
A Vec to r i za t ion Technique for Pro log w i t h o u t Exp los ion

Yasus i K a n a d a * and M a s a h i r o Sugaya
Central Research Laboratory, Hitachi L td .

Kokubunj i , Tokyo, Japan 185

A b s t r a c t

This paper describes a technique for execut
ing logic programming languages such as Pro
log for the Cray-type vector processors. This
technique, which we call the parallel backtrack
ing technique, enables a kind of or-parallel ex
ecution wi thout process explosion. The com
piled intermediate language code for the par
allel backtracking execution is the same as the
code presented in our previous paper. The com
pi lat ion is based on a kind of program trans
format ion called or-vectorization. However,
the interpretat ion of the intermediate code is
changed to enable the parallel backtracking ex
ecution. An execution simulator and a com
piler prototype were developed. We have not
yet implemented this technique to our native
code execution system, but we expect a perfor
mance of eight times or more higher than scalar
processing upon implementat ion.

1 I n t r o d u c t i o n
We [Kan 88a] developed vectorization techniques which
enables execution of logic programming languages such
as Prolog on pipelined vector processors such as the H i
tachi S-810 [Nag 84] or the Cray-2. Using these tech
niques, a Prolog program is transformed into vector
ized program in an intermediate logic programming lan
guage; then this program is compiled into procedural
programs. The former is called the vectorization phase,
and the latter the code generation phase. A type of or-
parallel ization, which is done in the vectorization phase,
enables Prolog programmers to use operation pipelines
and storage-access pipelines of vector processors, which
leads to the expectation of high performance. We com
piled a program of the eight-queens problem by hand
using these techniques, and achived a high performance
of 4.5 ML IPS on the S-810.

The major drawback of the method described above
is that it does not avoid process explosion. In a paral
lel processing of highly or-parallel program by a naive

*The author's current address is Center for Machine
Translation, Carnegie-Mellon University, 5000 Forbes Av
enue, Pittsburgh, PA 15213, USA. The e-mail address is
yk@a. nl.cs.cmu.edu.

method, the number of processes may be increased ex
plosively and the computat ion may become unable to
continue due to resource exhaustion. This situation is
called process explosion. Though the eight -queens prob
lem can be solved using the above method because the
number of processes remains w i th in range of computa
t ional powers, the twelve-queens problem might fai l to
solve.

This paper describes an execution technique for
the vectorized program wi thout explosion. Section 2
overviews the compilat ion and execution method for vec
tor processors. Section 3 overviews the parallel back
tracking technique [Kan 88b], which is a technique for
avoiding explosion of vector length in combinatorial
search. Section 4 describes the technique for avoiding
process explosion in vector processing of Prolog. This
technique is an extension of the parallel backtracking
technique. Section 5 draws conclusions about out meth
ods.

Other works on vectorizing logic programming lan
guages [Ni l 86] [Ni l 88] [Tat 87] are in the works. There
are two major differences between their approaches and
ours. One is the difference of the source languages. We
use Prolog (in a wide sense), which has and-parallelism
and global or-parallelism. They use G H C [Ued 85],
which has and-parallelism and only local or-parallelism.
The other is the difference in processing structure. Our
method is based on compile-t ime program transforma
t ion. Their method is based mainly on interpreters.

2 An ove rv iew o f P r o l o g vec to r i za t i on

There are two kind of concurrent processings. One is
vector or pipelined processing and the other is parallel
processing. If a computat ion is f i t ted well in vector pro
cessing, the hardware is very efficiently used. However,
vector processing, which is a kind of SIMD-type parallel
processing, is more inflexible than M I M D - t y p e parallel
processing. Only the same kind of operations can be
performed by an instruct ion. So, not all the programs
can be fitted well in vector processing, and a compile-
t ime program transformation is necessary to do so. This
transformation is called vectorization.

To execute a Prolog program on vector processors, a
method of program transformation to f i t i t in vector pro-
cessors must be used. Or-vectorization [Kan 88a], a type
of program transformation, enables a type of or-parallel

Kanada and Sugaya 151

http://nl.cs.cmu.edu

execution. In execution of a program such as the eight-
queens, a lot of or-processes are generated and the each
one's behavior is very similar to others'. So, we can bun
dle the processes to fit in vector processors.

The same goal (in a static sense) for different processes
are bundled in our method. Tha t means that each vari
able of the source program is replaced by a vector of vari
ables by or-vectorization, and each element of the vector
is the value of the original variable in each process.

F i g u r e 1 shows an example of the eight-queens pro-
gram by Nakashima [Nak 83]. However, the four-queens
program is used for the example in this paper because the
execution of the eight-queens program is complicated.
The four-queens program is obtained by replacing the
list [1 ,2 , , ,8] by [1 , 2 , 3 , 4] in the f irst line of the
eight-queens program.

F i g u r e 2 outlines the execution of the vectorized four-
queens program. VB is the vectorized counterpart of vari
able B, which appears in procedure p u t of the source
program. Because only one process is generated by the
question ?- p u t ([1 , 2 , 3 , 4] , [] ,Q), VB has only one el
ement ini t ial ly. This element contains an empty l ist,
which represents an empty chessboard. Four processes
are generated by the vectorized counterpart of procedure
s e l e c t , so VB is reproduced to have four elements, each
of which points a single-element l ist which represents a
chessboard w i th one queen. We omit the explanation of
the succeeding part of the execution.

Usually, two or more vectors are processed in a step of
a program execution. In the above example, a vector of
part ia l solutions, VB, and a vector of unused queen list
which is the vectorized counter part for Qs are processed
in the same steps. A l l the vectors which are processed in
the same step have the same number of elements. If the
number is TV, the value of the t - th element (1 < i < N)
of each vector belongs to the same goal (in a dynamic
sense) of the source program.

For example, Step 1 of Figure 2 results in the same

152 Parallel and Distributed Processing

The details of the transformation techniques and ex
amples are described in the previous paper [Kan 88a].

Dur ing execution of deterministic procedures, proce
dures which have one or no solution, the vector length, or
the number of elements in each vector, is constant. Some
goals may fa i l , and the number of the valid elements de
creases. However, vectors w i t h dead elements can be
processed w i th masked operation faci l i ty or list vector
faci l i ty of vector processors [Kan 88a]. So the number
of the elements can be constant in the or-vectorized pro-
gram.

On the contrary, the vector length varies dur ing the
execution of nondeterministic procedures. More than
one solutions are generated from each vector element,
and the solutions (the values of each variable) should be
accumulated in to a vector to lengthen the vector length.
The reason why they should be done so is as follows.
Vector processors are slower than scalar processors when
they are used w i t h single-element vectors only. High
performance is achieved when using them w i th vectors
of sufficient length, namely one hundred or more ele
ments. In most programs w i th or-parallelism, there is
only one process in i t ia l ly . So, if the solutions are not

[b]

[a]

accumulated, the vector length wi l l be always one, and
the performance cannot be improved.

The solutions are accumulated by the fol lowing mech
anism. Each vectorized program part, which is a coun
terpart of one of the clauses of the nondeterministic pro-
cedure, is executed separately. Unl ike normal or-parallel
execution, these parts are usually executed sequentially.
Each part generates a vector for each variable of the
source program. The control is not transfered to the
outside of the procedure unt i l the execution of al l the
clauses are finished. At the end of the procedure execu
t ion, all the vectors for the same variable of the source
program are merged in to a single vector.

For example, the execution of the fol lowing program,
which is a part of the eight-queens program, is explained:

The intermediate code of s e l e c t is very similar to that of
nondeterministic procedure append, which is described
in the previous paper [Kan 88a]. So only a brief ex
planation about the vectorized code of s e l e c t is pre
sented here. F i g u r e 3 shows the intermediate code of
v j s e l e c t , and F i g u r e 4 outlines the execution of the
fol lowing vectorized goal:

In the source program, s e l e c t inputs a list and selects
one of the elements and returns it and the list of the
rest elements. So, question ?- s e l e c t ([a , b] ,X1 ,R1)
returns the fol lowing two solutions:

Question ?- s e l e c t ([1] ,X2,R2) returns the following
one solution:

Procedure v . s e l e c t is the vectorized counterpart of
procedure s e l e c t . The f i rst argument of v j s e l e c t is the
input. In the above vectorized goal, the first argument

Kanada and Sugaya 153

is a vector of two elements, [a , b] and [1] . So this goal
is the vectorized counterpart of the above two questions.

The body of procedure v_se lec t consists of three
parts. The first par t corresponds to the first clause of
procedure s e l e c t , and the second part corresponds to
the second clause. The th i rd part has no counterpart in
the source program.

The f irst part computes the two solutions, and returns
the vectors w i th these solutions. The second part com
putes the rest solut ion, call ing v . s e l e c t recursively, and
returns the vectors of the solutions. The live-ness of
the vectors is displayed by a mask vector [Kan 88a], Ml.
Both elements of Ml are t r u e , that means all the ele
ments of the vectors are live, solutions. The second part
returns vectors of two elements, but the second elements
are kil led or inval idated. The live-ness of the vectors is
displayed by mask vector M2.

The th i rd part , procedure v jnerge , inputs the outputs
of the previous parts, merges them, and outputs two
vectors which contain al l of the solutions. The result of
the whole computat ion is as follows:

The length of all the vectors before v jnerge are the same,
two. The vector length is changed only by v jnerge and
the lengths of al l the vectors output ted by v_merge are
the same, three.

Figure 5: Vector length explosion in a combinatorial
search by vector processors

3 The parallel backtracking technique

The parallel backtracking technique avoids explosion
of vector length in parallel processing of combinator ial
search programs [Kan 88b]. It was a technique for vector
izing procedural backtracking programs, though it was
expected to be applied for vectorizing Prolog programs
[Kan 85].

F i g u r e 5 explains a problem of simple vector process
ing of search problems. In a vector processing of search
problems such as the eight-queens by vector processors,
the vector length increases because the number of possi
ble solutions, each of which is an element of the vector,
explosively increases dur ing processing. The vector ele
ments may overflow f rom the main storage or the disks,
then the computat ion fails to continue.

F i g u r e 6 explains the solution for the problem given
in Kanada [Kan 88b]. The vector is split in to two or more
small vectors when the vector length becomes too large
(step 2 and 2'). Then the computat ion is continued only
for one of the vectors (V1) and the others are saved as
choice points. When the computat ion for the first vector
finishes (step k) , the control returns to one of the choice
points and the same computat ion as for the first vector
(V1) is performed for the second vector (V2). A l l the
split vectors are processed in the same way. In the case
of Figure 6, V2 is the final vector. The vector spl i t t ing
may be done more than once, as shown in Figure 6 (step
k+2 and k+2').

Whole computat ion is done in or-parallel in the pro-
cess shown in Figure 5. On the other hand, some "back
trackings" occur in the process shown in Figure 6, which

Figure 6: A combinatorial search using parallel back
tracking technique

154 Parallel and Distributed Processing

is the reason why this technique is called the "parallel
backtracking technique."

4 Exp los ion - f ree execu t i on of P r o l o g

The explosive increase of vector elements is very close to
the process explosion in or-parallel processing of Prolog.
If the parallel backtracking technique described in the
last section is sl ight ly modif ied, it is applicable to the
vectorized execution of Prolog, thereby avoiding a pro-
cess explosion wi thout the expense of efficiency. This sec
t ion explains the method of applying the parallel back
tracking technique to Prolog.

First , the program points, where the vectors should
be split and choice points are made, must be decided to
apply this technique. Vectors are spli t only in v jnerge,
and choice points are made only in v jnerge in our par
allel backtracking execution. Because the vector length
is increased in the execution of procedure v jnerge of the
intermediate language, and it is kept constant in other
execution steps in the execution method shown in our
previous paper [Kan 88a]. Procedure v_merge outputs
the input vectors as they stand if the vector lengths are
sufficient, or merges them if not sufficient. This merge
may be a part ia l merge, i.e. merging some of the vectors
but not al l .

F i g u r e 7 shows an execution example of v jnerge un
der its parallel backtracking interpretat ion. Procedure
v jnerge inputs three vectors to merge, A1 A2 and A,
outputs two vectors, A1 and A'2, and an input mask vec
tor which is not shown in Figure 7. The input vectors
of v jnerge are formed into list of vectors, so v jnerge
actual ly inputs one list of vectors and outputs one vec
tor. The first and the second input vectors are merged
and the result ing vector is output ted, and the th i rd one
is output ted as it stands. This means v jnerge does a
par t ia l merge here. A dead element in A2, which is dis
played by the input vector, is not included in A1.

When v jnerge is called, it succeeds and outputs the

first result, A1, and it makes a choice point for A'2. When
a backtracking to the choice point in v jnerge occurs,
v jnerge outputs the second result, Af

2. Since the inter
mediate language is Prolog-l ike, backtrackings are han
dled appropreately. A more backtracking to v_merge just
causes a failure because there is no more choice point,
and it causes a further backtracking.

This functional change of v_merge can be done w i th
out syntactic changes of the intermediate code. Only
the interpretat ion of the intermediate code is changed.
No global choice points are created in the interpretat ion
given in our previous paper, but choice points are created
and global backtrackings to them are occurred in the new
interpretat ion. So the intermediate language may have
been a procedural one in the previous paper, but it must
be a Prolog-like language w i th automatic backtracking
for applying the parallel backtracking technique.

There are two methods for merging and spl i t t ing vec
tors. One is to merge first then to split, and the other is
to merge only when vector length is short. The former
method merges all the input vectors first and then splits
them appropriately. The good point of this method is
that vector length can be chosen arbi t rary. However, this
method is inefficient because both merging and spl i t t ing
require the copying of vectors. The latter method merges
vectors only when they are too short and it does not ac
tual ly split vectors. The latter method is probably better
because it require less copying of vectors. In the latter
method, it is probably good to merge the input vectors
one by one unt i l the vector length becomes sufficient for
achieving high performance by vector processors.

We have developed a simulator for vectorized execu
t ion, and a compiler which inputs a Prolog program wi th
mode declarations and generates vectorized intermedi
ate language program. Bo th programs are wr i t ten in
Prolog. The structure of this system is outl ined in F i g
u r e 8. This intermediate language (IL) is a Prolog-like
language w i th vectors. I ts syntax is the same as the IL
in our previous paper. The simulator inputs the IL , and
computes the solutions using vectors, which are simu-

Kanada and Sugaya 155

lated by functor # (• • •) , a functor whose name is " # " , in
Prolog. A functor is good for s imulat ing vectors because
elements of a functor can be accessed by indices using
bu i l t - in predicate a r g in Prolog, and vector elements are
immutable (unassignable) in our model. Each bui ld- in
procedure in the intemediate language, such as v_merge,
is simulated by a Prolog procedure. So the intermediate
code is executed direct ly by the simulator.

Though the computat ion is performed in pseudo-
parallel, the simulator decomposes result ing vectors and
returns the solutions one by one to the user. So, the user
interface is very similar to Prolog's, though the order of
solutions may be different f rom sequential Prolog's. For
example, we assume that the user types a question and
the first vector of solusions of the program, S1, contains
two solutions, s11 and S12 . I t w i l l take a l i t t le t ime unt i l
S11 is pr inted, because it requires to compute the value
of S1 and to extract s11 f rom S1. However, if the user
types ",'' or requires a backtracking, S12 w i l l be pr inted
immediately because it only requires to extract i t f rom
S1. If the user requires a more solut ion, the user may
have to wait a l i t t le because it requires to compute the
second vector of solutions, S2 .

Though Prolog is used, most part of the simulator
program is determinist ic; no choice points are made in
most part . However, there are two procedures where
global backtracking is used. One is procedure v_merge,
and the other is the procedure which decomposes vectors
for the user.

5 Conc lus ion

This paper has shown a technique for executing Prolog
programs on vector processors wi thout process explo
sion. This technique is called the parallel backtracking
technique. We developed a execution simulator using
this technique, which inputs intermediate code gener
ated by a vectorizing compiler described in our previous
paper [Kan 88a].

We have not yet developed a real execution system.
However, using this technique, we can certainly make a
Prolog system whose performance ranks more than eight
times higher than the mainframe machine in solving the
eight-queens program. Because the non-backtracking ex
ecution of this program achieves a high performance of
nine times higher than scalar processing, and backtrack
ings does not take much t ime in the parallel backtracking
execution.

A c k n o w l e d g e m e n t

The authors wish to thank Dr. Sakae Takahashi and Sei-
ichi Yoshizumi of Hi tachi L t d . for their cont inuing sup
port of our research.

References

[Kan 85] Kanada, Y. : Improv ing Prolog Performance
using Supercomputer, Proceeding of 26th Program
ming Symposium, pp. 47-56, 1985 (in Japanese).

[Kan 88a] Kanada, Y . , Ko j ima , K., and Sugaya, M.:
Vectorization Techniques for Prolog, A C M Interna-

t ional Conference on Supercomputing, 1988.

[Kan 88b] Kanada, Y . , and Sugaya, M. : A Schema of
Solving Search Problems on Vector Processors: Par
allel Backtracking Schema, Transaction of Informa
t ion Processing, Vol . 29, No. 10, 1988 (in Japanese).

[Nag 84] Nagashima, S., et al . : Design Consideration for
High-Speed Vector Processor: S-810, Proceedings of
I E E E In ternat ional Conference on Computer De
sign, pp. 238-242, 1984.

[Nak 83] Nakashima, H.: In t roduct ion to Prolog, San-
poh-Shuppan, 1983 (in Japanese).

[N i l 86] Nilsson, ML: — F L E N G Prolog — The Lan
guage which turns Supercomputers into Paral
lel Prolog Machines, Logic Programming '86 (in
Japan), pp. 209-216, 1986.

[Ni l 88] Nilsson, M. , and Tanaka, H.: A Flat GHC
Implementat ion for Supercomputers, F i f th Interna
t ional Symposium on Logic Programming, 1988.

[Tat 87] Tatsuguchi, Y. , and Muraoka, Y. : An Imple
mentat ion of a Parallel Logic Programming Lan
guage on a Vector Processor, 35th Nat ional Con
ference of Japan Society of In format ion Processing,
5Q-1 , pp. 753-754, 1987 (in Japanese).

[Ued 85] Ueda, K.: Guarded Horn Clauses, I C O T Tech
nical Report, TR-103, Inst i tute for New Generation
Computer Technology, 1985.

156 Parallel and Distributed Processing

