4

results in multiple answers. The question meanS "what

concatenat.e<i with what gives us [a. bJ." In this case, the question

has three answers,

(1) X - !I. V • [a. b1,

(2) X • raJ, V • [b],

(3) X • la. bl, V • [I.

where [J means an emply list. The question has multiple answers

because both clauses of append have succeeded. Such a question is

said to be nondetermini1>tic.4 Nondetcrminacy is one of the

important characteristics of Prolog.

The above example suggests a possiblc vectorj,:ation strategy.

that is, for computing different solutions in (l pipelined manner.

Thus, there is the possibility of applying vedor operations by

changing backtracking to looping.

2.4 Mode Declarations

Although the above append procedure can be used (or lxIth

concatenating and splitting a list, such a multi-function procet!ure

may be less efficient than a spec::ialized, uni-function one. A

language feature ealled mode declaration, used to generale more

effieient code, is supported by many Prolog systems.

An example of a mode declaration for append is as follows:

mode append("" , +, -). , (2.5)

This mode declaration means the first and the second argument of

the append procedure is input, and the third one is output.

If mode declaration 2.5 is supplied for the append procedure,

question 2.3 will be executed faster, but question 2,4 might not be

answered correctly because it is a wrong usage. On the other

hand. if the following mode declaration is supplied. question 2.4

will be e:<ecuted faster, but question 2.3 might not be answered

correctly.

mode append{ -. - , ""). (2.6)

3. Vectorization Methods of Prolog Programs

3.1 And·Vectorization and Or·Vectori'lstion

Two possible vceWri:w.tion strategies were suggcsted III thc

last section.

(1) pipeJined execution of "tail recursive calls�, and

(2) pipelined e:<ecution of "backtracking".

For parallel processing of logic programming languages such

as Prolog, parallelism is roughly classified into and-parallelism

and or-parallelism [Con 811. And·parallelism is the parallelism

between processes that are part of computation getting a single

solution, and or-parallelism is the parallelism between

computation geUing multiple solutions (Note that the meanings of

these words are more general than the usual definitions). The

method based on (l) is a type of and·paralleli�ation, so this

program transformation is called olld-uectorizatiOIl, The method

based on (2) is a type of or-paraJlelil;ation, so it is called or­

tJee/orization. The rest of this paper concentrates on or­

vectorization. The and-vectorization method is currently being

developed and its details will be described in a future paper.

3.2 Basic Ideas of Or· Vectorization

The three problems listed in Section 1.2 must be solved in

order to achieve vectorization. Their details in the case of or­

vectorization are explained below.

541

(1) Data structure problem

The original Prolog program generates multiple solutions,

which are generated one by one. A solution never coexists

with another solution in a sequential exe�ution. However,

they must coexist in an array, i(they are to be processed by a

vector processor. So it is necessary to generate the code of

accumulating solutions in different alternatiyes into an array.

(2) Control structure problem

A program with automatic backtracking must be

converted to a collection of very small loops without

backtracking. Each loop is executed by a single vector

operation.

(3) Unification problem

It is necessary to perform unifications in vector operations

to realize drastic impro\'ements i n performance. In the

e:<eculion of a program like the Eight-Queens problem which

has a large amount of or-parallelism, many unifications are

done. Thus improvement is possible, The following are

subproblems in unification:

(3A) Because list is the most important data structure,

element-wise unification oC lists contained in arrays

should be performed by vector operations at high-speed.

(3B) Compilation of Prolog paUerns inw uni-function vector

unifiers such as list composer, list decomposer. etc .• are

nece!';sary.

3A is mainly an execution mechanism problem, and 38

veclorization techniques problem.

The following methods were used to solve these problems.

(1) Accumulation of solutions and introducing loops

•
."

In this method. values of a logical varioble HI different

alternatives (execution paths) are accumulated in an array at

the end ora nondeterministic procedure execution.

The execution process oC a nondeterministie procedure is as

follows. All the clauses of the procedure are e;l:ecut(!d in order

before exiting the procedure. On the other hand, only one

clause is executed before exiting from it in the original

semantics of Prolog (if the clause succeeded).

Each transformed clause inputs and outputs vectors that

contain values of original arguments, The output Yectors are

merged at the end of the procedure e:<ecution. For example,

the outline of the vector proceS5 of question 2.4 is shown in

figure 1. In this case, the length of the input vectors is one.

The three solutions are obtained sequentially, and

accumulated into arrays. So the length of the output vectors is

three. The e\emcnt.s of the output vectors should be in depth.

,

first
JroJut.ion

Get the
wcond

:lrd urg.

cp

la, oj

Gel tho
tturd

""lulion

1_ app'!nd(X, Y. la, bj}

x,

[ij]
Y,

,

x,

G-- Ibl

Y,

I , II< tal

x,

1,1'1"bl

==

x

J--!I,,-I -_
* loj

�

Y
0--- -. la.01

Figure 1. The outline ofthe vector processing oUhe
nondeterministic 'append' procedure

first order, which is necessary for keeping lhe order of the rmal

solulions the same 8S in sequential execution.

The above accumulation is not done in or-par allel, but

each following operation on the accumulated data can be done

in or-parallel by vector operations. It is better to do the

accumulation by vector operations, because the length of the

input vt'Ctor may be greater than one.

This program transformation has some similarity to the

transformation of nondeterministic Prolog programs into GHC

by Ueda [Ueda 87] and Tamaki [Tam 87].

(2) Vector-element-wise operations on lists

To process arrays that contain linked lists, it ill necessary

to perform vector-element-wise list operations with a vector

processor. That is, the same operations on multiple lists, which

are the elements of an array, must be performed at once. List

vector operations [Kam 83] (or indexed vector loadJstore

operations) can be used ((lr this purpose. (It is dimc ult to

implement Prolog on a vector processor without list vector

operations).

The basic scalar list (lperutions and their execution

methods using vector operations aTe shown in figure 2. The

notation I(A, B, ... , Z) is used for a vector containing A, B, ... , Z.

In the case of decomposition, the heads and the ta.i1s of the

vector elements are obtained using two indexed vector load

operations (a kind of list vecwr operation) and are stored in

542

H::oa T.:: ,

In scll!ar UpjO"O t ions
�_(ar(dr(H, T, !a, b, (])
�_(ar(dr(H, T, [1. 2]) H"'l.T.::

In VE'('tor uperalions

v_cou(dr(H,T,.f{[",b,c],ll,2]Jl

.. , .

H '" .f{a. l), T '" '([b. d. [21J

Indexed
vt)cwr load
o;x:ration

1

Indexed
vector load
operation

I r; SCJ laT <)ptfa tion$

s n"iI([J) _ true.

�_n"H([.. ,b,cl) _ (aile

In vector 0P.0ratlons

[b. (J
:n

v_null(l([j, la, b, (J). MOl .- MO '" H(true. f<'lhe).

Vector
oompah30!l

operulinn

In !'Ctllur ppyruti(>nl2

MO (outPllt mask nodor)

true

b

�_LOns(a, lb. 4 C) C '" [a. b. (I,
_(OI\�l,l1J,C)·-. c.:: [l,lJ

In v(!d& oPQrat;<!!)s

II

v30n�lia. I). "'(lb. ,1. [2JI. C) ... C '" #([a. o. <J.P, 211

Arithmetic
sequenee

gcnffatlon
or*ration" � I

C {;J\HpuL)

]�t<rr .. iinpuU
Vector store EB

optirati<Jn a

� 1

I

b'--'I,IIII
• / H('ap

I\('w hedp I I top {two
list(:ci!$ I V('clor S;lore

ate I operatIon I
allocatffi)

]: t1

'In lh(' c.<W(, of}liwchi
S·8]0, VINe
instrucuon is used

Figure 2_ Basic list ope rations and their vector
counterparts

output vectors H and T. In t.he case of the emptiness lest, a

veetor comparison operation is used and the result is expressed

by boolean vector (called a mask vector) MO. In the case of

composition, the cons cells are allocated on the heap, and the

value of the first and the second arguments are stored in them.

The addresses of the cons cells is calculated by an arithmetic

sequence generation operation and stored in output vector c.

There is also the problem of conditional control. In the

case that some unifications on vector elements Tail and others

succeed, this failure or success must be stored in memory. The

vperations following the unifications are controlled by the

stored data. There are three conditional control methods.

They are explained in Section 3.3.

(3) Compilation to un i-function unifiers

In this method, unifications in a source program are

compiled into calJ� of uni-funetion unifiers , using mode

information of the procedure's arguments and variables. The

word mod� information refers to information that shows

whether the arguments or variables are used only for input,

only for output, or for both. Mode information may be supplied

with mode declarations by programmers. Although m ost
procedures are always used in the same mode, it i s

troublesome for programmers to write mode declarations for

all the procedures. Thus automatic mode analysis is

n�essary. But currently this system 15 fully dependent on

mode declarations .

3.3 Three Condit ional Control l\olethods

In vector operations of vector processurs, cunditiot!al control is

performed mainly by the following three kinds of instructions

IKam831:

(1) Masked operatiot! instruclions,

(2) List vector instructions,

(3) Gather/scatter instructions.

The methoda that follows are used for the conditional control of

vectorbed Prolog programs. Each of them uses the instructions

which �hares the same number. Input and output of the pipelincd

execution of questions with these methods are illustrated in

figure 3.

(1) Masked operation method

In e xecution by this method, each array may cuntain dead

elements (all arrays have the same number of clem ents). The

dead elements are shaded in figure 3. "Live-ness" of array

elements is !!hown by a mask vector. The mask vector is a

boolean vector. The cost of masked operations is very low in

vector processors. However, if the percentage of dead elements

543

Input

Input
mask
vector

true
true
tfUE!

" " "
,

�/

' "

,- append([a, bl, Ie]. Z i),
) - ,'ppend(atom, [atom]. 22)
,- ,)ppend([', 2, 31- [4, 51, l3)

method

1st arg,
Output

[a, bl

Output mask

[1,2,3)
""e tor

true

• false i t, ,,2nd nrg
H ue " (oj "

,
, [atom]

[4, S J

Jrd "rg

'1 '

I 1, 2,
3, 4,5]

(2) Indexing method
Input

Inpllt
in<iC'x
vee!;,,·

lstarg,

, <ltom

" "

[ii, bj

11.2,3)

[<J
l<ltomj

I, 5' j

(3) ComprtlHln9 method

Input

'. , " " ?,,'.'.w,

Jstar�

2nd aq!"
1,1
[atom]

--[4,5)

Output

Output indo
�ocll)r :l<d llfg

EE1
� .-

;

0,,11'\11
3rd ,lr>l

)' [a,b,<1 :'i [1,2, '�
3, 4, 51

I
, ;1

Fii;v,·e 3. Th{' three conditional rontroJ methods

i
.
s large, this method is inefficient because dead clement access

overhead exists.

(2) Indexing method

Similar to the masked operation method, each array may

contain delld elements. Indices (or displacements) of live

elements (Ire stored in an index vector, whose number of

elements i s the same or less than that in data arrays.

Although no dead element is accessed, list vector access

overhead, which is expensive in vector processors, always

exists in this method.

(3) Compressing method.

In this method, each array consists only of live elements.

No control vector, such as iii mask. vector or an index vector, is

used. No dead element is accessed, so no access over-head e,,;ist.

However, if some elements in vectors become "dead", all the

vectors should be compressed to keep the correspondence of

vector elements. So this method is inefficient in many cases.

3.4 Process of Compilation
,

This section gives a brief description ofthe compilation process

and shows the position of the veclori�ation. Sections 3.5 and 3.6

deseri'oe the details of or-vectoritation methods. Section 3.5

describes those for deterministic procedures and section 3.6

describes those for nondeterministic procedures .

Because drastic program transformation is necessary, Prolog

c,,;ecution in vector processors should be based not on an

interpreter. but on a compiler. The compilation process used in

this paper is shown in figure 4. In this paper's execulion method,

Prolog
program

Vectoriza­
tion

Intermediate
program

Built-in
predicates.

unifiers

Cod.
generation

Object
program

Figure 4. Compilntion process of Prolog for vector
processors

the compilation process of Prolog programs C<lnsists of two phases.

The first phase is called uectoriUflioPl, lind the second phase is

called code gerurution..

Vectorization is a program transformation. The reSUlting

program is expressed in an intermediate languoge (ILl whith may

be II high-level language. A Prolog-like language is used us IL in

this paper, for the soke of simplicity. The II, is very similar to

Prolog but H contains arrayS.

Code generatiol"l is II simple process in most cases. It is similar

to the compilation process of the Fortran vectorizing compiler.

3,5 Or-Veetorization of Deterministic Procedures

The vectorited form and the outline of the vectorization

process of the append procedure with mode declaration 2.5, I.e.,

deterministic append, is shown in figure 6.

The first line of the source program is the mode declaration. In

the current implementalion, it is indispensable for vectorization.

544

modeap�nd(�. +.-)
append(!l, X. XI

ilPoend\lH!RI. Y,(HIR1j)

Repia{ing il r gu rnents

mode appe"d(", ". -)

appendiX. Y, I) - X '" [1- Z • Y
append(X. Y. I)

\H I RJ '" X'. appe"djR, Y. 1'(1), !H I R1J • I'

C ""(� t('''''tong clauses into a

mod(' app('nC(· ,

appe"d(X, Y, 7.)'-
" - , ,

S_r1uJl(Xl, �_'HSjg"(Z. Y)
s_,an;dr(H, K Xl.
app('nd(R, y. R1). s,_cons(H, 1t1, Z}.

(4) The program in the IL

v_"p;wnd(X. Y.!.. MI. MO):­

v_finished(MIl, !.

; YJ'ull{X. MI. M1l.
v a%,sn(Z. Y M01).

v_or(MI, M01, MZ),

v _(ilrcddH, R, X, MZ, M1l.

... �ppend(R, Y. Rl. M3. MOZ),

v_,o"s(H, R1. z. MOZl.

v_end_or(M01.M02. MO)

spNialillng

Figure 5. Vectorization process of the deterministic
'append' procedure

However, it will he unnecessary in most cases, if inlcrprocedural

automatic mode analysis is done.

The process of program transformation can be divided into

three steps. The real process is more complicated, but it is

simplified here. First, the arguments in the source program are

replaced by variables. Second, the clauses are concatenated into u

single claUSe using ':' !the built-in or prcdicHte), and uniliers are

specialized. Finally, the veetorization is performed. The

vectorizalion shown in ligun� 5 is based on the masked operation

method. Other methods are explained in the appendi,,;. In the IL

in figure 5(4), the arguments of v_append are vectors. The first

three formal arguments (i.e., X;, Y and Z) correspond to the

arguments of the ol'iginal append. Fourth argument MI is the

input mask vector, and fifth onc MO is the output mask vector.

An array with elements e" ez, en will be described as I(e,.

ez en). Then, the exccution of the foilowing question results in

2 '= *tla, b, (I. II, 2, 3, 4, 51, ?) and MO _ N(true, true, false),
where? is an arbitrary value.

?- v_appll'nd(#([a, bJ, [I, 2, 31, atom), #([cj, [4, 5]. [atom]),
Z, #(trull', trUll!, true), MOj. (J.ll

The veetorizcd append, named v_append here, computes the

element· wise list concatenation of two vectors. The first two

element processings are succeeded, so the values of the first two

elements of the output mask vector become true. The third
,

element processing is failed, so the value of the third element of

the output mask vector is false. The correspondence between the

source program expressions and the vectorizc d program oncs is

shown in table 1.

Table I. The correspondence between th e SOU Tee program
and the vectorized one for the deterministic

'pppend' procedure

Source Form Vectorized Form Meani ng
• Iv_finished{MI) Stop recursion. -

[J v_null(X, MI, MOl) Test emptiness of lists'.

X. X v_assign(Z, Y, MOl) Assign the 2nd
argument to the 1 st.

The two v_or(MI, MOl, MZ), and Merge the result o f the
clauses v_end_or(M01, M02, MO) two clauses.

[H I R] v-<arcdr(H, R, x, M2, M3} Decompose the lists'.

app end(v_append(Call recursively.
R,Y,RI) R, Y, RI, M3, M02)

[H IR , j v-<ons(X, R', Z, MOl) Compose lists'.
• . .

• • There 1 8 no counterpart III the source program .
t The c lements of the arguments are lists.

The vectorized program contains three procedure calls which

have no counterparts in the source program, i.e., v_finished, v_or

and v_end_or. The reason why procedure call v_finish�d(MI) is

inserted is thal the recursion of v_append never stops without it

(The v_finished tests whether there is true in the argument mask

vector). The v_or procedure prepares mask vector M2 for the parts

following it, which correspond to the second clause of the source

mode append(- , -, •)
append{[L x, Xl
appen d(jH i Rl, Y,IK I R1ll . - ap�nd{R, Y, RI)

mode dPwond{ -. -, ..)
appendiX, y, Z) ; - X • II. Y .. Z
itppend(X. Y, Z) : -

IHIR11·Z'. append(R. Y,R1). [H!Rl .. X'

mode append(_, _, ..)

apP"'1d(X, Y, Z) : -

S_;"I�sI9n(X, n), s�iI�slgflIY, Zj,
; 1_catcdr(H. Rl,Z),

appef\d(R. Y. Rll, s_< on s(H . R,X)

VenO,;lill,on

v apfWnd(X Y. Z, MI, MO). �

v_llppend_1(XL, Yt, Z, MI, MLI.
,,_mt'lge{JXl, YtJ.lx, YJ, Ml, MO)

"_ilppel"ld_liX, Y, Z, MI, MOl -

v_f:rished{MI), "

XL: '" n, Yl ... IJ. ML .. II.
; ". a��,gn(Xl 1. I], Mil

y a��i9fl(Yl.1. Z, MIL

v3aruh(H, R1. L MI. M2).
v-<,ppend _1 (RL. YlR. R I, M2. MlR),
map_v_cons(H. Rl. XlR, MLR).
Xl:. [XL 11 XLRl, Yl: " [YT I YlRJ,
ML: " (Mil MlR!

map_v_co1u(H, (I, 1I,1ll.
map_v30ns{H, [XT[Xl):, [YT I YLj, (MIl Mlj): -

,,_cons(H, Xl, YT, Mn,
program. Then, the v_ end or procedure makes output mask map_,,_(ons(H, XL, YL. MLJ.

vector MO.

3.6 Or·Vectorization of Nondeterministic Procedures

The vedorized rorm and the oUlline of the vectorization

process of the append procedure with mode declaration 2.6, i.e.,

nondeterministic append is shown in figure 6. The vectorization

process is also divided into three steps, i.e., replacing arguments,

concatenating clauses into a single clause ana specializing

unifiers, and vedorization. The first two steps are done the same

way as the deterministic case. However, the output is different

because the mode declaration is different.

The vcclorization shown in figure 6 i s based also o n the

masked operation method. The first three formal arguments (i.e.,

545

Figure 6. Vectorization process of the nondeterministic
'append' procedUl°e

x, Y and Z) of v_append correspond to the arguments o f the

original append. The fourth and the fifth formal arguments (MI

and MO) are the input and output mask vectors. The vectorizcd

program consists of prDcedures v_append, v_append_l, and

map_,,_,on5. Their meaning is explained Inler.

The execution of the question 3.2 results In the rollowing

values of X and Y.

? - appendIX, Y, #([a. b], [' JJl. (3.21

x = #(11, [J, raj, 11], [a,b}),

y = I(la. bl.ll). [b). [J, [}).

The vectoriz�d program consists of three procedures, i.e.,

II_append, lI_append_' and map_II_cons. The relation between

the source program expressions and the lIectorizcd program ones is

shown in table 2.

Table 2. The correspondence between the source prClgram
and the vect(u1z9d Clne fClr the nondeterministic

'append' procedure

Source Form I Vectorized Form Meaning
• v_mergeUXl, Yl]. IX, Y]. Accumulate the -

ML, MO) solutions.
• Y_finished(MI) Stop recursion -

• Xl:= II, Yl:", II. Make empty multi--

Ml:= [J vectors.

II v_assign(Xl1, n. MJ) Make XLI a veclorof
cmpty listll'.

X,X v_as�i9n(Yl1. Z, MI) Assign the 2nd
argument to the lst'.

[HIR1] v_Cimdr(H, Rl, M2, M3) Decompose the li�tsf.

append(v_append_l(Call recursively.
R, Y, Rl) RL, YlR. Rl, M2. MlR)

[H I RJ map_v_cons(Compose lists'.
H. RL, XlR, MLR)

• Xl: = [XllIXLR). Add an element to each -

Yl:= [YllIYLR), multi-vector.
Ml:= [MIIMlRJ

• . . There 1S no counterpart in the source program.
, The elements of the arguments are lists.

v_append is the main procedure. It caUs v_append_' to gel

solutions in the form of chained vectors, which we call multi­

vectors, and calls v_merge to accumulate the values of each

variable into a single vector. The computation process of question

3.2 is shown in figure 7. In this ease, element vecwrs of multi­

vec:l<Irs Xl and Yl are merged into vectors X and Y respectively.

ML is a multi-vector whose elements are mask vectors. Ml shows

the Mlive-ness" of Xl and Ylo v_merge outputs a vector with no

dead elements, so all the elements of output mask vector MO is

true.

The expressions such as Xl : :: Il, Xl : = IXl1 I XLRJ in the

vectorhed program are used for making a multi-vector. The

former is used for making un empty multi-vecl<lr (a multi-vector

that has no elements), and the laUer is used for adding an element

vccl<lr to a multi-vector.

The recursive call ofv_append_' yields multi-vec\.(lrs Rl, YLR
and MLR. The call of map_ _con$ inputs H and Rl, computes the

vector·element-wise list composition of H and each elements of

multi-veel<lr RL, and outputs multi-veetor XlR whose elements arc

the results of the composition.

Qut'�tion in the Il

(a, bJ
I , ,

x
II
"
•

y
-� la. bl

1"
[bl ['I
[q "
[a. bl II

Mult;-... e<tor�

M L

I
, ,

Figure 7. The vector eompu lation procesll of the
nondeterministic 'append' procedure

�n the current method, backtracking is completely eliminated,

so the number of vector elements may explode during the . .

execution or a p r o g r a m l i k e the N-Queens problem (8

generalization of the Eight-Queens problem) when N is large. If

the or-vectorization method and backtracking are combined, this

explosion can be avoided. A schema \.(I combine them. called the

parallel backtmcking schema [Kan 84, Kan 85J, has been designed.

546

•

4. A Performance Evaluation

Before developing a Prolog compiler with an automatic

veetorizer, vector processing performance of Prolog programs was

manually evaluated. The program of the Eight-Queens problem

was manually vectorized by the masked operation, inde ... ing and

compressing methods into IL, and then translated into Fortran

and Pascal programs. The program portion that can be vectorited

by the Fortran compiler is written in Fortran, It{Id program

purtion that ulles recursion is written in Pascal. The source

program and the parts of the vectorized program are shown in the

appendix. A garbage collector has not been implemented.

Vector and scalar e ... ecution performance is shown in table 3.

Table 3. Performance of the

Method of

conditional

cont�ol

Mask.ed
operation

S-810 vector
e�e(ution

MliPS
time

4.5 18

4.5 18

"'''''' program

el(ecuct�;o�"�_� Accelera-

time tion rate
MLlPS

0.48 167 9.3

0. 57 140 7.'

0.50 160 '.4

program is
vector eltecution time.

The scalar e ... eculion time is the lime when the veclorization

feature of the Fortran compiler is suppressed. The e ... ecution time

oflhe Eight-Queens program using arrays instead oflisls (Kan 84]

(array version) is also includ�d in table 3, for compariSQn. The

percentage of the total execution time required by each type of

operation is shown in figure 8.

The important points are as follows.

(1) Vector eltcculion time is 18 to 19 ms. It means that inrerence

speed is 4.2 10 4.5 MLIPS (million logical inferences per

second). No Significant difference in performsnces exists

between masked operation, indexing and compressing

methods in the Eight-Queens case. The vector processes are

eight or nine times faster than the scalar processes.

(2) The percentage or the total execution time required by the list

emptiness test, list composition and list decomposition is high

in all t.hree methods (about 404 in vector processing).

(3) The accelerating rale of list composition is low. This low rate

shows that the throughput between the main storage and the

vedor processing unit is insufficient in the list composition

case.

(4) The percentage of the total execution time required by

compressing vectors and merging (accumulating) vectors is

547

about 6% in the masked operation and indexing methods, but

it is about 25% in the compressing method. The overhead of

the latter cannot be ignored.

5. Conclusion

Vectorizotion methods for Prolog, called or-vectorization

method., which enables a type of or-parallel ueeution of Prolog on

vector prOCeSS(ltS, have been developed. There are three

conditional control methods of vector processing, namely, the

masked operation, indexing and compressing methods. These

three methods have been manually e\'sluat.ed. No significant time

difference between these lhree methods has been found in solving

the Eight-Queens problem. They will be useful for solving search

problems or for other symbol processing applications in the future

because of their high processing sJH!eds.

Acknowledgement

The aUlhors wish to thank Dr. Sakae Takahashi and Seiichi

Yoshizumi of Hitachi Ltd. for their continuing support of our

research.

References

[Cl0 8!) Clocksin, W. F., and Mellish, C. S., MProgramming in

Prolog", Springer. Verlag, New York, 1981.

[Con 81] Conery, J. S., and Killer, D. r., "Parallel lntcrprctation

of Logic Programs", ACM 1981 Conference o n

fi"unction(1/ Pr�grammirtg Languages a"d Computer

Architecture, pp.163-170.

[Ito 861 Ito, N., et. aI., ·'The Architecture and Preliminary

Evaluation Results of the Experim ental Parallel

Inference Machine PIM·D", 13th Anllual lnternational

Symposium on Computer Architecture, pp.149-156,

1986.

[Kam 83] Kamiya, S., lsobe, F., Takashima, H., and Takiuchi, M.,
"Practical Vcctorization Techniques for the "FACOM

VP"", Iliformation Processing 83, pp.389-394, Elsevier

Science Publishers B. V., 1983.

[Kan 841 Kanada, Y., "A Schema for Solving N-Queens Problem

by a Vector Pf()CeSSOr: Parallel Backt.racking Schema",

29th National Cortference of Japan Society of

Information Proceuing, pp.1251-1252, 1984 (in

Japanese).

[Kan 851 Knnada, Y., "Improving Prolog Performance using

Supercomputer", Proceedings of 26th Programming

Symposium, pp.47-56, 1985 (in Japanese).

[Kan 87] Kanada, Y., "Or-parallel Vector Processing Methods for

N-Queens: Towards High·Speed Execution or Logic

Programs on Vector Processors", Technical Group on

Programming Language, Japan Sodet;y of I"formalio"

Processing, 87-PL-12, 1987 (in Japanese).

[Kum 861 Kumon, K., et. al., "KABU-WAKE: A New Parallel

Inference Method and Its Evaluation", COMPeON

Spring 86, pp.168-172, 1986.

[Nag 84] Nagashima, S., et. al., �Design Consideration for High­

Speed Vector ProeeSSQr: S-810", Proceedings of IEEE

International Conference on Computer Design, pp.238-

242, 1984.

[Nil 86] NilsSQn, M., M _ FLENa Prolog _ The Language which

turns Supercomputers into Parallel Prolog Machines",

Logic Programming '86 (in Japan), pp.209-216, 1986.

[Ona 86) Onai, R., Shimizu, H., Masuda, K., Matsumoto, A., and

Aso, M., "Architect.ure and E"'a\uation of a Reduction­

Based Parallel Inference Machine: PIM-R", Logic

Programming '8fj, Lecture Notes in Coml;'uter Science,

No.221, pp.1-12, Springer-Verlag, 19811.

[Tam 87) Tamaki, H., "Stream-Based Compilation of Ground 110
Prolog into Committed-choice Languages", 4th

International Conference on Logic Program ming.

pp.376-393, Melbornt:, 1987.

fTat87} Tatsuguchi, K., and Muraoka, Y., KParallt:1 Logic
Programming Language Interpreters on
Supercomputers", Technical Group on Programming
Language, Japan Society of Information Proeessing, 87-

PL-14,1987 (in Japanese).

(1) Ma�ked oPtn�:'Qn method

{211ndexi!lg method

Staler
execution

Vecto,
e)(�ulion

EnljltinclSS fe$t &

,

[Ueda 85) Veda, K., "Guarded Hurn Clauses", ICOT T�chnicol

Reporl, TR-l03, lnst.itutt: for New Generation Computer

Technology, 1985.
(Ueda87) Ueda, R., "Making Exhaustive Search Programs

Deterministic", 3rd International Conference on Logic

Programming, Lecturt: Notes in Computer Seienct:,

No.225, pp.270-282, Springer-Verlag, 1987.

Appendix 1. The Vectorized 'Append' Procedure
Though the process and the results of I.he vect<lrization of tht:

append procedurt: by the masked operation method are shown in

Section 3.5, those by the indexing and compressing methods are

not. described there. Only their usage is shown below.

7 - x_append{l{(a, b}, 11, 2, 31. atom), #({e], (4, 51, {atom)),
Z, #(1, 2,3), XO). (A.I)

It returns the same result as question 3.1, Le., Z = Ii{[a, b, c}, (1,2,
3,4, 51, 1). The fourth argument 1i(1, 2, 3) i� the input index vector
which shows the first and the $ceond element of the input
arguments are live. The nfth argument XO is the output index
vector, whose ,·alue becomes #(1, 2) a.ftt:f the execution.

Comra!'; ... ,n & Anthn.elic

38 3 %

Comp<:mition 2.6%

!i5 6 %

Oth!.'rs
38 0 %

Co"'p"ri'iC\r, &
Arithmt:tit " 3 .., C' " . , '<'

OthC'rs
12.0 %

Emptin��s t",�t & derompo*iUt:m 32 ·1 % C('lllposition 11.8 % C(lmp,."ssing & mrq:;ing t;] %

(3) Compre<;W19 method

exe<utlon

Ve<\or
e�e(ution

��mrt.in��� t�>;t & dl..'C(11npcsition
Z4 2 ':t

Comparison &
Adthmetie

245%

Compositiol\.4 2%

Compr(l:SSing &
merging 25.4 %

Compressing &
m(lrgmg 28.4 %

•

Oth(:J"S
2 8 0 %

Comp<.l�ition Compar ilIDn & Arithmetic 12 2% HJ.2 %

Figure 8. The percentage of total execution time requirt:d by different operations in the Eight-Queens

548

Question A.2 calls the append ve<:torit.ed by the compressing
method, named t_appef'\d.

'? - c_a ppe:nd(l([a, bl. II, 2, 3], atom),

*(Ie], 14, 5). [lItom)), Z). (A.2l

The result is Z = #((a, b, c1. (1, 2, 3, 4, 5]). Becauee the execution

of the third element has fail(!(f, Z contains only two elements (2 is

eompruaedl.

Although there are no dead elements in lhe vectors and there

is no need for control vectors, like mask vectors or index vectors., in

the compressing method, this method is rather inefficient. This if

because,if any vector is compressed, all other vectors which must

be used anerwards mUlt also be compressed.

Appendix 2. The Source Program and the IL of the

Eight·Queens Problem

The source program and part of the IL ie shown here.

A.I The Source Program

The source program of the Eight-Queens problem is as follows.

qUHnIQ) : - put((l, 2, 3, 4, 5, 6, 7, 8), 11. 0).

puttIJ, e, 8).
put(Qs, e, 0) ; -

select(Os, 01, R), not_take(B, Ol), put(R, [01 1 Bj, 0).

select({A I ll. A, L1.
select((A I Lj, X, [A I ll)) ; - sele<:t(L, X, L')

noCtake{R, QI : -
Oa is 0 + 1, Q� is 0 - 1 , not_take l(R, Oa, Os).

not_take l([J, 08, Oslo

not_take1([Q I Rj, Qa, Os) : -
o = \ : Oa, 0 :z \ ", Os,

Oaa is Oa. 1 , Ou IS Os - " not_take 1(0, Oaa, Oss).

A.2 The lL with the Masked Operation Method
Vcctorizcd procedure of not_ta kel by masked operation

method is as follows.

1 _not_takel(__ _ , _, MI-MI) : -

2. ..._fini»Oed(MI), I.
3 _not_take!(B, Qa, Os, MI-MO) : -

4. ..._null(e, MI, MOl),
S. ..._carcdr(O, R, B, M l , M2),

6. ''''_ . \ . '(0, Oa, M2, M3), _ '" \ Ie '(0, OS, M3, M4),
7 ' ... s_ . '(041. 1 . Olla, M4), 'vs_- 'lOs, 1 , Qss, M4l,
8. ..._not_takel(R, Oaa, Oss, M4-M02},

') ... _cnd_or(MO!, M02, MO).

The vect.ors whose nomes are prefixed by M are the mask vedor&.
Vectorit.ed pro.:edure of select by masked operation method i.

as follows.

1 _select(Al, X, Y, MI, BI-BO} : -

1. v_select HAL, XI L, Y 1l, MI.ML),

3 y_merge(X' L, X, ML), ... _merge(Y I L. Y, ML),

4. Y_repeat(SI, 80, Ml).

549

5 _�el�tlL 11, U, MI-m·
6. v_finishedlMll, L
7 _�lectl (AL, (A' !Xll), [l' I YI LJ, Ml-[Ml' I ML)) : -
8. v_candr(A', L', AL, MI, Ml'),
9. v_cafcdr(A, L, Al. MI, Ml),

10. v_sl!'lect l(L, X 1 L, Ll L, MI-MLO,

I I . mapcar(v_com(A), L IL, Yll, Ml1, ML).

A.3 The IL with the Indellinl Method
Vectorit.ed procedure or not_,ake 1 by indexing method is as

follows.

1 . x_not_tllke1 (__ _ , _, II-IOl : -

2. v_finished(II), !.

3. x_nol_takellB, Oa, (h, 11·10) : -

4.

s.

6.

7.
8.

xjlull(B, II, 10-101),

I._Cl'fcdr(O, R, e, II, 12),

'x_. \ .. '(0, Oa, 12, 13), '1._. \ : '(0, (h, 13, 14),

'.$_ + 'lOa, I, Oall. 14), 'xs_ - '(Os, I , Oss, 14),

l._not_takel(R, Oaa, (hs, 14·101).

The ve<:tors whose names are pr�(ixed by I are t� index vectors.

AA The IL with the CompreSling Method

Vec:torized procedure of not_take 1 by compressing method

1. cnot_take1(QR, Oa, OS, B·B, R·R, 0·0) : -
2. v_finished(OR), I.
3. cnot_talr.el(OR, Oa, Os, Bl·eO. Rl·RO, 01-00) : -

4. v_null lOR, --' M1),
s.
6
7.
8.
9.

10.
1 1 .

12.
13.

14.

15.

ccompr@$s(8J, M I . BO·80..),
ccompress(Rt, MI, RO·ROel,
c_compress(OI, MI, OO·OOe),
v_carcdrIO, R. OR, -

'
M2),

'Y_ = \ = '(0, Oa, M2, M3), 'v_ = \= '(0, Qs, M3, M4),

ccompress(R, M4. R I-1m,

ccomp!'"esS(Oa, M4. Qa'·IOI,
ccompren(Qs, M4. OsH!I(»,
ccompress(81, M4, BII-Im,

ccompress(RI, M4, RII-IOl,
,_compress(OI, M4, OII·I()),

16. 'v5_ + '(Oa l , I , Oaa,.J, 'vs_ - '(Qsl, l , Oss,->,
17. cnOCtaketRl, Oila, Ou. BIl-BOe, RI1·RQeo, OIl-QDeI.

The c_compf�S procedure makes a vector without dead elements.

