
Vectorization Techniques for Prolog 

Yasusi Kanada, Keiji Kojima, and Masahiro Sugaya 

Central Research Laboratory, Hitachi Ltd. 

Kokubunji, Tokyo 185, Japan. 

Abstract 
Several techniques for running Prolog programs on pipeline<! 

vector processors, such as the Hitachi $-820 or the Cray-2, are 
developed. This paper presents an automatic JU'ogram 
transformation (vectorh;ation) method of Prolog, which enables a 
type of or-parallel execution of Prolog programs using vector 
operations. Performance is evalulILed on the Hitachi S-SIO using 
the Eight-Queens problem. Its vector execution speed is •. 5 
MLIPS (18 ms). This is eight or nine times faster than scalnr 
execution. Thi. result confirms the erreetivenC&5 of veeloriz.ation 
leehniques lind applicability o f  vector processors to Prolog 
execution and to symbol processing applieo.lions. 

1. Introduc�ion 

1.1 Prolog and Its High.Speed Execution 

Prolog is 8 language with unification and automatic 

backtracking ('Prolog' is hereafter used to indicate logic 

programming languages in generall. Unification is a very 

powerrul paltern matching ror data structures such as lists. 

AutomaLic backtracking makes programming of search problems 

easy. With theS(' reatures, Prolog is quite suitable ror symbol 
processing such 8S list processing, natural longuuge processing, 

knowledge-base processing, and so on. 

Although Prolog is a very powerful language, its I!Iuculion 

speed is rather low. Thus, achieving high.speed execution ;. 

required. Many Prolog optimizing compilers in large scale 

general· purpose computers have been developed. However, higher 

speed requires parallel execution. There 8re t .... o possible methods 

ror parallel execution of Prolog. One is execution by parallel 

processors. The other i� execution by pipelined vector processor! 

such as the Hitachi 5.820 or the Cray.2. 
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The (ormer approach has been widely studied, (or example, in 

the PIM (Parallel Inference Machine) [Ito 86, Ona 86] and Kabu. 

wake method (Kum 861, etc. 

The latter approach is proposed by Kanada [Kan 84, Kan 85) 

and attacked by him [Kan 87} using the Hitachi 5·810 [Nag 84). 

This spproach is also being tried by Nilsson [Nil 86] also using the 

5.810. and by Talsuguchi a!'ld Muraoka (Tat 87] using the IBM 

3090 Vector Facility. However, their wrget is different (rom 

Kanada's (ours). Our target is 1.0 improve perrormance of Prolog 

.... ith changing its semantics as little &s possible. But their target 

is to improve performance or a logic programming languags 

without backtracking, i.e., a so·called paruliel logic programming 

language GHC IUed 85) or its subset. 

1.2 Difficulties in Improving Performance 

Currently, most vector processors can only be used by Portron 

or assembly language. Vectorizing compilers perform a program 

u-ans(ormation called II«lorilotion to generate the object progrom, 

which is a U<juence of vl!C!tor operations, (rom fortran programs. 

In the case of Fortran, vectorization techniques for most 

numerical programs have been established, and the program 

transformation is rather easy. This is because their main data 

structures are arrays that the vector processors Bre speciolized to 

process. and because their cO!llrol structures are simple 00 loops 

in moslcases. 

Ho .... ever. the same technique! cannot be applied to Prolog, and 

drastic program transformations, such as introducing arrays and 

loops, are inevitable. There are three reaso,ms for this. 

The first reuson is that it is difficult to accelerate data 

structure processing or PrololJ, i.e .. li5tS. runctors, and so on. 

Prolog programs do not proc:ess array5, but process Oinked) lists 

which cannot be processed directly by vector operation5. 

The 5e(:ond reason is that Prolog programs do not have loops 

because Prolog lacks control structures like DO loops or GO TO 

.tatements. Instead, Prolog contains sophisticated control 

mechaniBms like recursive call or automatic backtracking, whose 

vectorization techniques are undeveloped. 



The third reason is that a unification is mapped to various 

operations case-by-case at machine level, These operations cannot 

be executed by a single uni-function vector instruction because 

unification is a bidirectional (multi-function) operation. 

1.3 Contents ofthis Paper 

This paper shows program transformation (vectorization) 

techniques of Prolog programs and the result of their performance 

evaluation. Section 2 gives a brief description of Prolog language 
, 

and suggests possible veetoriJ,ation strategies for Prolog programs, 

Section 3 outlines the veciorization methods. Section 4 gives the 

result of the performance eva luation of these methods. Section 5 

gives the conclusion. 

2. Prolog Language 

Before explaining the vectorhation of Prolog programs. a brief 

explanation of Prolog language. will be given. A detailed 

explanation is found in Clocksin ond Mellish IClo 81\, for example. 

2.1 Basics of Prolog 

A Prolog program consists of protedures (subroutines). [ath 

procedure consists of claUB(!s. The form of a clause is as follows: 

p{a'.a/ • ...• 8n):- {,,{Z,···,Cm· 

The lefthand-sidc of: - (a n(!cn symbol) is called the head of he 

clause, and the righlhand-side is called the body. p is the name of 

the procedure, and a"� aI, ... , an are the formal arguments. Thus a 

procedure consists of clauses that have the same name and the 

same number of formal nguments. The body consists of procedure 

ca!ls C,. C/, ... , Cm. Some of them are calls of user·defined procedure 

and some o f  them are calls of system -defined ones. 

When the procedure is called, one of the clauses whose head 

mat�hes (can be unified with) the caller's pattern is seleded Hnd 

the body of thc clause is executed. If no head matches, the 

execution is said to have (oiled. If one of the procedure calis in the 

body has failed, execution of the clause has also failed. Otherwise. 

it is !Wid to be succeeded. If execution of a clause fails, another 

clause whose head matches is selected and executed. This action is 

called oll!omatic backtracking. 

Two examples will be shown in the next two sections. One of 

the m is a deterministic procedure, wh ich means that the 

procedure has a single solution. or always only one clause of the 

procedure succeed. The other is a nondeterministic procedure , 

which means that it has multiple solutions, or more than one 

claUSe of the procedure may succeed. They are included beta use 

the exeeution and the veclorization methods of nondeterministic 

procedures are different from those of  deterministic procedures. 
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Mode declaration, which plays an important role on checking 

determinacy, is explained in Section 2.4. 

2.2 A Deterministic E:umple 

The following example is the well-known append procedure, 

which concatenates two lists. 

append([J, X. X). 
append{[H I R), Y. [I-! I R1J): - append(R, Y. RI). 

······ {2.1) 
.. ....  (2.2) 

For example. the execution of the following question results in 

Z '" [a. b, c, d. eJ: 

? - append{la. b. C], [d, el. ZJ. . ..... (2.3) 

This question means "what is the concatenation of list la. b. eI, 

and list [d. eJ.� The answer is listla. b, c, d, el (A list is bracketed 

in Prolog). In this question, [a. b. c] and Id, e] are constant lists (all 

the elements are atomic symbols) and Z is a variable. As far as the 

first argument is used as input, only one clause always success 

during the execution of the above procedure. Thus the append 

procedure is deterministic. 

The append procedure has no lcoops, but has a tail 
• 

recurSIve 

call. This means that the righthand-sidc of the second clause is a 

procedure call of append itself . The recursive cal! appears at the 

end of the procedure, so it is called a tail recursive call. A loop 

cannot be expressed by Prolog, but a procedure with a tail 

recursive call can be transformed into a loop in procedural 

languages. such as fortra n or Pascal . Such a loop may be 

vectorized. This fact suggests a possible strategy for vectorizalion. 

2.3 A Nondeterministic Example 

The append procedurc can also be u�ed to split a list. 

? - app end(X, Y. la. blJ. . ..... (2.4) 

Question 2.3 results in a single answer. but que 9tio n 2.4 

results in multiple answers. The question meanS "what 

concatenat.e<i with what gives us [a. bJ." In this case, the question 

has three answers, 

(1) X - !I. V • [a. b1, 

(2) X • raJ, V • [b ], 

(3) X • la. bl, V • [I. 

where [J means an emply list. The question has multiple answers 

because both clauses of append have succeeded. Such a question is 

said to be nondetermini1>tic.4 Nondetcrminacy is one of  the 

important characteristics of Prolog. 

The above example suggests a possiblc vectorj,:ation strategy. 

that is, for computing different solutions in (l pipelined manner. 

Thus, there is the possibility of applying vedor operations by 

changing backtracking to looping. 



2.4 Mode Declarations 

Although the above append procedure can be used (or lxIth 

concatenating and splitting a list, such a multi-function procet!ure 

may be less efficient than a spec::ialized, uni-function one. A 

language feature ealled mode declaration, used to generale more 

effieient code, is supported by many Prolog systems. 

An example of a mode declaration for append is as follows: 

mode append( "" , +, - ). , . ..... (2.5) 

This mode declaration means the first and the second argument of 

the append procedure is input, and the third one is output. 

If mode declaration 2.5 is supplied for the append procedure, 

question 2.3 will be executed faster, but question 2,4 might not be 

answered correctly because it is a wrong usage. On the other 

hand. if the following mode declaration is supplied. question 2.4 

will be e:<ecuted faster, but question 2.3 might not be answered 

correctly. 

mode append{ -. - , "" ). . ..... (2.6) 

3. Vectorization Methods of Prolog Programs 

3.1 And·Vectorization and Or·Vectori'lstion 

Two possible vceWri:w.tion strategies were suggcsted III thc 

last section. 

(1) pipeJined execution of "tail recursive calls�, and 

(2) pipelined e:<ecution of "backtracking". 

For parallel processing of logic programming languages such 

as Prolog, parallelism is roughly classified into and-parallelism 

and or-parallelism [Con 811. And·parallelism is the parallelism 

between processes that are part of computation getting a single 

solution, and or-parallelism is the parallelism between 

computation geUing multiple solutions (Note that the meanings of 

these words are more general than the usual definitions). The 

method based on (l) is a type of  and·paralleli�ation, so this 

program transformation is called olld-uectorizatiOIl, The method 

based on (2) is a type of or-paraJlelil;ation, so it is called or­

tJee/orization. The rest of this paper concentrates on or­

vectorization. The and-vectorization method is currently being 

developed and its details will be described in a future paper. 

3.2 Basic Ideas of Or· Vectorization 

The three problems listed in Section 1.2 must be solved in 

order to achieve vectorization. Their details in the case of or­

vectorization are explained below. 
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(1) Data structure problem 

The original Prolog program generates multiple solutions, 

which are generated one by one. A solution never coexists 

with another solution in a sequential exe�ution. However, 

they must coexist in an array, i(they are to be processed by a 

vector processor. So it is necessary to generate the code of 

accumulating solutions in different alternatiyes into an array. 

(2) Control structure problem 

A program with automatic backtracking must be 

converted to a collection of very small loops without 

backtracking. Each loop is executed by a single vector 

operation. 

(3) Unification problem 

It is necessary to perform unifications in vector operations 

to realize drastic impro\'ements i n  performance. In the 

e:<eculion of a program like the Eight-Queens problem which 

has a large amount of or-parallelism, many unifications are 

done. Thus improvement is possible, The following are 

subproblems in unification: 

(3A) Because list is the most important data structure, 

element-wise unification oC lists contained in arrays 

should be performed by vector operations at high-speed. 

(3B) Compilation of Prolog paUerns inw uni-function vector 

unifiers such as list composer, list decomposer. etc .• are 

nece!';sary. 

3A is mainly an execution mechanism problem, and 38 

veclorization techniques problem. 

The following methods were used to solve these problems. 

(1) Accumulation of solutions and introducing loops 

• 
." 

In this method. values of a logical varioble HI different 

alternatives (execution paths) are accumulated in an array at 

the end ora nondeterministic procedure execution. 

The execution process oC a nondeterministie procedure is as 

follows. All the clauses of the procedure are e;l:ecut(!d in order 

before exiting the procedure. On the other hand, only one 

clause is executed before exiting from it in the original 

semantics of Prolog (if the clause succeeded). 

Each transformed clause inputs and outputs vectors that 

contain values of original arguments, The output Yectors are 

merged at the end of the procedure e:<ecution. For example, 

the outline of the vector proceS5 of question 2.4 is shown in 

figure 1. In this case, the length of the input vectors is one. 

The three solutions are obtained sequentially, and 

accumulated into arrays. So the length of the output vectors is 

three. The e\emcnt.s of the output vectors should be in depth. 
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Figure 1. The outline ofthe vector processing oUhe 
nondeterministic 'append' procedure 

first order, which is necessary for keeping lhe order of the rmal 

solulions the same 8S in sequential execution. 

The above accumulation is not done in or-par allel, but 

each following operation on the accumulated data can be done 

in or-parallel by vector operations. It is better to do the 

accumulation by vector operations, because the length of the 

input vt'Ctor may be greater than one. 

This program transformation has some similarity to the 

transformation of nondeterministic Prolog programs into GHC 

by Ueda [Ueda 87] and Tamaki [Tam 87]. 

(2) Vector-element-wise operations on lists 

To process arrays that contain linked lists, it ill necessary 

to perform vector-element-wise list operations with a vector 

processor. That is, the same operations on multiple lists, which 

are the elements of an array, must be performed at once. List 

vector operations [Kam 83] (or indexed vector loadJstore 

operations) can be used ((lr this purpose. (It is dimc ult to 

implement Prolog on a vector processor without list vector 

operations). 

The basic scalar list (lperutions and their execution 

methods using vector operations aTe shown in figure 2. The 

notation I(A, B, ... , Z) is used for a vector containing A, B, ... , Z. 

In the case of decomposition, the heads and the ta.i1s of the 

vector elements are obtained using two indexed vector load 

operations (a kind of list vecwr operation) and are stored in 
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Figure 2_ Basic list ope rations and their vector 
counterparts 



output vectors H and T. In t.he case of the emptiness lest, a 

veetor comparison operation is used and the result is expressed 

by boolean vector (called a mask vector) MO. In the case of 

composition, the cons cells are allocated on the heap, and the 

value of the first and the second arguments are stored in them. 

The addresses of the cons cells is calculated by an arithmetic 

sequence generation operation and stored in output vector c. 

There is also the problem of conditional control. In the 

case that some unifications on vector elements Tail and others 

succeed, this failure or success must be stored in memory. The 

vperations following the unifications are controlled by the 

stored data. There are three conditional control methods. 

They are explained in Section 3.3. 

(3) Compilation to un i-function unifiers 

In this method, unifications in a source program are 

compiled into calJ� of uni-funetion unifiers , using mode 

information of the procedure's arguments and variables. The 

word mod� information refers to information that shows 

whether the arguments or variables are used only for input, 

only for output, or for both. Mode information may be supplied 

with mode declarations by programmers. Although m ost 
procedures are always used in the same mode, it i s  

troublesome for programmers to write mode declarations for 

all the procedures. Thus automatic mode analysis is 

n�essary. But currently this system 15 fully dependent on 

mode declarations . 

3.3 Three Condit ional Control l\olethods 

In vector operations of vector processurs, cunditiot!al control is 

performed mainly by the following three kinds of instructions 

IKam831: 

(1) Masked operatiot! instruclions, 

(2) List vector instructions, 

(3) Gather/scatter instructions. 

The methoda that follows are used for the conditional control of 

vectorbed Prolog programs. Each of them uses the instructions 

which �hares the same number. Input and output of the pipelincd 

execution of questions with these methods are illustrated in 

figure 3. 

(1) Masked operation method 

In e xecution by this method, each array may cuntain dead 

elements (all arrays have the same number of clem ents). The 

dead elements are shaded in figure 3. "Live-ness" of array 

elements is !!hown by a mask vector. The mask vector is a 

boolean vector. The cost of masked operations is very low in 

vector processors. However, if the percentage of dead elements 
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Fii;v,·e 3. Th{' three conditional rontroJ methods 

i
.
s large, this method is inefficient because dead clement access 

overhead exists. 

(2) Indexing method 

Similar to the masked operation method, each array may 

contain delld elements. Indices (or displacements) of live 

elements (Ire stored in an index vector, whose number of 

elements i s  the same or less than that in data arrays. 

Although no dead element is accessed, list vector access 

overhead, which is expensive in vector processors, always 

exists in this method. 



(3) Compressing method. 

In this method, each array consists only of live elements. 

No control vector, such as iii mask. vector or an index vector, is 

used. No dead element is accessed, so no access over-head e,,;ist. 

However, if some elements in vectors become "dead", all the 

vectors should be compressed to keep the correspondence of 

vector elements. So this method is inefficient in many cases. 

3.4 Process of Compilation 
, 

This section gives a brief description ofthe compilation process 

and shows the position of the veclori�ation. Sections 3.5 and 3.6 

deseri'oe the details of or-vectoritation methods. Section 3.5 

describes those for deterministic procedures and section 3.6 

describes those for nondeterministic procedures . 

Because drastic program transformation is necessary, Prolog 

c,,;ecution in vector processors should be based not on an 

interpreter. but on a compiler. The compilation process used in 

this paper is shown in figure 4. In this paper's execulion method, 

Prolog 
program 

Vectoriza­
tion 

Intermediate 
program 

Built-in 
predicates. 

unifiers 

Cod. 
generation 

Object 
program 

Figure 4. Compilntion process of Prolog for vector 
processors 

the compilation process of Prolog programs C<lnsists of two phases. 

The first phase is called uectoriUflioPl, lind the second phase is 

called code gerurution.. 

Vectorization is a program transformation. The reSUlting 

program is expressed in an intermediate languoge (ILl whith may 

be II high-level language. A Prolog-like language is used us IL in 

this paper, for the soke of simplicity. The II, is very similar to 

Prolog but H contains arrayS. 

Code generatiol"l is II simple process in most cases. It is similar 

to the compilation process of the Fortran vectorizing compiler. 

3,5 Or-Veetorization of Deterministic Procedures 

The vectorited form and the outline of the vectorization 

process of the append procedure with mode declaration 2.5, I.e., 

deterministic append, is shown in figure 6. 

The first line of the source program is the mode declaration. In 

the current implementalion, it is indispensable for vectorization. 
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modeap�nd(�. +.-) 
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Repia{ing il r gu rnents 
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(4) The program in the IL 

v_"p;wnd(X. Y.!.. MI. MO):­
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; YJ'ull{X. MI. M1l. 
v a%,sn(Z. Y M01). 

v_or(MI, M01, MZ), 

v _(ilrcddH, R, X, MZ, M1l. 

... �ppend(R, Y. Rl. M3. MOZ), 

v_,o"s(H, R1. z. MOZl. 

v_end_or(M01.M02. MO) 

spNialillng 

Figure 5. Vectorization process of the deterministic 
'append' procedure 

However, it will he unnecessary in most cases, if inlcrprocedural 

automatic mode analysis is done. 

The process of program transformation can be divided into 

three steps. The real process is more complicated, but it is 

simplified here. First, the arguments in the source program are 

replaced by variables. Second, the clauses are concatenated into u 

single claUSe using ':' !the built-in or prcdicHte), and uniliers are 

specialized. Finally, the veetorization is performed. The 

vectorizalion shown in ligun� 5 is based on the masked operation 

method. Other methods are explained in the appendi,,;. In the IL 

in figure 5(4), the arguments of v_append are vectors. The first 

three formal arguments (i.e., X;, Y and Z) correspond to the 

arguments of the ol'iginal append. Fourth argument MI is the 

input mask vector, and fifth onc MO is the output mask vector. 

An array with elements e" ez, .... en will be described as I(e,. 

ez . ... . en). Then, the exccution of the foilowing question results in 



2 '= *tla, b, (I. II, 2, 3, 4, 51, ?) and MO _ N(true, true, false), 
where? is an arbitrary value. 

?- v_appll'nd(#([a, bJ, [I, 2, 31, atom), #([cj, [4, 5]. [atom]), 
Z, #(trull', trUll!, true), MOj. . ..... (J.ll 

The veetorizcd append, named v_append here, computes the 

element· wise list concatenation of two vectors. The first two 

element processings are succeeded, so the values of the first two 

elements of the output mask vector become true. The third 
, 

element processing is failed, so the value of the third element of 

the output mask vector is false. The correspondence between the 

source program expressions and the vectorizc d program oncs is 

shown in table 1. 

Table I. The correspondence between th e SOU Tee program 
and the vectorized one for the deterministic 

'pppend' procedure 

Source Form Vectorized Form Meani ng 
• Iv_finished{MI) Stop recursion. -

[J v_null(X, MI, MOl) Test emptiness of lists'. 

X. X v_assign(Z, Y, MOl) Assign the 2nd 
argument to the 1 st. 

The two v_or(MI, MOl, MZ), and Merge the result o f the 
clauses v_end_or(M01, M02, MO) two clauses. 

[H I R] v-<arcdr(H, R, x, M2, M3} Decompose the lists'. 

app end( v_append( Call recursively. 
R,Y,RI) R, Y, RI, M3, M02) 

[H IR , j v-<ons(X, R', Z, MOl) Compose lists'. 
• . . 

• • There 1 8 no counterpart III the source program . 
t The c lements of the arguments are lists. 

The vectorized program contains three procedure calls which 

have no counterparts in the source program, i.e., v_finished, v_or 

and v_end_or. The reason why procedure call v_finish�d(MI) is 

inserted is thal the recursion of v_append never stops without it 

(The v_finished tests whether there is true in the argument mask 

vector). The v_or procedure prepares mask vector M2 for the parts 

following it, which correspond to the second clause of the source 

mode append( - , -, • ) 
append{[L x, Xl 
appen d(jH i Rl, Y,IK I R1ll . - ap�nd{R, Y, RI) 

mode dPwond{ -. -, .. ) 
appendiX, y, Z) ; - X • II. Y .. Z 
itppend(X. Y, Z) : -

IHIR11·Z'. append(R. Y,R1). [H!Rl .. X' 

mode append( _, _, .. ) 

apP"'1d(X, Y, Z) : -

S_;"I�sI9n(X, n), s�iI�slgflIY, Zj, 
; 1_catcdr(H. Rl,Z), 

appef\d(R. Y. Rll, s_< on s(H . R,X) 

VenO,;lill,on 

v apfWnd(X Y. Z, MI, MO). � 

v_llppend_1(XL, Yt, Z, MI, MLI. 
,,_mt'lge{JXl, YtJ.lx, YJ, Ml, MO) 

"_ilppel"ld_liX, Y, Z, MI, MOl -

v_f:rished{MI), " 

XL: '" n, Yl ... IJ. ML .. II. 
; ". a��,gn(Xl 1. I], Mil 

y a��i9fl(Yl.1. Z, MIL 

v3aruh(H, R1. L MI. M2). 
v-<,ppend _1 (RL. YlR. R I, M2. MlR), 
map_v_cons(H. Rl. XlR, MLR). 
Xl:. [XL 11 XLRl, Yl: " [YT I YlRJ, 
ML: " (Mil MlR! 

map_v_co1u(H, (I, 1I,1ll. 
map_v30ns{H, [XT[ Xl):, [YT I YLj, (MIl Mlj): -

,,_cons(H, Xl, YT, Mn, 
program. Then, the v_ end or procedure makes output mask map_,,_(ons(H, XL, YL. MLJ. 

vector MO. 

3.6 Or·Vectorization of Nondeterministic Procedures 

The vedorized rorm and the oUlline of the vectorization 

process of the append procedure with mode declaration 2.6, i.e., 

nondeterministic append is shown in figure 6. The vectorization 

process is also divided into three steps, i.e., replacing arguments, 

concatenating clauses into a single clause ana specializing 

unifiers, and vedorization. The first two steps are done the same 

way as the deterministic case. However, the output is different 

because the mode declaration is different. 

The vcclorization shown in figure 6 i s  based also o n  the 

masked operation method. The first three formal arguments (i.e., 
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Figure 6. Vectorization process of the nondeterministic 
'append' procedUl°e 

x, Y and Z) of v_append correspond to the arguments o f  the 

original append. The fourth and the fifth formal arguments (MI 

and MO) are the input and output mask vectors. The vectorizcd 

program consists of prDcedures v_append, v_append_l, and 

map_,,_,on5. Their meaning is explained Inler. 

The execution of the question 3.2 results In the rollowing 

values of X and Y. 

? - appendIX, Y, #([a. b], [' JJl. . ..... (3.21 



x = #(11, [J, raj, 11], [a,b}), 

y = I(la. bl.ll). [b). [J, [}). 

The vectoriz�d program consists of three procedures, i.e., 

II_append, lI_append_' and map_II_cons. The relation between 

the source program expressions and the lIectorizcd program ones is 

shown in table 2. 

Table 2. The correspondence between the source prClgram 
and the vect(u1z9d Clne fClr the nondeterministic 

'append' procedure 

Source Form I Vectorized Form Meaning 
• v_mergeUXl, Yl]. IX, Y]. Accumulate the -

ML, MO) solutions. 
• Y_finished(MI) Stop recursion -

• Xl:= II, Yl:", II. Make empty multi--

Ml:= [J vectors. 

II v_assign(Xl1, n. MJ) Make XLI a veclorof 
cmpty listll'. 

X,X v_as�i9n(Yl1. Z, MI) Assign the 2nd 
argument to the lst'. 

[HIR1] v_Cimdr(H, Rl, M2, M3) Decompose the li�tsf. 

append( v_append_l( Call recursively. 
R, Y, Rl) RL, YlR. Rl, M2. MlR) 

[H I RJ map_v_cons( Compose lists'. 
H. RL, XlR, MLR) 

• Xl: = [XllIXLR). Add an element to each -

Yl:= [YllIYLR), multi-vector. 
Ml:= [MIIMlRJ 

• . . There 1S no counterpart in the source program. 
, The elements of the arguments are lists. 

v_append is the main procedure. It caUs v_append_' to gel 

solutions in the form of chained vectors, which we call multi­

vectors, and calls v_merge to accumulate the values of each 

variable into a single vector. The computation process of question 

3.2 is shown in figure 7. In this ease, element vecwrs of multi­

vec:l<Irs Xl and Yl are merged into vectors X and Y respectively. 

ML is a multi-vector whose elements are mask vectors. Ml shows 

the Mlive-ness" of Xl and Ylo v_merge outputs a vector with no 

dead elements, so all the elements of output mask vector MO is 

true. 

The expressions such as Xl : :: Il, Xl : = IXl1 I XLRJ in the 

vectorhed program are used for making a multi-vector. The 

former is used for making un empty multi-vecl<lr (a multi-vector 

that has no elements), and the laUer is used for adding an element 

vccl<lr to a multi-vector. 

The recursive call ofv_append_' yields multi-vec\.(lrs Rl, YLR 
and MLR. The call of map_ .... _con$ inputs H and Rl, computes the 

vector·element-wise list composition of H and each elements of 

multi-veel<lr RL, and outputs multi-veetor XlR whose elements arc 

the results of the composition. 

Qut'�tion in the Il 

(a, bJ 
I , , 

x 
II 
" 
• 

y 
-� la. bl 

1" 
[bl [ 'I 
[q " 
[a. bl II 

Mult;-... e<tor� 

M L 

I 
, , 

Figure 7. The vector eompu lation procesll of the 
nondeterministic 'append' procedure 

�n the current method, backtracking is completely eliminated, 

so the number of vector elements may explode during the . . 

execution or a p r o g r a m  l i k e  the N-Queens problem (8 

generalization of the Eight-Queens problem) when N is large. If 

the or-vectorization method and backtracking are combined, this 

explosion can be avoided. A schema \.(I combine them. called the 

parallel backtmcking schema [Kan 84, Kan 85J, has been designed. 
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4. A Performance Evaluation 

Before developing a Prolog compiler with an automatic 

veetorizer, vector processing performance of Prolog programs was 

manually evaluated. The program of the Eight-Queens problem 

was manually vectorized by the masked operation, inde ... ing and 

compressing methods into IL, and then translated into Fortran 

and Pascal programs. The program portion that can be vectorited 

by the Fortran compiler is written in Fortran, It{Id program 

purtion that ulles recursion is written in Pascal. The source 

program and the parts of the vectorized program are shown in the 

appendix. A garbage collector has not been implemented. 

Vector and scalar e ... ecution performance is shown in table 3. 

Table 3. Performance of the 

Method of 

conditional 

cont�ol 

Mask.ed 
operation 

S-810 vector 
e�e(ution 

MliPS 
time 

4.5 18 

4.5 18 

"'''''' program 

el(ecuct�;o�"�_� Accelera-

time tion rate 
MLlPS 

0.48 167 9.3 

0. 57 140 7.' 

0.50 160 '.4 

program is 
vector eltecution time. 

The scalar e ... eculion time is the lime when the veclorization 

feature of the Fortran compiler is suppressed. The e ... ecution time 

oflhe Eight-Queens program using arrays instead oflisls (Kan 84] 

(array version) is also includ�d in table 3, for compariSQn. The 

percentage of the total execution time required by each type of 

operation is shown in figure 8. 

The important points are as follows. 

(1) Vector eltcculion time is 18 to 19 ms. It means that inrerence 

speed is 4.2 10 4.5 MLIPS (million logical inferences per 

second). No Significant difference in performsnces exists 

between masked operation, indexing and compressing 

methods in the Eight-Queens case. The vector processes are 

eight or nine times faster than the scalar processes. 

(2) The percentage or the total execution time required by the list 

emptiness test, list composition and list decomposition is high 

in all t.hree methods (about 404 in vector processing). 

(3) The accelerating rale of list composition is low. This low rate 

shows that the throughput between the main storage and the 

vedor processing unit is insufficient in the list composition 

case. 

(4) The percentage of the total execution time required by 

compressing vectors and merging (accumulating) vectors is 
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about 6% in the masked operation and indexing methods, but 

it is about 25% in the compressing method. The overhead of 

the latter cannot be ignored. 

5. Conclusion 

Vectorizotion methods for Prolog, called or-vectorization 

method., which enables a type of or-parallel ueeution of Prolog on 

vector prOCeSS(ltS, have been developed. There are three 

conditional control methods of vector processing, namely, the 

masked operation, indexing and compressing methods. These 

three methods have been manually e\'sluat.ed. No significant time 

difference between these lhree methods has been found in solving 

the Eight-Queens problem. They will be useful for solving search 

problems or for other symbol processing applications in the future 

because of their high processing sJH!eds. 
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Appendix 1. The Vectorized 'Append' Procedure 
Though the process and the results of I.he vect<lrization of tht: 

append procedurt: by the masked operation method are shown in 

Section 3.5, those by the indexing and compressing methods are 

not. described there. Only their usage is shown below. 

7 - x_append{l{(a, b}, 11, 2, 31. atom), #({e], (4, 51, {atom)), 
Z, #(1, 2,3), XO). . ..... (A.I) 

It returns the same result as question 3.1, Le., Z = Ii{[a, b, c}, (1,2, 
3,4, 51, 1). The fourth argument 1i(1, 2, 3) i� the input index vector 
which shows the first and the $ceond element of the input 
arguments are live. The nfth argument XO is the output index 
vector, whose ,·alue becomes #(1, 2) a.ftt:f the execution. 

Comra!'; ... ,n & Anthn.elic 

38 3 %  

Comp<:mition 2.6% 

!i5 6 %  

Oth!.'rs 
38 0 %  

Co"'p"ri'iC\r, & 
Arithmt:tit " 3  .., C' " . ,  '<' 

OthC'rs 
12.0 % 

Emptin��s t",�t & derompo*iUt:m 32 ·1 % C('lllposition 11.8 % C(lmp,."ssing & mrq:;ing t; ] % 

(3) Compre<;W19 method 

exe<utlon 

Ve<\or 
e�e(ution 

��mrt.in��� t�>;t & dl..'C(11npcsition 
Z4 2 ':t  

Comparison & 
Adthmetie 

245% 

Compositiol\.4 2% 

Compr(l:SSing & 
merging 25.4 % 

Compressing & 
m(lrgmg 28.4 % 

• 

Oth(:J"S 
2 8 0 %  

Comp<.l�ition Compar ilIDn & Arithmetic 12 2% HJ.2 % 

Figure 8. The percentage of total execution time requirt:d by different operations in the Eight-Queens 
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Question A.2 calls the append ve<:torit.ed by the compressing 
method, named t_appef'\d. 

'? - c_a ppe:nd(l([a, bl. II,  2, 3], atom), 

*(Ie], 14, 5). [lItom)), Z). . ..... (A.2l 

The result is Z = #((a, b, c1. (1,  2, 3, 4, 5]). Becauee the execution 

of the third element has fail(!(f, Z contains only two elements (2 is 

eompruaedl. 

Although there are no dead elements in lhe vectors and there 

is no need for control vectors, like mask vectors or index vectors., in 

the compressing method, this method is rather inefficient. This if 

because,if any vector is compressed, all other vectors which must 

be used anerwards mUlt also be compressed. 

Appendix 2. The Source Program and the IL of the 

Eight·Queens Problem 

The source program and part of the IL ie shown here. 

A.I The Source Program 

The source program of the Eight-Queens problem is as follows. 

qUHnIQ) : - put((l,  2, 3, 4, 5, 6, 7, 8), 11. 0). 

puttIJ, e, 8). 
put(Qs, e, 0) ; -

select(Os, 01, R), not_take(B, Ol), put(R, [01 1 Bj, 0). 

select({A I ll. A, L1. 
select((A I Lj, X, [A I ll)) ; - sele<:t(L, X, L') 

noCtake{R, QI : -
Oa is 0 + 1, Q� is 0 - 1 , not_take l(R, Oa, Os). 

not_take l([J, 08, Oslo 

not_take1([Q I Rj, Qa, Os) : -
o = \ : Oa, 0 :z \ ",  Os, 

Oaa is Oa. 1 ,  Ou IS Os - " not_take 1(0, Oaa, Oss). 

A.2 The lL with the Masked Operation Method 
Vcctorizcd procedure of not_ta kel  by masked operation 

method is as follows. 

1 . ... _not_takel( __ _ , _, MI-MI) : -

2. ..._fini»Oed(MI), I. 
3 . ... _not_take!(B, Qa, Os, MI-MO) : -

4. ..._null(e, MI, MOl), 
S. ..._carcdr(O, R, B, M l ,  M2), 

6. ''''_ .  \ .  '(0, Oa, M2, M3), .... _ '" \ Ie '(0, OS, M3, M4), 
7 ' ... s_ . '(041. 1 .  Olla, M4), 'vs_- 'lOs, 1 ,  Qss, M4l, 
8. ..._not_takel(R, Oaa, Oss, M4-M02}, 

') ... _cnd_or(MO!, M02, MO). 

The vect.ors whose nomes are prefixed by M are the mask vedor&. 
Vectorit.ed pro.:edure of select by masked operation method i. 

as follows. 

1 . ... _select(Al, X, Y, MI, BI-BO} : -

1. v_select HAL, XI L, Y 1l, MI.ML), 

3 y_merge(X' L, X,  ML), ... _merge(Y I L. Y, ML), 

4. Y_repeat(SI, 80, Ml). 
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5 . ... _�el�tlL 11, U, MI-m· 
6. v_finishedlMll, L 
7 . ... _�lectl (AL, (A' !Xll), [l' I YI LJ, Ml-[Ml' I ML)) : -
8. v_candr(A', L', AL, MI, Ml'), 
9. v_cafcdr(A, L, Al. MI, Ml), 

10. v_sl!'lect l(L, X 1 L, Ll L, MI-MLO, 

I I .  mapcar(v_com(A), L IL, Yll, Ml1, ML). 

A.3 The IL with the Indellinl Method 
Vectorit.ed procedure or not_,ake 1 by indexing method is as 

follows. 

1 .  x_not_tllke1 ( __ _ , _, II-IOl : -

2. v_finished(II), !. 

3. x_nol_takellB, Oa, (h, 11·10) : -

4. 

s. 

6. 

7. 
8. 

xjlull(B, II, 10-101), 

I._Cl'fcdr(O, R, e, II, 12), 

'x_. \ .. '(0, Oa, 12, 13), '1._. \ :  '(0, (h, 13, 14), 

'.$_ + 'lOa, I, Oall. 14), 'xs_ - '(Os, I ,  Oss, 14), 

l._not_takel(R, Oaa, (hs, 14·101). 

The ve<:tors whose names are pr�(ixed by I are t� index vectors. 

AA The IL with the CompreSling Method 

Vec:torized procedure of not_take 1 by compressing method 

1. cnot_take1(QR, Oa, OS, B·B, R·R, 0·0) : -
2. v_finished(OR), I. 
3. cnot_talr.el(OR, Oa, Os, Bl·eO. Rl·RO, 01-00) : -

4. v_null lOR, --' M1), 
s. 
6 
7. 
8. 
9. 

10. 
1 1 .  

12. 
13. 

14. 

15. 

ccompr@$s(8J, M I .  BO·80..), 
ccompress(Rt, MI, RO·ROel, 
c_compress(OI, MI, OO·OOe), 
v_carcdrIO, R. OR, -

' 
M2), 

'Y_ = \ = '(0, Oa, M2, M3), 'v_ = \= '(0, Qs, M3, M4), 

ccompress(R, M4. R I-1m, 

ccomp!'"esS(Oa, M4. Qa'·IOI, 
ccompren(Qs, M4. OsH!I(», 
ccompress(81, M4, BII-Im, 

ccompress(RI, M4, RII-IOl, 
,_compress(OI, M4, OII·I()), 

16. 'v5_ + '(Oa l , I , Oaa,.J, 'vs_ - '(Qsl, l , Oss,->, 
17. cnOCtaketRl, Oila, Ou. BIl-BOe, RI1·RQeo, OIl-QDeI. 

The c_compf�S procedure makes a vector without dead elements. 


