Invited Paper

Advanced Vectorization Techniques
for Supercomputers

SHIzuo GoTou*, YosHIKAZU TANAKA*, Kyoko Iwasawa®,
Yasust KANADA* and Akio Aoyama**

A new FORTRAN 77/HAP compiler for Hitachi’s supercomputers S-810 and S-820 has been implemented
featuring new compiling techniques to enable users to easily obtain higher performance. The most important ele-
ment of this compiler is an advanced global data flow analysis method which determines whether vectorization
as well as optimization can be applied or not. Also important are powerful program transformation techniques
for vectorization and optimization to vectorize more portions of the programs and produce more efficient code.
The performance improvement of this new compiler is compared with the performance of the previous com-
piler. It is also pointed out that these method and techniques can be applicable to other supercomputers as well.

1. Introduction

Supercomputers have been providing users in many
scientific and engineering fields with large computa-
tional power. In this regard, many compiling techni-
ques have been developed|[3, 4, 6, 9, 11, 13, 14] to pro-
vide powerful automatic vectorizing functions
necessary to obtain higher performance from supercom-
puters. This paper describes advanced automatic vec-
torization techniques implemented in the new version
of the FORTRAN 77/HAP compiler for Hitachi’s
supercomputers S-810 and S-820.

The most important objective of automatic vectoriz-
ing compilers is to increase the vectorization ratio (the
ratio of the vectorized portion to the entire program)
and the vector acceleration ratio (the ratio of the scalar-
mode execution time of the vectorized portion to the
vector-mode execution time of the same portion).

In order to increase the vectorization ratio, it is
desirable to analyze and investigate the original pro-
gram to vectorize as many portions of the program as
possible. Earlier compilers for supercomputers in-
cluding our old version compiler could vectorize only
the innermost loops, but recent compilers have been
able to vectorize multiple nested loops whose structures
are rather simple. It is now necessary to remove more
restrictions and expand the vectorization to even more
complicated control structures.

For example, Fig. 1 shows a weakness in conven-
tional methods. Because the program in Fig. 1(a) has
been treated as the program in Fig. 1(b) by the conven-
tional methods, a data dependence relation for array A

*Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo,
185, Japan.
**Software Works, Hitachi, Ltd., Yokohama, Kanagawa, 244,
Japan.

Journal of Information Processing, Vol. 11, No. 1, 1987

from use u,4 to definition d, has been detected, which
does not exist in fact. Another data dependence relation
for array B can really exist from use up to definition dj.
As these two data dependence relations construct a cy-
cle, the program has been determined to be unvec-
torizable. A more detailed data flow analysis method is
necessary to vectorize this program so that it proves
that no data dependence relation for array A4 exists.
In order to increase the vector acceleration ratio, it is
desirable to develop as many and more powerful vec-
torization techniques as possible. Fig. 2 shows an exam-
ple of a vectorization technique called outer loop unroll-
ing. The program of Fig. 2(a) can be transformed to the
form in (b). The statement in the loop is copied with the
array subscripts changed from J to J+ 1, where J is the
loop index variable of the outer loop, and with the loop

DO 10 I=1,10
IF (C) THEN
B() = A(D)
ELSE
A(l) = B(I+1)
END IF
10 CONTINUE
(a) an original program

- us dp

"dA ug

DO 10 I=1,10
'BLI)—fﬂI) - uy dg
A() = BI+1) ~dsy up

10 CONTINUE

(b) an approximation of (a)

Fig. 1 An example showing the weakness of the conventional
data flow analysis method.

Advanced Vectorization Techniques for Supercomputers

DO 10 J=1,100
DO 10 K=1,100
A(K,J)=B(K,)+ C(K,J)
10 CONTINUE
(a) an original program

DO 10 J=1,100,2
DO 10 K=1,100
A(K,5)=B(X, D)+ C(K, J)
AK,J+1)=B(K,J+1)+CXK, J+1)
10 CONTINUE

(b) result of outer loop unrolling
time

Load [l l I l I I
load L 1 1 L L1 1 1

B == Lﬂ

(c) execution process of (a)

Load FLI
Load

Add

Store [

Load
Load
Add
Store

(d) execution process of (b

Fig. 2 An example showing the effectiveness of a technique to in-
crease the vector acceleration ratio.

incremental value changed from 1 to 2. This program
transformation does not affect the result of the pro-
gram. Fig. 2(c) and (d) show the execution processes of
(a) and (b) respectively. Many hardware resources
possessed by supercomputers can be used more effici-
ently. It is also necessary to develop an analysis method
which verifies the correctness of the transformation.

In summary, in order to attain higher performance it
is necessary to develop a more detailed data flow
analysis method and more vectorizing techniques.

In chapter 2, we will describe the method of global
data flow analysis we have developed for the new ver-
sion of the FORTRAN 77/HAP compiler. In chapter
3, we will describe the vectorization techniques using
the results of global data flow analysis. Finally, in
chapter 4, we will present a performance comparison of
a world-wide used benchmark called the Livermore
Loops and show the effectiveness of our method.

2. Global Data Flow Analysis Method

We have developed a new powerful global data flow
analysis method that constructs an extended data
dependence graph for arrays as well as for simple
variables. The extended data dependence and the
method of analysis originally reported in reference[5]
are presented in this chapter.

23

‘ A(D = .d A = .dl

. =AD .u A = ..d2
¢ (1) Flow dependence (2) Output dependence

. =AQ .u

% A =... ..d

(3) Anti-dependence

Fig. 3 Kinds of data dependences.

2.1 Data dependences

2.1.1 Kinds of data dependences

Data dependence analysis is required to determine
whether portions of a program are vectorizable by
nature and, if so, how they are transformed to a vec-
torizable form. There are three well-known kinds of
data dependences[6]. Examples are shown in Fig. 3.
Def-1.1 Flow dependence

If a value of a variable or an array element defined at
a definition d may be used at a use u, a flow dependence
from d to u exists.

Def-1.2 Output dependence

If a value defined at a definition d1 may be redefined
at a definition @2, an output dependence from d1 to d2
exists.

Def-1.3 Anti-dependence

If a value used at a use ¥ may be redefined at a defini-
tion d, an anti-dependence from u to d exists.

These terms are derived from reference[6] but the
definitions are slightly different. For example, when
there are three definitions d1, d2 and d3 in order and
there is no path from d1 to d3 without travelling
through 42, output dependence from d1 to d3 exists by
the definition of reference[6], but does not exist by our
definition.

2.1.2 Classification of data dependence based on loop
dependence

It is useful to classify data dependences based on
their relations to loops (named loop dependences) in
order to examine whether the loops can be vectorized or
not. Each of the above data dependences can be
classified as follows.
Def-2.1 L-loop independent data dependence

If a value at a reference (a use or a definition) or a
variable or an array element in each of the i-th iteration
of a loop L is referred to at another reference solely in
the i-th iteration, the data dependence between the two
references is called an L-loop independent data
dependence.
Def-2.2 L-loop carried data dependence

If a value at a reference in each of the i-th iteration of
a loop L is referred to at another reference in some j-th

24

DO 10 I=1,100 DO 10 I=1,100
/_j .u e =V ..u
V= .d IF () V= ..d

CONTINUE CONTINUE

(b) loop multiple-iteration-
carried flow dependence
(unvectorizable case)

| (a) loop next-iteration-
carried flow dependence
(vectorizable case)

|
|
L

Fig. 4 Examples of loop dependence.

iteration (j> i), the data dependence is called an L-loop
carried data dependence.

These definitions are derived from reference[3]. We
have enhanced it so that L-loop carried data
dependences could be classified further as follows.
Def-2.2.1 L-loop next-iteration-carried data

dependence

If j=i+1in Def-2.2, the data dependence is called an
L-loop next-iteration-carried data dependence.

This kind of data dependence is used to facilitate vec-
torization using the macro vector instructions as
presented in section 3.3.

Def-2.2.2 L-loop multiple-iteration-carried data
dependence

If j>i+1in Def-2.2, the data dependence is called an
L-loop multiple-iteration-carried data dependence.

Similarly, the L-loop multiple-iteration-carried data
dependence could be classified such as 3rd-iteration-car-
ried data dependence, 4th-iteration-carried data
dependences, and so on. However, since they are not
very useful in optimization of usual programs for
numerical calculations, it is convenient to distinguish
only three kinds of loop dependences (loop independent
data dependence, loop next-iteration-carried data
dependence and loop multiple-iteration-carried data
dependence).

2.1.3 Examples of loop dependence

Loop dependence analysis is useful for vectorization
and optimization. Fig. 4 shows examples of loop
dependences on variables. It is noticed that the analysis
on variables is as important as on arrays. In Fig. 4(a), a
value defined at d is surely used at « in the next itera-
tion, so that the data dependence from d to u is a loop
next-iteration-carried flow dependence. If data
dependences on the other variables and array elements
(not shown in the figure) are suitable, the loop is deter-
mined to be vectorizable. But for the loop in Fig. 4(b) it
is unknown how many times subsequently the value of
variable V defined at d will be used as u, so that the data
dependence from d to u is a loop multiple-iteration-car-
ried flow dependence. Because there is no vector func-
tion to process this case, the loop is determined to be
unvectorizable. The vectorizability is thus determined
by the loop dependence analysis.

S. Gotou, Y. TANAKA, K. Iwasawa, Y. KANADA and A. AOYAMA

2.2 Global data flow analysis method

Our global data flow analysis method determines ex-
isting data dependence relations by scanning the
statements in the program. It is processed in combina-
tion with the array subscript comparison and it con-
structs a data dependence graph from the data
dependence relations. We explain at first the array
subscript comparison, followed by two kinds of sets
called the ‘‘reaching definition”” and ‘‘exposed use’’
used in the global data flow analysis, and finally the pro-
cess of the analysis method itself.

2.2.1 Array subscript comparison

Every pair of two array references r1 and r2 in a loop
L is analyzed and determined whether relations defined
as follows exist or not.

Def-3.1 L-loop n-time complete coincidence (n: a
non-negative integer)

If, for all /, an array element at an array reference rl
referred to in the /-th iteration of loop L is necessarily
referred to at another array reference 2 in the (i + n)-th
iteration, it is considered that an L-loop n-time com-
plete coincidence exists between r1 and r2.

Def-3.2 L-loop n-time possible coincidence

If, for some /, an array element at an array reference
rl referred to in the i-th iteration of loop L is possibly
referred to at another array reference r2 in the (i + n)-th
iteration, it is considered that an L-loop n-time possible
coincidence exists between r1 and 2.

Def-3.3 L-loop n-or-more times possible coincidence

If, for some i, an array element at an array reference
rl referred to in the i-th iteration of loop L is possibly
referred to at another array reference r2 in some j-th
iteration (j=i+n), it is considered that an L-loop n-or-
more-times possible coincidence exists between r1 and
r2.

2.2.2 Reaching definition and exposed use

For each point (such as between statements), the
following two sets are defined.
Def-4.1 Reaching definition

Reaching definition at a point P is the set of defini-
tions whose defined values may be used at point P. This
definition is the same as in reference[1].

Def-4.2 Exposed use

Exposed use at a point P is the set of uses whose used
values may be reused at point P. This definition is newly
given by the authors.

While reaching definitions are used to determine flow
dependences and output dependences, exposed uses are
used to determine anti-dependences.

Def-5.1 Reaching Definition In: RIN

RIN(s) is the set of reaching definitions at the point
immediately preceding statement s.

Def-5.2 Reaching Definition Out: ROUT

ROUT(s) is the set of reaching definitions at the point
immediately succeeding statement s.

Advanced Vectorization Techniques for Supercomputers

Fr ————— DO 20 J=1,10 50

P DO 10 I=1,10 sl

H AU D= -~ d1 s2

L1 IF (...) THEN

; AJ,I- 1)— - d2 s3

; L ELSE

| Al I-Y=) ~d3 54

i ENDIF \ H

| ~=A -2 eu

) +AT-2T-1) u2 s5

i L_10 CONTINUE 56

R 20 CONTINUE s7
— L2-loop dependences

{ ----- + LI-loop dependences

Fig. 5 A program example.

These sets are calculated three times for a loop in the
analyzing process as shown in the next paragraph, and
are distinguished as follows.

(1) RIN and ROUT used for analyzing loop in-
dependent data dependences are written as RIN; and
ROUT..

(2) RIN and ROUT used for analyzing loop next-
iteration-carried data dependences are written as RIN,
and ROUT,.

(3) RIN and ROUT used for analyzing loop multi-
ple-iteration-carried data dependences are written as
RIN,, and ROUT,,.

To calculate these reaching definitions, the following

25

two sets are introduced.
Def-5.3 RGEN

RGEN(s) is the set of definitions at statement s.
Def-5.4 RKILL

RKILL(s) is the set of definitions whose defined
values are surely redefined at statement s.

To calculate the set RKILL(s), the array subscript
comparison is used. If there is n-time complete coin-
cidence between a definition d which reaches statement
s and the definition in statement s, definition d belongs
to the set RKILL(s), where n=0 for the loop indepen-
dent analysis, n=1 for the loop next-iteration-carried
analysis and n=2 for the loop multiple-iteration-car-
ried analysis.

RIN and ROUT are calculated so that the following
data flow equations are satisfied.

RIN(s)= U ROUT(p),
pe Pred(s)

where Pred(s) is the set of preceding statements of
statement s.

ROUT(s)=(RIN(s) — RKILL(s))URGEN(s)

Similarly, the exposed uses are distinguished and
calculated.

2.2.3 Analyzing process

Fig. 6 shows a process of the global data flow analysis
method where the analysis type is indicated for each pro-
cess step.

The loops are thus scanned three times. In each step,
data dependence analysis is performed as follows.

(a) Calculation of the reaching definitions

(1) analysis outside the loops
0 1=0 (1mRIN)
s @ (©O=ROUT

O,={d!l, d3)

t={d1, d2, d3}
0,={d!, d2, d3}

d2,d1}

-

1n={d!, d2, d3} L1 1,={d1, d2, d3}
O, ={d1, d2, d3) 0,={d1, d2, d3)
same as §1 same as S

as 52
same as §2
I =1{di, d2, d3} I,={d!, d2, d3)
0,={d1,d2, d3} 0,={d!,d2, d3)

1,={d?, d2, d3)
0,={d!,d2, d3)

1,={d2, d7)
0,={d2, d3}

Fig. 6 Analyzing process of the program in Fig. 5.

26

As shown in the above paragraph, the sets of RGEN
and RKILL are obtained for each statement in the loop
and the sets of RIN and ROUT are calculated to satisfy
the data flow equations presented in the same
paragraph.

(b) Calculation of the exposed uses

The exposed uses are calculated in a similar way.

(c) Detection of data dependences

We explain here the case of flow dependences (others
are obtained similarly). For each statement s having a
use u, every definition d belonging to RIN(s) is analyzed
individually as follows.

(i) In a process of loop independent analysis, if
there is a 0-time possible coincidence between d and u, a
loop independent flow dependence exists.

(i) In a process of loop next-iteration-carried
analysis, if there is a 1-time possible coincidence be-
tween d and u, a loop next-iteration-carried flow
dependence exists.

(iii) In a process of loop multiple-iteration-carried
analysis, if there is a 2-or-more-times possible coin-
cidence between d and u, a loop multiple-iteration-car-
ried flow dependence exists.

We explain steps (3) and (4) in detail.

Step (3), that is, L2-loop independent analysis scans
all statements in loop L2. Three array element defini-
tions d1, d2 and d3 appear in the loop and the subscript
comparisons for pairs (d1, d2) and (d1, d3) are made.
As there are no 0-time complete coincidences between
them and 42 does not reach d3 and vice versa,
RKILL(s)=@ for all s. RIN; and ROUT; are then
calculated as shown in Fig. 6(3).

Next, data dependences are calculated as follows. As
far as flow dependences are concerned, for each of two
uses u1 and 42, subscript comparisons are made be-
tween every pair of three definitions d1, d2 or d3 in
RIN;(s) and u1l or u2. As a result of the subscript com-
parison, it is proved that no L2-loop 0-time possible
coincidence exists for any pair. So, no loop-indepen-
dent flow dependences are detected. Other kinds of
loop independent data dependences are examined
similarly. As a result, neither output nor anti-
dependences are detected.

Step (4), that is, L2-loop next-iteration-carried
analysis scans the same range of step (3). When scann-
ing statement s2, RIN,(s2) is initialized to be equal to
ROUT;(s5) and the subscript comparisons of definition
d1 with definitions d1, d2 and d3 in RIN,(s2) are made.
As a result, the comparisons show that no L2-loop 1-
time complete coincidence exists. Thus RKILL(s2)=9.
Similarly, statements s3, s4 and s5 are scanned and
analyzed. The analysis proves that there are two L2-
loop 1-time complete coincidences: one between d1 and
d2 and the other between dl1 and d3, and hence
RKILL(s3)=RKILL(s4)={d1}, RKILL(s5)=¢. Next,
RIN, and ROUT, are calculated as shown in Fig. 6(4).

Detection of data dependences is performed as
follows. For statement s3, subscript comparisons are

S. Gotou, Y. TANAKA, K. IwasawA, Y. KANADA and A. AoyaMa

so t —p L2-loop next-
iteration-carried
output dependence

~~p L2-loop next- :
iteration-carried
flow dependence

<+ ¥ LI-loop multiple-
iteration-carried
s4 flow dependence

Fig. 7 Flowgraph and the data dependence graph of the program
in Fig. 5.

performed between definition d3 and definitions d1, d2
and d3 in RIN,(s3); it is proved that there is an L2-loop
1-time possible coincidence between dl and d3 and
hence there exists an L2-loop next-iteration-carried out-
put dependence from d1 to d2. Analysis on statement s4
proves that there exists another L2-loop next-iteration-
carried output dependence. Similarly, analysis on state-
ment s5 proves the existence of two L2-loop next-itera-
tion-carried flow dependences: from d2 to #1 and from
d3 to ul.

Fig. 7 shows the data dependence graph constructed
by the analysis on the program in Fig. 5. The following
results are obtained.

(1) L2 loop next-iteration-carried
dependences (—) from d1 to d2 and d3 exist.

(2) L2 loop next-iteration-carried flow dependences
(——) from @2 and d3 to ul exist.

(3) L1 loop multiple-iteration-carried flow
dependencies (---—) from d2 and d3 to u2 exist.

(4) No other data dependence exists.

output

2.2.4 Significant features of the data flow analysis
method

The significant features of our global data flow
analysis method are summarized as follows.

(a) Multiply nested loops can be uniformly ana-
lyzed by travelling from outer loops to inner loops. The
subscript comparison method we have developed ab-
sorbs the differences by loop nest level by taking the
ranges of the loop index variables into consideration.

(b) Data dependences can be classified such as loop
independent, loop next-iteration-carried and loop multi-
ple-iteration-carried owing to the subscript comparison
facility that determines the n-time complete or possible
coincidences. As a result, advanced vectorization using
the macro vector instructions was realized as will be ex-
plained in section 3.3.

Advanced Vectorization Techniques for Supercomputers

(c) Loops with complicated control structures can
be analyzed by taking control structures into considera-
tion in formulating data flow equations for RIN,
ROUT, etc.

3. Vectorization Techniques

The old version of the FORTRAN 77/HAP compiler
can vectorize only the innermost loops. The new one
can vectorize multiply nested loops with more com-
plicated structures by using the results of the global
data flow analysis presented in chapter 2; thus more por-
tions of programs can be processed effectively in vector
processing mode. The vectorization techniques newly
developed are presented in this chapter.

3.1 Multiply nested loop vectorization techniques

Four kinds of techniques have been developed. They
are outer loop splitting, loop interchange, loop collapse
and outer loop unrolling. Their applicabilities are
checked uniformly by using the results of the global
data flow analysis.

3.1.1 Outer loop splitting

Vector processing can be basically applied only to the
innermost loops. In an example of Fig. 8(a), only part
(A) can be vectorized. But if the original loop in Fig.
8(a) can be transformed to the form in (b), both of parts
(A) and (B) can be vectorized. This transformation is
called outer loop splitting. The condition for data flow
relations to permit this transformation is that there are
no cycles of data dependence relations related to this
outer loop. The noticeable features of our outer loop
splitting method are as follows.

(a) Even when part (A) in Fig. 8(a) is not vec-
torizable because of the existence of some data
dependence, outer loop splitting can be made and part
(B) in Fig. 8(b) is checked if it can be vectorized.

(b) The applicabilities of all other vectorizing techni-
ques (such as statement reordering, inner loop splitting,
loop interchange, loop collapse, outer loop unrolling
and so on) are examined for the new loops which are
transformed to the innermost loops or tightly nested
loops by outer loop splitting. Examples will be shown
later.

3.1.2 Loop interchange

For tightly nested loops, an outer loop may be ex-
changed with the innermost loop if permitted. This is
called loop interchange, and the new innermost loop
may be vectorized. Fig. 9 shows an example of loop in-
terchange.

Loop interchange is applied in either of the following
cases.

(a) The innermost loop has a data dependence
which prevents vectorization and one of the outer loops
has no such data dependence. The sufficient applicabil-
ity condition of data flow relations is that some outer

27

DO 10 J=K+1,N

AKK,N)=W splitting line

i DO 20 I=K+1,N ;
I ALD=ALD+ALK) -AK,J) (A
20{ CONTINUE i

10 CONTINUE

(a) an original loop

iDO 10 J=K+IL N '
i AR D=W ‘@)
CONTINUE !

'
'
[=g et S 2

10

DO 20 I=K+1,N '
ALD=ALD+ALK) »AK, J)}
CONTINUE '

(A)

e

20

1

Q
o
Z
<
Z
c
o

Fig. 8 An example of outer loop splitting.

DO 10 J=K+1,N
DO 20 I=K+1,N
AL N=A(I-1,H+A0-2,J)
20 CONTINUE
10 CONTINUE

(a) an original loop

DO 20 I=K+1,N

10 {_CONTINUE ____________.______ y

20 CONTINUE
(b) result of loop interchange

Fig. 9 An example of loop interchange.

loop (L) has no L-loop carried data dependences.

(b) The loop length of the vectorizable innermost
loop is too short to be efficiently vectorized and one of
the outer loops which is also vectorizable when ex-
changed has a longer loop length.

Vectorization ratio is increased in the former case,
and the vector acceleration ratio is increased in the lat-
ter case.

3.1.3 Loop collapse

Tightly nested loops may be transformed to the form
of a collapsed loop if permitted in order to increase the
effect of vectorization. There are the following two
cases.

(a) Continuous array reference case

This case has been well-known. If all of the arrays in
a tightly nested loop are continuously referred to, the
loop can be collapsed to one loop by use of alias arrays.
Fig. 10 shows an example of this case.

28

REAL A(10,10)
DO 10 J=1,5
DO 20 K=1,10
A(K,J)=1.0
20 CONTINUE
10 CONTINUE

(a) an original loop

REAL A(10,10), ¥ A(50)
EQUIVALENCE (A(1,1), ¥ A1)
DO 10 JK=1,50
¥ AJK)=1.0
10 CONTINUE

(b) result of loop collapse

Fig. 10 An example of loop collapse (continuous reference case).

REAL A(10,10)
DO 10 J=1,3
DO 20 K=1,J
A(K,J)=K
20 CONTINUE
10 CONTINUE

(a) an original loop

REAL A(10,10)
INTEGER ¥K(6)/1,1,2,1,2,3/
INTEGER ¥J(6)/1,2,2,3,3,3/
DO 15 L=1,6
A(¥ K(L), ¥J(L)= ¥ K(L)
15 CONTINUE

(b) result of loop collapse

Fig. 11 Another example of loop collapse by using indirect vector
addressing (non-continuous reference case).

(b) Non-continuous array reference case

Even when some arrays in a tightly nested loop are
not continuously referred to, the loop can be collapsed
to one loop if the array references can be changed to in-
direct addressing references, such that references can be
determined by a loop index variable newly introduced
by the compiler (Tsuda {12]). Fig. 11 shows an example
of this case. We enhanced this technique to be ap-
plicable even when conditional statements exist.

3.1.4 Outer loop unrolling

The Hitachi’s supercomputers have multiple load-
pipelines, adder-pipelines and multiplier-pipelines. To
use these pipelines effectively, an innermost vectorizable
loop which uses only a small amount of these pipelines
may be unrolled (if permitted) such that the body of the
innermost loop is expanded twice, 4 times or 8 times
and the loop index variable of the outer loop is in-
cremented by 2, 4 or 8 times of the initial incremental
value respectively (most suitable number of times is
automatically determined by the compiler).

The condition of data flow relations to apply outer
loop unrolling is the same as loop interchange. This

S. GoTtou, Y. TANAKA, K. IwAsAwA, Y. KANADA and A. AOYAMA

DO 10 K=1,N
B(K-\-1)=E(K)+A(LL,K+1) sl

S=B(X)+C(K) . ' .
splitting line

DO 20 J=%
DO 30 I=1,M
A(lI+J,K)=A(lI+J-2,K)+8S s3
30 CONTINUE

{10 CONTINUE

(a) an original program
¥S(1:N)=B(1:N)+ C(1:N) $2
B(0:N-1)=E(1:N) +A(LL,2:N+1) sl
DO 11 K=1,N

DO 20 J=1,L
30 I=1,M
AI+J,K)=A(I+J-2,K)+ ¥S(K) s3
—

—» DO 30 loop
120 CONTINUE ~ DO 20 loop

{11 CONTINUE

¥S(1:N)=B(1:N)+ C(1:N)
B(0:N-1)=E(1:N)+ A(LL,2:N+1)
DO 20 J=1,L
DO 30 I=1,M
: A{I+J,1:N)=A(I+J—-2,1:N) + ¥S(1:N)
130 CONTINUE
i20 CONTINUE

(c) result of loop splitting and loop interchange

Fig. 12 An example of multiply nested loop vectorization.

technique is also applicable to a non-tightly nested
loop. We have already shown an example and effec-
tiveness of this technique in Fig. 2.

3.2 Examples of multiply nested loop vectorization

Two examples of multiply nested loop vectorization
processes which succesively use the techniques
presented above are described. Fig. 12 shows an exam-
ple where two techniques for multiply nested loop vec-
torization, outer loop splitting and loop interchange,
are applied. The old version could not vectorize this pro-
gram.

In Fig. 12(a), there are two data dependences related
to the DO 10 loop for array A and variable $ across the
splitting line. But they do not form a cycle of data
dependences and thus satisfy the applicable condition.
Therefore outer loop splitting can be done. The data
dependence for array B is next-iteration-carried anti-
dependence of the DO 10 loop but it is not cyclic; thus
statements s1 and s2 can be vectorized by interchanging
them. This is a well-known technique called statement
reordering[9]. In addition variable S is changed to an ar-
ray ¥S. This is the so-called scalar expansion techni-
que[13].

The result of outer loop splitting is shown in Fig.
12(b), where there are four data dependences, one for
DO 30 and three for DO 20. The DO 30 loop cannot be
vectorized because statement s3 has a recurrence which

Advanced Vectorization Techniques for Supercomputers

IPK =IP(K)
DO 10 J=K+1,N
IF (IPK.NE.K) THEN sl
W=A(PK, J) 52
: AIPK J)=AK,J) s3
K H=W s4
I splitting line
B0 20, I=K3%
;20 AL N=ALIN+ALK)+AK,J) s5

IPK =IP(K)

IF (IPK.NE.K) THEN
W=A(IPK, K+ 1:N)
A(IPK,K+1:N)=A(K,K+1:N)
A(K,K+1:N)=W

ENDIF

DO 11 J=K+1,N,2
DO 20 I=K+1,N

; AL NH=AT NH+A(IK)«AK,J)

20 ALJ+1)=A1J+1D+A1K) «AK,J+1) |
{11 CONTINUE :
(b) t

'm of outer loop unrollin

IF (IPK.NE.K) THEN
W=A(IPK, K+ 1:N)
A(IPK,K+1:N}=A(K, K +1:N)
A(K,K+1:N)=W

ENDIF

DO 11 J=K+1,N,2
A(K+1:N,J)=A(K+1:N,J)

+A(K+1:N, K} A(K,J)
A(K+1:N,J+1)=A(K+1:N,J+1)
+A(K+1:NK)-A(K,J+1)
{11 CONTINUE
(c) resultant vectorized form

Fig. 13 Another example of multiply nested loop vectorization.

is not applicable to the macro vector instruction.

Loop interchange between DO 20 and DO 30 is not
applicable because DO 20 has unsuitable data
dependences, that is, the three data dependences for
DO 20 are loop carried data dependences. The DO 11
loop has no carried data dependences; therefore loop in-
terchange between DO 11 and DO 30 can be applied.
The resultant vectorized form is shown in (c).

Fig. 13 shows another example. The program in Fig.
13(a) is a part of an LU decomposition program of a
dense matrix. All pairs of array references are analyzed
and no unsuitable data dependences are found in the
program. The analysis answers that there are some data
dependences across the splitting line. These data
dependences appear because the value of IPK is not
known at compile time. Between A(/PK, J) and A{,
K) or A(K, J), there are no dependences because the
value range of the loop index variable J is from K+1 to
N and the relation IPK not equal to K exists. Also there
are no dependences between A(K,J) and A, J) or
A(, K) because K is less than 1.

As a result of these analyses, loop splitting can be
made applicable. In the new tightly nested loops (DO 11
and DO 20), there are no carried data dependences for

N
X(J)=X(J -1)+B(J)
(b) Partial summation
DO 40, J=LN
S=S+X(J)+Y(J)
(d) Inner product
DO 60 J=1,N :
IF (Y(D. GT. Y(J)) THEN

DO 50 J=1,N
IF (XJ). GT. P) THEN

I=J P=Y(J)
P=X(J) I=J
ENDIF ENDIF

i 160 CONTINUE

(f) Minimum value search
(a sample pattern)

{50 CONTINUE

(e) Maximum value search
(a sample pattern)

Fig. 14 Functions of macro vector instructions.

DO 5 1=2,998,3

X(L) =Z(I)0(Y(I)—X(I-—1}) sl

XT+=Z20+D+ YA+ -X(IT) s2

X(I+2)=ZI+2)« (Y(I+2)-X(I+1)) s3
5 CONTINUE

(a) a source program (Livermore Loop No. 5)

DO 5 I=2,998,3
X(I+2)=Z(I+2)« (YT+2)—(Zq+1) »

\ (YA+1D)—(Z(D) « (Y()=X{T-1)))) 83’
—
X(I) =ZM«(Y(I)-XI-1 sl

X(I+1)=Z(I+1):(Y(I+1)-—m)) s2
5 CONTINUE

(b) result of substitution of X(I), X(I+1) and reordering
Fig. 15 Inter-statement recurrence vectorization.

the DO 11 loop and the condition for outer loop unroll-
ing is satisfied. Fig. 13(c) shows the vectorized form of
this program.

3.3 Vectorization
instructions

technique using macro vector

3.3.1 Macro vector instructions

There are some programs which have so-called
strongly connected parts where data dependence rela-
tions constitute a cycle. These parts are not usually vec-
torized, but some of them can be vectorized by using
macro vector instructions which some supercomputers
including Hitachi’s are equipped with. For example,
reduction operation, first order linear iteration and max-
imum or minimum value searching are very important
because they often appear in numerical calculation pro-
grams. Hitachi’s supercomputers S-810 and S-820 have
the following six kinds of macro vector instructions.

(1) First order iteration

(2) Partial summation

(3) Summation

(4) Inner product

(5) Maximum value searching

(6) Minimum value searching

Fig. 14(a) ~ (f) show the functions of these six instruc-
tions in FORTRAN form.

30

DO 5 1=2,998,3

TEMP1=2(I+2) » Z(I+1) « Z(D)

TEMP2=Z(1+2)+Y(1+2)
—Z(I+2)+Z(I+1)« YT +1)
+ZI+2)»Z(A+1) o Z(D) » YO

IR 2 TEMPL+ K1)+ TEVPE 1(iteration)
XM =20 « (YO - XA 1)
5 X(A+1)=Z(I+1) » (YI+1)—X(D)

(c) resultant vectorizable loop form

TEMP1=2(4:1000:3) »Z(3:999:3) « 2(2:998:3)
TEMP2 =2Z(4:1000:3) « Y(4:1000:3)
-2Z(4:1000:3) « 2(3:999:3) » ¥(3:999:3)
+2(4:1000:3) » 2(3:999:3)
+2(2:998:3) - ¥(2:998:3)
X(4:1000:3) = TEMP1 » X(1:997:3) + TEMP2
X(2:998:3) =2(2:998:3) + (¥(2:998:3) - X(1:997:3))
X(3:999:3) = Z(3:999:3) = (Y¥(3:999:3) ~ X(2:998:3))

(d) resultant vector instruction form

Fig. 16 Result of inter-statement reccurrence vectorization.

Table 1 Performance Comparison of the Livermore Loops.

S810-20

Hardware S810-20
Compiler V02-30(old) V20-1A(new)
Year/month 1986/3 1987/6
No. 1 156.3 304.8
No. 2 259.1 276.7
No. 3 216.9 341.6
No. 4 66.7 66.8
No. § 2.4 23.6
No. 6 3.2 26.2
No. 7 290.9 288.9
No. 8 8.8 116.8
No. 9 263.2 271.1
No. 10 67.1 65.6
No. 11 9.9 16.8
No. 12 110.8 113.2
No. 13 5.0 6.1
No. 14 8.5 12.5
Average 104.9 137.9
Harm. mean 10.6 31.2
(in MFLOPS)

3.3.2 Vectorization technique of inter-statement recur-
rence

We have developed a new method to apply the first
order iteration instruction to program parts which have
an inter-statement recurrence, that is, a recurrence be-
tween multiple statements. Fig. 15 shows an example.
This is the No. 5 loop of the Livermore benchmark.
Two loop independent flow dependences exist from sl
to s2 and from s2 to s3, and a loop next-iteration-car-
ried flow dependence exists from s3 to s1. These three
data dependences constitute an inter-statement recur-
rence.

Vectorization is processed as follows. First, the right
part of s1 is substituted into statement s2 which includes
the destination of flow dependence relation from sl,
and the right part of s2 is succesively substituted into
statement s3. Next, s1, s2 and s3 are reordered so that

S. Gotou, Y. TANAKA, K. Iwasawa, Y. KANADA and A. AoYaMa

except for the data dependence in statement s3 there are
no data dependences which prevent vectorization. This
transformation dose not affect the result of the pro-
gram. Statement s3 now satisfies the condition of
applicability of a first order iteration vector instruction.
Fig. 16 shows the resultant vectorized form.

The effectiveness of this inter-statement recurrence
vectorization will be shown in the next chapter. Liver-
more Loop No. 6 is also vectorized in a similar way.

4. Performance for the Livermore Loops

The Livermore Loops have been widely used for a
benchmark job to measure the performance of many
supercomputers. It has been noticed that for this type
of measurement the vectorization and optimization
capability of the FORTRAN compiler are important as
well as the hardware speed[10].

Table 1 gives the speed in MFLOPS (million floating
operations per second) for the Livermore Loops. The
performance data for the old version compiler on
Hitachi S-810 model 20 are taken from reference[10].
The speed of the new version compiler on the same hard-
ware model was measured by the authors.

Comparison of the data for the old version and the
new one reveals the following points.

(1) Average performance was increased by 1.31
times from 104.9 to 137.9 MFLOPS. This increase was
obtained mainly by the speed up of loops No. 1 and No.
3. In these loops, inner loop unrolling technique was
effective.

(2) The harmonic mean was greatly improved from
10.6 to 31.2 MFLOPS. This improvement was obtained
by the vectorization of loops No. 5, No. 6 and No. 8.
Loops No. 5 and No. 6 became vectorized by using the
inter-statement recurrence vectorization technique
shown in chapter 3. Loop No. 8 was vectorized by the
advanced global data flow analysis shown in chapter 2.

5. Conclusions

We have described the global data flow analysis
method and the vectorization techniques based upon it
which are implemented in the new version of the FOR-
TRAN 77/HAP compiler for Hitachi’s supercomputers
S-810 and S-820. Many of these method and techniques
are also applicable to other supercomputers.

The effectiveness of the method and techniques has
also been evaluated. A performance comparison of the
old and new compilers using the Livermore Loops ben-
chmark job on S-810 model 20 has shown a 1.31 in-
creased performance on the same hardware. This result
shows that the vectorizing and optimizing ability of the
compiler is important as well as the hardware speed.

Supercomputers with a large amount of processors
have recently been appearing. It is also necessary to pro-
vide users with an easy-to-use programming environ-
ment for these new types. Compilers for these multiple

Advanced Vectorization Techniques for Supercomputers

processor systems will be required to have the ability to
transform programs automatically to forms that multi-
ple processor systems can execute efficiently. In par-
ticular, parallelism detection in the program, detection
of obstructions which prevents parallel processing,
debugging and tuning facilities will be needed by these
compilers.

We believe that the global data flow analysis method
and some of the vectorization techniques presented here
will become the basis for the future software systems uti-
lized by these types of supercomputers.

References

1. AHo, A. V., SETHI, R. and ULLMAN, J. D. Compilers—Prin-
ciples, Techniques, and Tools, Addison Wesley, Massachusetts (1986).
2. ALLEN, J. R., KENNEDY, K., PORTERFIELD, C. and WARREN, J.
Conversion of Control Dependence to Data Dependence, /0-th An-
nual ACM symposium on Principles of Prog. Lang. (Jan. 1983), 177-
189.

3. ALLEN, J. R. and KENNEDY, K. Automatic Loop Interchange,
ACM SIGPLAN ’84 Symp on Compiler Constructions,
SIGPLAN Notices, 19, 6 (1984).

4. BANERJEE, U. Speed up of Ordinary Programs, Ph. D. Thesis,
Univ. of Hlinois at Urbana Champaign, Dept. of Comput. Sci. (1979).
§. KANADA, Y., ISHIDA, K. and NUNOHIRO, E. A Method of Global
Dataflow Analysis for Arrays, Trans. of IPS Japan, 28, 6 (Jun. 1987),

31

567-576 (in Japanese).

6. Kuck, D. J., Kunn, R. H., Pabua, D. H., LEASURE, B. and
WoLFE, M. Dependence Graphs and Compiler Optimizations, 8th An-
nual ACM Symposium on Principles of Prog. Lang. (Jan. 1981),
207-218.

7. Loveman, D. B. Program Improvement by Source-to-Source
Transformation, J. ACM, 24, 1 (Jan. 1977), 121-145.

8. NAGASHIMA, S., INAGAML, Y., ODAKA, T. and KAWABE, S. Design
Consideration for a High-speed Vector Processor-The Hitachi S-810,
IEEE International Conference on Computer Design; VLSI in com-
puters. ICCD 84, IEEE Press, New York (1983), 238-243.

9. Pabpua, D. A. and WOLFE, M. J. Advanced Computer Optimiza-
tions for Supercomputers, Comm. ACM, 29, 12 (Dec. 1986), 1184-
1201.

10. STEEN, A. VAN DER. Results on the Livermore Loops on some
new supercomputers, SUPERCOMPUTER, 12 (Mar. 1986), 13-14,
11. TAKANUKI, R., UMETANI, Y. and NAKATA, 1. Some Compiling
Algorithms for an Array Processor, 3rd USA-Japan Computer Con-
Sference (1978), 273-279.

12. Tsupa, T. and KUNIEDA Y. Mechanical Vectorization of Multi-
ple Nested DO Loops by Vector Indirect Addressing, IFIP 10th
World Computer Congress (Sep. 1986), 785-790.

13. WoLFg, M. J. Optimizing Supercompilers for Supercomputers,
Ph. D. Thesis, Univ. of lllinois at Urbana Champaign, Dept. of Com-
put. Sci. (1982).

14. YASUMURA, M., TANAKA, Y., KANADA, Y. and AOYAMA, A.
Compiling Algorithms and Techniques for the S-810 Vector Pro-
cessor, the 1984 International Conference on Parallel Processing,
IEEE Press, New York (Aug. 1984), 285-290,

(Received August 12, 1987)

