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Abstract

Several techniques for running Prolog programs on pipelined
vector processors, such as the Hitachi S-820 or the Cray-2, are
developed. This paper presents an automatic program
transformation (vectorization) method of Prolog, which enables a
type of or-parallel execution of Prolog programs using vector
operations. Performance is evaluated on the Hitachi S-810 using
the Eight-Queens problem. Its vector execution speed is 4.5
MLIPS (18 ms). This is eight or nine times faster than scalar
execution. This result confirms the eflectiveness of vectorization
techniques and applicability of vector processors to Prolog
execution and to symbeol processing applications.

1. Introduction
1.1 Prolog and Its High-Speed Execution

Prolog is a language with unification and automatic
backtracking ('Prolog’ is hereafter used ito indicate logic
programming languages in general). Unification is a very
powerful pattern matching for data structures such as lists.
Automatic backtracking makes programming of search problems
easy. With these features, Prolog is quite suitable for symbol
processing such as list processing, natural languuge processing,
knowledge-base processing, and so on.

Although Prolog is 2 very powerful language, its execution
speed is rather low. Thus, achieving high-speed execution is
required. Many Prolog optimizing compilers in large scale
general-purpose computers have been developed. However, higher
speed requires parallel execution. There are two possible methods
for parallel execution of Prolog. One is execution by parallel
processors. The other is execution by pipelined vector processors

such as the Hitachi S-820 or the Cray-2.
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The former approach has been widely studied, for example, in
the PIM (Parallel Inference Machine) [ito 86, Ona 86] and Kabu-
wake method [Kum 86}, etc.

The latter approach is propesed by Kanada {Kan 84, Kan 85}
and attacked by him [Kan 87} using the Hitachi S-810 [Nag 84).
This approach is also being tried by Nilsson [Nil 86] also using the
S.810, and by Tatsuguchi and Muraoka [Tat 87) using the |BM
3090 Vector Facility. However, their target is different from
Kanada's (ours). Our target is to improve performance of Prolog
with changing its semantics as little as possible. But their target
is to improve performance of a logic programming language
without backtracking, i.e., a so-catled parallel logic programming

language GHC [Ued 85] or its subset.

1.2 Bifficulties in Improving Performance

Currently, most vector prucessors can only be used by Fortran
or assembly language. Vectorizing compilers perform a program
transformation called vectorization to generate the object program,
which is a sequence of vector operations, from Fortran programs.

In the case of Fortran, vectorization techniques for most
numerical programs have been established, and the program
transformation is rather easy. This is because their main data
structures are arrays that the vector processors are specialized to
process, and because their cottrol structures are simple DO loops
in most cases.

However, the same techniques cannot be applied to Prolog, and
drastic program transformations, such as introducing arrays and
loops, are inevitable. There are three reasons for this.

The first reason is that it is difficult to accelerate data
structure processing of Prolog, i.e, lists, functors, and so on.
Prolog programs do not process arrays, but process (linked) lists
which cannot be processed directly by vector operations.

The seeend reason is that Prolog programs de not have loops
because Prolog lacks control structures like DO loops or GO TO
statements. Instead, Prolog contains sophisticated control
mechanisms like recursive call or automatic backtracking, whose

vectorization techniques are undeveloped.



The third reason is that a unification is mapped to various
operations case-by-case at machine level. These operations cannot
be executed by a single uni-function vector instruction because

unification is a bidirectional (multi-function) operation.

1.3 Contents of this Paper

This paper shows program transformation (vectorization)
techniques of Prolog programs and the result of their performance
evaluation. Section 2 gives a brief description of Prolog language
and suggests possible vectorization strategies for Prolog programs.
Section 3 outlines the vectorization methods. Section 4 gives the
result of the performance evaluation of these methods. Section 5

gives the conclusion.

2. Prolog Language

Before explaining the vectorization of Prolog programs, a briefl
A detailed

explanation is found in Clocksin and Mellish {Clo 811, for example.

explanation of Prolog language, will be given.

2.1 Basics of Prolog
A Prolog program consists of procedures (subroutines). Each

procedure consists of ¢clauses. The form of a clause 1s as follows:

plar, a2,...8p0) = €, €20 ... Cmr.

The lefthand-side of : ~ (a neck symbol) is called the head of he
clause, and the righthand-side is called the body. p is the name of
the procedure, and @y, az, ..., ap are the formal arguments. Thus a
procedure consists of clauses that have the same name and the
same number of formal arguments. The body consists of procedure
calls ¢;, ¢2, ..., ¢m. Some of them are calls of user-defined procedure
and some of them are calls of system-defined ones.

When the procedure is called, one of the clauses whose head
matches (can be unified with) the caller’s pattern is selected and
the body of thc clause is executed. I[f no head matches, the
execution is said Lo have failed. If one of the procedure calis in the
body has failed, execution of the clause has also failed. Otherwise,
it is said 1o be succeeded. 1If execution of a clause fails, another
clause whose head matches is selected and exccuted. This action is
called sutomatic backéracking,

Two examples wiil be shown in the next two sections. ®ne of
them is a deterministic procedure, which means that the
procedure has a single solution, or always only one clause of the
procedure succeed. The other is a nondeterministic procedure,
which means that it has multiple solutions, or more than one
clauge of the procedure may succeed. They are included beca use

the execution and the vectorization methods of nondeterministic

procedures are different from those of deterministic procedures.
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Mode declaration, which plays an important role on checking

determinacy, is explained in Scction 2.4.

2.2 A Deterministic Example
The following example is the well-known append procedure,

which concatenates two lists.

append{{], X, X).
append([H | R], Y, [H|R1]): = append(R, Y, R1).

For example, the execution of the following question results in

Z=[abcd el
? - append(la, b, <], [d. e}. 2).

This question means “what is the concatenation of list [a, b. cl,
and list [d, e].” The answer is list la, b, ¢, d, e) (A list is bracketed
in Prolog). In this gtestion, [a, b, ¢] and Id, e] are constant lists {ail
the elements are atomic symbols) and Z is a variable. As far as the
first argument is used as input, only one clause always success
during the execution of the above procedure. Thus the append
procedure is deterministic.

The append procedure has no loops, but has a tail recursive
call. This means that the righthand-sidc of the secend clause ts a
procedure call of append itself. The recursive call appears at the
end of the procedure, so it is called a tail recursive call. A loop
cannot be expressed by Prolog, but a procedure with a tail
recursive cal! can be transformed into a loop in procedural
languages, such as Fortran or Pascal. Such a loop may be

vectorized. This fact suggests a possible strategy for vectorization.

2.3 A Nondeterministic Example

The append procedure can also be used to split a list.

? - append(X, v, [a, b]). et (2.4)

Question 2.3 results in a single answer, but question 2.4
resuits 1n multiple answers. The question means “what
concatenaled with what gives us [a, b].” 1n this case, the question

has three answers,

(' x =1, Y = (a, b],
(2)X = [a], Y = [b],
(3)X = [a,b], Y =1{],

where [] means an emptly list. The question has multiple answers
because both clauses of append have succeeded. Such a question is
said to be nondeterministic.® Nondeterminacy is one of the
important characteristics of Prolog.

The above example suggests a possible vectorization strategy,
that is, for computing different solutions in a pipelined manner.
Thus, there is the possibility of applying vector operations by
changing backtracking to looping.



2.4 Mode Declarations

Although the above append procedure can be used for both
concatenating and splitting a list, such a multi-function procedure
may be less efficient than a specialized, uni-function one. A
language feature called mode declaration, used to generate more
efficient code, is supported by many Prolog systems.

An example of a mode declaration for append is as (ollows:
mode append( +, +, ~).

This mode declaration means the first and the second argument of
the append procedure is input, and the third one is output.

If mode declaration 2.5 is supplied for the append procedure,
question 2.3 will be executed faster, but question 2.4 might not be
answered correctly because it is @ wrong usage. On the other
hand, if the following mode declaration is supplied, question 2.4
will be executed faster, but question 2.3 might not be answered

correctly.

mode append{ -, -, +).

3. Vectorization Methods of Prolog Programs
3.1 And-Vectorization and Or-Vectorization
Two possible vectorization strategies were suggested in the

last section.

(1) pipelined execution of “tail recursive calls”, and

(2) pipelined execution of “backtracking”.

For paralle) processing of logic programming languages such
as Prolog, parallelism is roughly classified into and-paraltelism
and or-parallelism [Con 81]. And-parallelism is the parallelism
between processes that are part of computation getting a single
solution, and or-parallelism is the parallelism between
computation getting multiple solutions (INote that the meanings of
these words are more general than the usual definitions). The
method based on (1) is a type of and-parallelization, so this
program iransformation is called and-vectorization. The method
based on (2) is a type of or-parallelization, so it is called or-
vectorization. The rest of this paper concentrates on or-
vectorization. The and-vectorization method is currently being

developed and its details will be described in a future paper.

3.2 Basic Ideas of Or-Vectorization
The three problems listed in Section 1.2 must be solved in
order to achieve vectorization. Their details in the case of or-

vectorization are explained below.
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(1) Data structure problem
The original Prolog program generates multiple sotutions,
which are generated one by one. A solution never coexists
with another solution in a sequential execution. However,
they must coexist in an array, if they are to be processed by a
vector processor. S0 it is necessary to generate the code of

accumulating solutions in different alternatives into an array.

(2) Control structure problem
A program with automatic backtracking must be
converted to a collection of very small loops without
backtracking. Each loop is executed by a single vector

operation.

{3) Unification problem
It is necessary to perform unifications in vector operations
to realize drastic improvements in performance. In the
executlion of a program like the Eight-Queens problem which
has a large amount of or-parallelism, many unifications are
done. Thus improvement is possible. The following are
subproblems in unification:

(3A) Because list is the most important data structure,
element-wise unification of lists contained in arrays
should be performed by vector operations at high-speed.

(3B) Compilation of Prolog patterns inte uni-funciion vector
unifiers such as list composer, list decomposer, etc., are
necessary.

3A is mainly an execution mechanism problem, and 3B is a

veclorization techniques problem.
The following methods were used to solve these problems.

(1) Accumulation of solutions and introducing loops

In this method, values of a logical variable in different
alternatives {execution paths) are accumulated in an array at
the end of a nondeterministic procedure execution.

The execution process of a nondeterministic procedure is as
follows. All the clauses of the procedure are executed in order
before exiting the procedure. On the other hand, only one

clause is executed before exiting from il in the original
semantics of Prolog (if the elause succeeded).

Each transformed clause inputs and outputs vectors that
contain values of original arguments. The output vectors are
merged at the end of the procedure execution. For example,
the outline of the vector process of question 2.4 is shown in
figure 1. In this case, the length of the input vectors is one.
The three solutions are obtained sequentially, and

accumulated into arrays. So the length of the output vectors is

three. The elemcnts of the output vectors should be in depth-
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output vectors H and T. In the case of the emptiness test, a
vector comparison operation is used and the result is expressed
by boolean vector (called a mask vector) MO. In the case of
composition, the cons cells are allocated on the heap, and the
value of the first and the second arguments are stored in them.
The addresses of the cons cells is calculated by an arithmetic
sequence generation operation and stored in output vector C.
There is also the probiem of conditional control. In the
case that some unifications on vector elements Tail and others
succeed, this failure or success must be stored in memory. The
operations following the unilications are controlled by the
storcd data. There are three conditional control methods.

They are explained in Section 3.3.

(3) Compilation to uni-function unifiers
In this method, unifications in a source program are
compiled into calls of uni-function unifiers, using mode
information of the procedure’s arguments and variables. The
word mede information refers to information that shows
whether the arguments or variables are used only for input,
enly for output, or for both. Mode information may be supplied
with mode declaralions by programmers. Although most
procedures are always used in the same mode, it is
troublesome for programmers to write mode declarations for
all the procedures. Thus automatic mode analysis is
ncecessary- But currently this system is fully dependent on

mode declarations.

3.3 Three Conditional Controt Methods
In vector operations of vector processors, conditional contrel is
performed mainly by the foilowing three kinds of instructions

[Kam 83]:

(1) Masked operation instruclions,
(2) List vector instructions,

(3) Gather/sceatter instructions.

The methods that follows are used for the conditional control of
vectorized Prolog programs. Each of them uses the instructions
which shares the same number. Input and output of the pipelined
execution of questions with these methods are illustrated in

figure 3.

(1) Masked operation method
In exccution by this method, each array may contain dead
elements (all arrays have the same number of elemenis) The
dead elements are shaded in {igure 3. “Live-ness” of array
elements is shown by a mask vector. The mask vector is a
boolean vector. The cost of masked operations is very low in

vector processors. However, if the percentage of dead elements
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is large, this method is inefiicient because dead element access

overhead exists.

(2) Indexing method
Similar Lo the masked operation method, each array may
contain dead elements. Indices {or displacements) of live
plements are stored in an index vector, whose number of
elements is the same or less than that in data arrays.
Although no dead element is accessed, list vector access
overhead, which is expensive in vector processors, always

exists in this method.



(3) Compressing method.
{n this method, each array consists only of live elements.
No contro! vector, such as 8 mask vector or an index vector, is
used. No dead element is accessed, so no access overhead exist.
However, if some elements in vectors become “dead”, all the
vectors should be compressed to keep the correspondence of

vector elements. So this method is inefficient in many cases.

3.4 Process of Compilation

This section gives a brief description of the compilation process
and shows the position of the vectorization. Sections 3.5 and 3.6
describe the details of or-vectorization metheds. Section 3.5
describes those for deterministic procedures and section 3.6
describes those for nonde{erministic procedures .

Because drastic program transformation is necessary, Prolog
execution in vector processors should be based not on an
interpreter, but on a compiler. The compilation process used in

this paper is shown in figure 4. In this paper's execution method,

Vectoriza- ,
tion Cb)ect

program

Prolog intermediate
program program Code.
generation
Built-in
predicates,
unifiers

Figure4. Compilation process of Prolog for vector
processors

the compilation process of Prolog programs censists of two phases.
The first phase is called vecferization, and the second phase is
called code generation.

Vectorization is a program transformation. The resulting
program is expressed in an intermediate language (IL) which may
be & high-level language. A Prolog-like language is used as IL in
this paper, for the sake of simplicity. The IL is very similar to
Prolog but it contains arrays.

Code generation is a simple process in most cases. It is similar

to the compilation process of the Fortran vectorizing compiler.

3.5 Or-Vecterization of Deterministic Procedures

The vectorized form and the outline of the vectorization
process of the append procedure with mode declaration 2.5, i.e
deterministic append, is shown in figure 5.

The first line of the source program is the mode declaration. In

the current implementation, it is indispensable for vectorization.
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However, it will he unnecessary in most cases, if interprocedural
automatic mode analysis is done,

The process of program transformation can be divided into
three steps. The real process is more complicated, but it is
simplified here. First, the arguments in the source program are
replaced by variables. Second, the clauses are concatenated into a
single clause using ‘;’ {the built-in or predicate}, and unifiers are
specialized. Finally, the vectorization is performed. The
vectorization shown in {igure 5 is based on the masked operation
method. Other methods are explained in the appendix. In the IL
in figure 5(4), the arguments of v_append are vectors. The first
three formal arguments {(i.e., X?* Y and 2) correspond to the
arguments of the original append. Fourth argument Mi is the
input mask vector, and fifth onc MQ is the output mask veclor.

An array with elements e;, e, ..., e, will be described as #(ey,

€2, ... en). Then, the execution of the following question results in



Z = #([la, b, <), 11, 2,3, 4,5}, ?) and MO =

where ? is an arbitrary value,

#(true, true, faise),

? - v_append(#([a, bl, [1, 2, 3], atom), #({c], {4, 5], [atom)),
Z, #(true, true, true), MO). e (3.1}

The vectorized append, named v_append here, computes the
element-wise list concatenation of two vectors. The first two
element processings are succeeded, so the values of the first two
elements of the output mask vector become true. The third
element processing is failed, so the value of the third element of
the output mask vector is false. The correspondence between the

source program expressions and the vectoriz d program ones is

shown in table 1.
Tablel. Thecorrespondence between the source program
and the vectorized one for the deterministic
‘append’ procedure

Meaning

Source Form Vectorized form
* v_finished(MI)
v_nuli{X, M1, MO1)

v_assign(Z, Y, MO1)

Stop recursion.

Test emptiness of lists'.

Assign the 2nd
argument to the 1st,

[
X, X

Hor

The two v_or(Mi, MO1, M2), and Merge theresultofthe
clauses v_end_or(MO1,MO2, MO) |two clauses.
[H|R] v_carcdr(H, R, X, M2, M3} |Decompose the lists'.
append( v_append( Call recursively.

R, Y, R1) R, Y, R1, M3, MO2)
[R]R1) v_cons(X, R1,Z, MO2) Compose lists’. l

*There is no counterpart in the source program.
" The elements of the arguments are lists.

The veclorized program contains three procedure calls which
have no counterparts in the source program, i.e., v_finished, v_or
and v_end_or. The reason why procedure call v_finished(Ml) is
inserted is that the recursion of v_append never stops without it
(The v_finished tests whether there is true in the argument mask
vector). The v_or procedure prepares mask vector M2 for the parts
following it, which correspond to the second clause of the source
program. Then, the v_end_or procedure makes output mask

vector M.

3.6 Or-Vectorization of Nondeterministic Procedures

The vectorized form and the outline of the vectorization
process of the append procedure with mode declaration 2.6, i.e.,
nondeterministic append is shown in figure 6. The vectorization
process is also divided into three steps, i.e., replacing arguments,
concatenating clauses into a single clause and specializing
unifiers, and vectorization. The first two steps are done the same
way as the deterministic case. However, the output is different
because the mode declaration is different.

The vectorization shown in figure 6 is based also on the

masked operation method. The first three formal arguments (i.e,,
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Figure6. Vectorization process of the nondeterministic
‘append’ procedure

X, Y and 2) of v_append correspond to the arguments of the
original append. The fourth and the fifth formal arguments (Mt
and MO) are the input and output mask vectors. The vectorized
program consists of procedures v_append, v_append_1, and
map_v_cons. Their meaning is explained later,

The execution of the guestion 3.2 results in the following

valuesof Xand Y.

?- append(X, Y. #(fa. bl, 1]). - {3.2)



X = #(U, []f [a}' [1]c [af b})v
Y = #(fa, bl 7). [bl. [J. [}).

The vectorized program consists of three procedures, 1.e.,
v_append, v_append_1{ and map_v_cons. The relation between
the source program expressions and the vectorized program ones is
shownin table 2.

Table 2. The correspondence between the source program

and the vectorized one for the nondeterministic
‘append' procedure '

Meaning

Source Form Vectorized Form
- v_merge{iXL, YL], {X, Y}, JAccumulate the
ML, MO) solutions.
- v_finished(M!) Stop recursion
- XL:={L YL:= [k Make empty multi-
ML: = (] vectors.
[] v_assign(XL1, []. M) Make XL1 a veciorof
cmpty lists’.
X, X v_assign(YL1, Z, Mi) Assign the 2nd
argument to the 1st'.
[H|R1] v_carcdr{H, Rt, M2, M3) Decompose the lists'.
append( v_append_ 1( Call recursively.
R, Y, R1) RL, YLR, R1, M2, MLR)
[H{R] map_v_cons( Compose lists’.
H, RL, XLR, MLR)
- XL:= (XL1|XLR], Add an element to each
YL: = [YL1]| YLR], multi-vector.
ML:= [MI|MLR]

* There is no counterpart in the source program.
' The elements of the arguments are lists.

v_append is the main procedure. It calls v_append_1 to get
solutions in the form of chained vectors, which we call multi-
vectors, and calls v_merge to accumulate the values of each
variable into a single vector. The computation process of question
3.2 i8 shown in figure 7. In this case, element vectors of multi-
vectors XL and YL are merged into vectors X and Y respectively.
ML is a multi-vector whose elements are mask vectors. Mt shows
the “live-ness™ of XL and YL. v_merge outputs a vector with no
dead elements, so all the elements of output mask vector MO is
true.

The expressions such as XL : = [}, XL : = [XL1 | XLR] in the
vectorized program are used for making a multi-vector. The
former is uscd for making an empty multi-vecter @ multi-vector
that has no elements), and the latter is used for adding an element
vecter to a multi-vector.

The recursive call of v_append_ 1 yields multi-vectors RL, YLR
and MLR. The call of map_v_cons inputs H and RL, computes the
vector-element-wise list composition of H and each elements of
multi-vector RL, and outputs multi-vecter XLR whase elements are

the results of the composition.
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Figure 7. ‘The vector computation process of the
nondeterministic ‘append’ procedure

In the current method, backtracking is completely eliminated,
so the number of vector elements may explode during the
execution of a program like the N-Queens problem (a
generalization of the Eight-Queens problem) when N is large. If
the or-vectorization method and backtracking are combined, this
exploston can be avoided. A schema to combine them, called the

parallel backtracking schema [Kan 84, Kan 85), has been designed.
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4. A Performance Evaluation

Before developing & Prolog compiler with an automatic
vectorizer, vector processing performance of Prolog programs was
manually evaluated. The program of the Eight-Queens problem
was manually vectorized by the masked operation, indexing and
compressing methods into IL, and then translated into Fortran
and Pascal programs. The program portion that can be vectorized
by the Fortran compiler is written in Fortran, and program
portion that uses recursion is written in Pascal, The source
program and the parts of the vectorized program are shown in the
appendix. A garbage collector has not been implemented.

Vector and scalar execution performance is shown in table 3.

Table3. Performance of the Eight-Queens program
on the Hitachi S-810

O 5-810 vector 5-810 scalar
ethed 0 : :
o execution execution -
conditional . v {:.(cnel:ta
control mups | UM | mups | STe | HOR T
[ | _(ms) (ms)
Masked 4,5 18 0.48 167 9.3
operation
Indexing 4.5 18 0.57 140 78
Compressing 4.2 18 0.50 160 8.4
(array version) - 9 i - 79" 8.8"

* The scalar execution time of the array version is thatof a
program optimized for scalar execution. The program is
different from that of the vector execution time.

The scalar execution time is the time when the veclorization
feature of the Fortran compiler is suppressed. The execution time
ofthe Eight-Queens program using arrays instead oflists {Kan 84]
(array version) is also included in table 3, for comparison. The
percentage of the total execution time required by each type of
operation is shown in figure 8.

The important points are as follows,

{1) Vector execution time is 18 to 19 ms. 1t means that inference
speed is 4.2 to 45 MLIPS {(million logical inferences per
second}. No significant difference in performances exists
between masked operation, indexing and compressing
methods in the Eight-Queens case. The vector processes are

eight or nine times faster than the scalar processes.

(2) The percentage of the total execution time required by the list
emptiness test, list composition and list decomposition is high

in all three methods {about 40% in vector processing).

(3) The accelerating rate of list composition is low. This low rate
shows that the threughput between the main storage and the
vector processing unit is insufficient in the list composition

case.

(4) The percentage of the total execution time required by

compressing vectors and merging (accumulating) vectors is
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about 6% in the masked operation and indexing methods, but
it is about 25% in the compressing method. The overhead of

the latter cannot be ignored.

5. Conclusion

Vectorization methods for Prolog, called or-vectorization
methods, which enables a type of or-parallel execution of Prolog on
vector processors, have been developed. There are three
conditional control methods of veector processing, namecly, the
These

three methods have been manuatly evaluated. No significant time

masked operation, indexing and compressing methods.

difference between these three methods has been found in solving
the Eight-Queens problem. They will be useful for solving search
problems or for other symbol processing applicat2’'ons in the future

because of their high processing speeds.
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Appendix 1. The Vectorized 'Append’ Procedurse

Though the process and the results of the vectorization of the
append procedure by the masked operation method are shown in
Section 3.5, those by the indexing and compressing methods are
not. described there. Only their usage is shown below.

7- x_append(#([a. bl, [1. 2, 3], atom}, #((cl, f4. 5], [atom]),
2. #(1, 2,3), XQ). (A1)

It returns the same resuit as qucstion 3.1, t.e,, 2 = #{[a, b, ¢], [1.2,
3,4, 5), ?). The fourth argument #(1, 2, 3) is the input index vector
which shows the first and the second element of the input
arguments are live. The fifth argument XO is the output index
vector, whose value becomes #(1, 2) after the execution.

?,, £ ) ]
Scalar Lo oo Lég%ﬂﬁfﬁm a8 AT -% """ Commarison & Arithmetic
execution | iy il e f_ “? 38.3 %
‘Corrsesiiian 2.6% Crifmipres {”mg" de ITIE
Vector List @%ﬁ%ﬁﬁﬁﬁ@fﬂg & 5:; m}’:g};ﬁm? Oibers
o Emptinesstest & & Arthmetic .
gracution decompositign 81 g% + 16 3% 380 %

T

Composition 8.3 %

{2lindexing methed

Compressing & merging §.4%

N1 1.1 : - kst optrations 605 % z Comparisor. &
R e s i i Arithmaetiic
pxerution Emptineys o3l & decempositaon 55 6% ? ' 94 - o
: : SR O ] ] R : SRS
i o 2
Compogition 4.8% ['f —:at‘np,-:‘assi ne & mersing 3.8 4%
Vactor Compartson & (Mhers
) Arithmetic
2rPLutivnNn S4 T, TR LR

Emphiness test & desompositisn J2

{3: Compressing method

4% Compseition 11.8%

Comprassing & mevging 6 1 %

) IS :{:_ ; £ 2 ¥ -;.;._.;.;._.:. "
{J{? i?t:?f ?i& 4 Compressing &
oasn b merging 284%

- Com;nsi&ig_&é 2%

Scalar . Listoperations 43 6 %
Emptmmb test & ﬁ@‘ﬁ?&:ﬂg}ﬂﬁhmn '
3
execution . o ha +
Ve(tlor
arecution

Emptiness test & decompesitisn

24 2% 102 %

Coampaosition

e e e

Compressing & Others
mwgmg 2§ 4 % *, LA

Cemparizan & Arithmetic 12 2%

Figure8. The percentage of total execution time required by different operations in the Eight-Queens
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Question A 2 calls the append vectorized by the compressing
method, named ¢_append.

?- c_append(#([a, bl, [1, 2, 3], atom),
#{(c), [4, 5], [atom)), 2).

The resultis 2 = #(ja, b, ¢, [1, 2, 3, 4, 5]). Because the execution
of the third element has failed, Z contains only two elements (Z is
compressed).

Although there are no dead elements in the vectors and there
is no need for control vectors, like mask vectors or index vectors, in
the compressing method, this method is rather inefficient. This is
because,if any vector is eompressed, all other vectars which must
be used afterwards must also be compressed.

Appendix 2. The Source Program and the IL of the
Eight-Queens Problem

The source program and part of the IL is shown here.

A.l1 The Source Program
The source program of the Eight-Queens problem is as follows.

queen(Q) : - put([1, 2, 3.4,5,6, 7, 8),1).Q).

put(l], B, B).
DUt(QS, Bo Q) .=
select(Qs, Q1, R), not_take(B, Q1), put(R, [Qi | B], Q).

select([A | L], A, L).
select(fA|L], X, [A|L1]) : - select(L, X, L3}

not_take(R, Q) : -
Qais Q+1, Q is Q-1, not_take I(R, Qa, Qs).

not_take 1([], Qa, Qs).
not_takel({Q | R], Qa. Qs} : -
Q=V=Qa, Q =\= Qs,

Qaais Qa+1, Qss 1s Qs=-1, not_takel(Q, Qaa, Qss).

A.2 The IL with the Masked Qperation Method
Vectorized procedure of not_takel by masked operation
method is as follows,

1. v_not_takel(__ _, —, Mi-MI) : -

2 v_finished(M}), L

3. v_not_takel(B, Qa, Qs, MI-MO) : -

q v_null{B, MI, MO1)},

S. v_carcdr(Q, R, B, M1, M2),

6 'v_=\='(Q, Qa, M2, M3), ‘v_=\='(Q, Qs, M3, M4),
7 'vs. + '(Qa, 1. Qaa, M4), 'vs_-"(Qs, 1, Qss, M4),

8 v_not_takel(R, Qaa, Qss, M4-MQO2),

9 v_end_or(MO1, MO2, MO).

The vectors whose names are prefixed by M are the mask vectors,
Vectorized procedure of select by masked operation method is
as follows.

1. v_select(AL, X, ¥, MI, BI-BQ) : -

2. v_select1(AL, X1, Y 1L, Mi-ML),

3. v_merge(X1L, X, ML), v_merge(YIL, Y, ML),
q, v_repeat(Bl, BO, ML).
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5. v_select1(_, [). I}, mi-{D).

6 v_Tfinished(W), !.

7. v_selecti(AL, (A’ | XiL], [L'] YIL), Mi-[MY | ML) : -
8 v_carcdr(A’, L', AL, Mt, M),

9 v_carcdr(A, L, AL, M1, M1),

v_selecti{t, X1L, L1L, M1-ML1),
mapcar(v_cons(A), L1L, YL, ML1, ML).

10.
11.

A.3 The IL with the Indexing Method
Vectorized procedure of not_taket by indexing method is as
follows.

1. x_not_takel(_, ., . I-#{):-

2 v_finished(ll), !.

3. x_not_taket(B, Qa, Qs, li-10) : -

4 x_null(B, H1, 10-10%),

5. x_carcdr{Q, R, B, I, 12),

é " ='=(Q. Qa, 12,13), 'x_=\="(Q. Qs, 13, 14},
7 ‘s _+'(Qa, 1, Qas, 14), 'xs_ -'(Qs. 1, Qss, 14},
8 x_not_take!(R, Qaa, Qss, 14-101).

The vectors whaose names are prefixed by | are the index vectors.

A.4 The IL with the Compressing Method
Vectorized procedure of not_take! by compressing method

1. c_not_takel(QR, Qa, Qs, B-B, R-R, Q-Q) : -

2. v_finished(QR), 1.

3. c_not_takel(QR, Qa, Qs, 8i-BO, RI-RO, QI-QQ) : -
4. v_null{(QR, _, M1},

S. c_compress(B!, M1, 80-80e),

6 ¢_compress(Rt, M1, RO-RQe),

7. ¢_comprsess(Qt, M1, QO0-QO0e),

8. v_carcdr(Q, R, QR, _, M2),

9. ‘v_=V='(Q, Qa, M2, M3), ‘'v_=\="Q, Qs, M3, M4),
10. c_compress(R, M4, Ri-#()),

1. c_compress{iQa, M4, Qat-#()),
12. c_compress(Qs, M4, Qs1-#()),

13. c_compress(Bt, M4, BI1-#()),
14. c_compress(RIl, M4, Ri1i-#()),
15. ¢c_compress(Qr, M4, Qli-#()),

16. ‘'vs_+'(Qalt, 1,Qaa,_), ‘vs_ ~'(Qs1, 1.Qss._).

17. c_not_take{R1, Qaa, Qss, Bi1-BQe, Ri1-ROe, QI11-QOe).

The c_compress procedure makes a vector without dead elements.



