
1J(AI 'l?7

A Vectorization Technique for Prolog without Explosion

Yasu田Kanada'" and Masahiro Sugaya
Central R田earch Laboratory， Hitachi Ltd

Kokubunji， Tokyo， Japan 185

Abstract

Tbis paper describ四 a t�chnique for execut-
ing logic prog日mming languages such 回目。
log for the Cray-type vector proce騎O悶 Th国
民chnique， which we call the parnflel backtrack
ing tuhnique， enables a kind of or-parallel ex
ecution witho叫proc国s expl個ωn. The com
piled intermediate language code for the par
allel backtracking execution出the same 回tbe
code presented in our previous paper. The corrト
pilation is based on a kind of program trans
f。町nation called or-vedorization. However，
the interpretation of tbe intermediate code Îs
ch&Ilged to enable the paraHel back色racking ex
ec:ution. An execution simulator and a com
piler pro凶ype were develope<l. We bave no色
yet imple官官nted出師同chnÎque to our n剖...
code execution system， but we exp田t a. perfor.
mance of創gbt tim四or more high町出a.n Sl:alar
proc邑sing upon implementa.tion

1 Introduction

We [Ka.n 88a.] developed vectoriz山町、旬chni
enables exe<:ution of logiに.c pr悶。g日mm団g languはage田包such
副p，悶。01。唱g。叩n p戸'pe凶lir問、led v凹t旬。町， p戸r。拭c白<s鎚s曲。町r目s such as the Hi
t同a副chi 5.81凹o [Nag 841 or the Cray-2. Usi晴山田e tech
ß1qu国， a Prolog program Î s transformed into vector.
ize<l program in回interrr時<liate logic prograrruning Ia.n
guage;色h.n 出IS program凶compiled into procedural
programs. The former is called the vedorization ph白色
and the latter tbe code generation phase. A type of or
paralleliza.tion， which is done in もhe vectorization phase，
enables Prolog programmers to use operation pipel回目
and storageトa.ccess pipelines of vector proc凹四国， which
leads to the expectation of high performance. We co肝
piled a program of the eight-queens problem by hand
usmg山田e techniqu田， and achived a high performance
。f 4.5 MLIPS on the 5.810

The major drawback of the method d団cribed above
is thatはdoes not a void pr目ess explosion. In a paral
lel pr町田sing of highly or-pa.rallel program by a naïve

・The a.uth町、current ・dd，切s is Center for Machine

Transla.tio民 Ca.rnegicトMellon Uni versity， 5000 Forbes Av.
cnue， Pittsburgh， PA 15213， USA. T he e.mail address is
ykOa.. nl.cs.cmu.edu

method， the number of proc国ses rru丞y be increased ex
plosively and the computation may become unable to
continue due to resource exhaustion. This situation 凶
called proce.s.s explo$Îon. Though 出e eight-queens prob
lem caD be solved u別ng the above method beca.use the
oumber of process回目ma.ins withio range of computa.
tional powers， the hvelve-queens problem might fa.il 10
solve

This paper describ国 an execution tecbnique fot
the vectorized progra.m withouも explosion. Section 2
overviews the compila.tion and executìon me出od for vec
tor proc園田rs. Section 3 overviews the parallel ba.ck
tra.ckì可technique [Ka.n 88b]， which is a. technique for
avαding expl，田ion of vector leng出 in combinatorial
sea.rcb. Section 4 deSl:rib相the technique for avoiding
proc開S回p1岨ωn m v田tor proce鋪ing of Prolog. Th悶
tecbnique is an extensÎon of tbe parallel baεkもracking
technique. Section 5 dra.ws condusions about out metb
od，

Other works 。唱 vectorizing logic progra.mming lan
guag目[N日861 [Ni1881 [T.叫87] are in the works. There
a.re two major differenc四between山eir a.pproach回and
ours. One関山e diπ�erence of山e source langua.ges. We
use Prolog (in a wide sense)， which has and-pólrallel四m
and globa.l

、
or-parallelism. They use GHC [Ued 85]，

which h回and-paraUel凶m and only local or-pa.rallelism
The other isもhe difference in proc田sing structure. Our
method Îs based on compile.time progra.m 色ransrorma
tion. Their method is b昌吋mainly on interpreters

2 An overview of Prolog vectorization

There are two kind of concurrent processings. One is
凹dor or pi戸lined proc田sing and the other is parallel
proce阻ng. If a computa.tion is fì.tted well in vector prcト
cessing， the hardware凶very effi.ciently used. However，
vector processing， which is a. kind of SIMD-type parallel
proce弱ing， is more inflexible tha.n MIMD.type p町aUel
proc回SÎDg. Only the same kind of operations can be
performed by an inslruction. 50， not all the programs
can be fì.tted well in ve<:tor processing， and a compile
lime progra.m lransforma.tion is necessary to do田 This
tra.nsformation is ca.Ued 凹cton:atlOn

To execute a Prolog program on vector pro日錨町'. .
method of program transformation to fi� it in ve�tor pro
cessors must be used. Or-vecto円四Iion lKan 88a]， a type
of program transformation， enabl四a type of or.parallel

Kanada and Sugaya 151

qu・en(Q) ー- pu包([1.2，3.金.....7.81.[1.Q)

put(口.B.5)
put(Qs，B.Q) ー

..1・ct(Qa，Ql.R). not_t岨・(B.Ql) •

put(R，【Qll Bl.Q)
町、

s・l・ct((AIL]，l.L).
s・1・c色(['IL1.X.【l1L]) :- 11・l・C乞(L，X.Ll)

not_t時・(R.Q) ，-
Qa is Q + 1， Q8 is Q - 1，
not_tak・1(R.Qa.Qs)

not_乞.k・l([]，Qa，Qa)
nQt_talt・1【[] .Q..Q・} ー

Q =\"Qa， Q-=\-= Qs目
Qaa is Qa + 1， Qss is Qs - 1，
not_tù・l{R，Qaa.Qss)

Figure 1: A program of山e eight-queens problem

回目utìon. In自民ution of a program四品目tbe eighレ
queens， a lot of or-pr出回目s are generated and the each
one's beha.viot鴎very simil町'00色hers'. $0， we can bun
dle the pr目e鈎es to fit in v田tor proces.sors

Tbe same g'曲1 (in a山tic sense) for dit1erenl proc四国
are bundled in our method. That means th叫each vari
able of the回urce prograrn凶replaced by a veclor of vari
ables by or-veclonzation， &nd岨ch elemenl of the vector
is the value of the original variable in each prcc明

Figure 1 shows an example of the eight-qu田ns pr。
gram by Nakashima [Nak 83]. However， the four-queens
program is used for the example Ín this paper because the
回ecution of the eìght-qu世間program is complicated
The four-quee田program is obtained by同placing the
list (1，2.....8) by [1.2.3.‘] in the first line of the
eight-queens program

Figure 2 outlin四 the execution of the vectorÏzed fc。町
qu四回program. VB is the vectorized counterpart of varト
able B， which app曲目in procedure put of the souree
program. Because only one pr目国s is gene同胞d by the
qu四tion 1- put((1，2，3.4).【l.Q). V8 h田only one el
ement initially. This elemen色contains an empty list，
which represents an empもy chessboard. Four proc個S明
are generated by the vectorized counterpart of procedure
a・1・c乞， 50 VB is reproduced to have four element.s， each
of which point5 a single-element Iist which represents a
chessboard with one queen. We omit the四planation of
，h，四cceeding part of the町田uti加

Usually， two or more vectors are processed in a step of
a program execution. In色he ahove example， a vector of
partial solutions， VB， and a vector of unused queen list
which Îs the vedorized counter part for Qs are pr白白骨d
in the S3me steps， AII the vectors which are processed in
the same step have the same number of element.s. If the
number is N， the value of the i-th element (1 < i:S N)
of each vector belongs to the same goal (in a dynamic
.."日) of the田urce program

For example， Step 1 of Figure 2 results in the sa.me

152 Parallel and 0・stributw Proce錨'"g

Step

1. put，
関lect，
担。I take

2. put，
selcct，
回t_tak.c

VB

3. put.
selcct.，
nOI_takc

4. put，
selcct，
not lakc

5.puI

C成i

Figure 2: An execution proc四S of the eighレqueens pro
gram

V_.・l・c包(AL，X，Y，MI，BI，BO) ー
V_'・1・ct_l(lL.XlL，YlL，MI，ML).
V_"・rge((llL，YIL1，(X，Y)，(BI]，(回】.HL)

V_'・1・ct_l(ー，[]，[] ，01， []) ー
v_tini:sh・d(HI). !

V_'・l・c包_1(AL， U.' I I1L】，[L' 1 Y1L].
MI.[Ml'!ML])

v_carcdr(A' .L' .AL，KI.HI'}，
v_carcd玄(A，L，AL.MI，Hl)，
V_'・lect_l(L.XlL.LlL，Ml，ML1)，
.ap_v_cons(A，LlL.YlL.ML1，ML).

国p_v_cons(ー，口，口，[]. [])
闘p_v_c阻3(A，【XH!XL].[Y引yL] ，

【MIHIMlt.J .【HOH!MOL)) :
v_cons(A..日，四，町8，HOB)，
回p_v_cons(A，XL，YL，MIL.即日

Figure 3: The definition of v...s・1・ct in the intermediate
logic progranuning language

solutiona園田町utmg色he following four goals in parallel

1- put(【2，3，4].[1] ，Q1)
1- put([l.3・‘]，[2]，Q2)
1- p'出([1，2，4]，[3]，Q3)
1- pu乞([1，2，3]，[4].Q4)

The vectorÎzed form of 山田. goili時国follows

1- v_put(掌([2，3.4]，[1，3，4] •

【し2，4].(1，2，3])，
'(【1]，[2]， [3]， [4])，
#(Ql.Q2，Q3，Q令))

#(el. . . .• e")同p'曲目ts a vector who・e elements are
el， " '， en. Tbe leng出 of all the v目白rs are色川r here
The veetor shown in Figure 2 is the first 町gument ofもh.
above v舵toriz吋g同l

The details of the traosformati岨techniQues a.nd日
ampl四a.re described in the previous pap町 [Kan 88a1

During execution of deterministic pr出国町田， proce
du目s which ha.ve 0田町田国\ution， the vedor length， or
the number of e\ements in each vec旬r. is constant. Some
goals may fail， a.nd the number of U将司lid elemenls de
creas四 However， vectors with dead elements can be
processed with r羽田ked operation facility or list vector
facil町of vector proc曲。rs (Kan 88a}. 50 the number
of色he elements can be constant in the or-vecto門:ed pro
gra.m

On the contrar)ん色he vector length varies during the
execution of nondeterministic procedur個 More 山間
one 801叫ions are generated from ea.ch v民tor e1emenl，
.ndもh.曲lutions (the values of each va.ria.ble) should be
a.ccumulated into a vector to \engthenもhe vector length
The reason why they shou\d be done 80阻副follows
Vector pr田回目rs a.re slower山叩".1町 p'担回50rs when
they a.re used with single-element vectors only. High
performa.nce is叫hieved when using them wiもh vectors
of sufficient length， namely one hundred or more ele
ments. 1n most programs with or-p町al1e\Îsm， there凶
only one pr民間山凶lIy. 50， if the solutions are no‘

Goa\: 1- v_.select(削(a，b]，[l])，VX，VR)

Program Par1 1

皆{fr
(.，

g
l

E

L

剖

Jm

A

1

3
[

Figure 4: Vectorized execution process of procedure
s ・1・c乞

a.ccumul叫00， the vector length will be always one， and
the performance cannot be improved

The solutions a.re accumul叫ed by the following mech
日間Y、Ea.ch vectorized progra.m part， which is a. coun
terpa.rt of one of the clauses ofthe nondeterministic prcト
cedure，凶executOO separately. Unlike normal or-pa.ral1el
execution， 曲目e p町ts a.re usua\ty executOO sequentia.lly.
Each part generat田 a vector for each variable of the

田urce program. The cootrol is not tra.nsfered to the
outs1de ofbhe pmeedure uMIl the executlon of all the
clauses are finished. At the end of the procedure execu
tioo， a.1l the vectors for the sa.me variable of the曲目白
program are merged into a. single veclor

For example，けle execution of the fol1owing prog四m，
wbich is a. part ofthe eighレqueen9 program， is explained

2・1・ct((Alt].A.L)
s・l・ct((AIL]，X，(AIL1]) ;- select【L，X.L1).

The in同，mod鳩山 code of select is very町nil町回出叫of
nondeterministic procedure app・nd， which is d凹rÎbed
În the previou5 paper [Kan 88aJ. 50 only a brief ex
pl胡山on ahout the vectorÎzed code of sel・ct 15 pre
sented here. Figure 3 shows色he intermediate code of
v..sel・ct， and Figu四4 outlines the ex配ution of the
following vectorized goat

1- v_s・l・ct(#((a，b]. (1])， VX， VR】
In the田町ce program， se1ect inpuls a list and selects

one of the elemenls and returns it and the list of the
rest elements. 50， question 1- sel・ct((a，b]，X1，R1)
returns the fol1owing two solutions

x1 ::: a， R1 ::: (b]
x1 ::: b， Rl =- (a]

Question 1- 5・l・ot(【1]，X2，R2) returns the fol1ow川g
one solution

X2 = 1， R2 = 口

p，血edure v_sel・ct is the vectorized counte叩art of
proc吋ure 5・l・ct. The first argument of v..s・1・ct is the
input. In the above vectorized goal， the first argument

Kanada and Sugaya 153

Î9 a vector of two element9， (a， b] and (1]. So山i9 goal
i9 the vectorÎzed counterp町t of the above two questions

The body of procedure v....s・l・ct consist.s of three
parts. The fì.rst part corre9ponds to the fì.rsもclause of
p'目edure select， and the挺cond part c。町田ponds to
th，担cond clause. The third part has no counterpart in
th，四urce progrnm

The fì.rst part computes theもwo solutions， and return9
the vectors w川dh四e solutions. The second part com
putes the rest solution， calling V..fJ・1・ct recursively， and
returns the vectors of the solution9. The live-ne3$ of
the vectors is displayed by a mask vector [Ka.n開a)，肌
80th elements of K1 a.re true， that rneans all the ele
ments of the vectors are live，田lutions. The s出ond part
returns vectors of two elements， but the second elements
are kî{{ed or invalidated. The fjve-nu! of山e vectors 15
displayed by mask vector K2

The third part， pr皿.du問vJllerg・， inputs the outputs
of the prevÎous parts， merg田 them， and outputs two
V民tors wbicb contain a.ll of the回lutions. The r四ult of
the whole comp叫a.tion凶国fol\ows

VX :::樟(a. 1， b)
VR = .([b)，(]，['))

The length of all the vecwrs hefore V.JIl・rge are the sa.me.
two. The vector length is cha.nged only by v..m・rg・ and
the lengths of all the vectors outputted by V..Jll・rge are

山e坦me， three

3 The parallel backtracking technique

The para.llel backtracking technique avoids explo・>on
of vector length

.
in parall

.
el processmg of combinatorial

m叫prog日間[K師団b] . lt w田a technique for vector
iûng procedural backtraεking programs， though it w国
�xpect� to he applied for vectorizing Prolog programs
[Kan 85)

Figure 5 explains a problem of simple vector pr白白�
ing of search problems. In a vector proc個別ng of search
problems such as the eight-queens by vector processors，
the vector length increases because the numb町of p曲.131-
bl，田lutions， each of which is an element of the vector，
explosively increases during pr町田sing. The vector el�ト
menls may overflow from the maÎn storage or the disks，
then the computation fails to continue

Figure � expla.山the solution for the problem g川n
in Kanada.lKan 88b]. The vector is split into two or more
sma\l vecto四when the vector length becom田も∞large
(step 2 and 2'). Then the computation is continued only
for one of the ve配c叫色回。悶 (V，町i) and the others are saved 出
choice poinl“s、，Vhen the computa.tion for tt山he侃r悶s“t vector
fin
pOlß叫c凶s and tbe same c∞。町mput同a色“，on、 as for the 員恥r悶s杭t v刊eo 叫t。町E
(V，円aけ) i悶， pe町E巾fゐ。E冊.ed for the second vector (V2). AII the
叩lit vectors are processed in the same way. In the case
of Figu日弘同悶the final vector. The vector splitting
may be done more than once， as shown in Figure 6 (step
k+2 and k+2')

Whole computation凶done in or-parafft/ in the prc炉
問鎚shown in Figure 5. On the 0山er hand， some <4back
trackings" occur in the pr民間13 shown in Figure 6， which

1 S4 Parallel and D・stributed Processing

step 1 回'p 2 step 3
QJ 一F � 111

Figure 5: Vector length expl咽ion in a combinat田ial
search by vecwr pr町田町咽

""，1 ""，2
援勾k

buk_

/ ���:
"ipU t _ 一一ー 一 ー一ーコニニJ 世p 11:+2

くJ主主L一望どシペ | \

s 副

、
a訓PJ

bad区.
tnc:ki

a可fLI
、'.

、

Figure 6: A combina.torial seatch usÎng pa.rallel back
tracking technique

冒岡田・・

Input
(1M偲vectors

Outllut 1

印!!.___ L u • _ __ _ I succccd A
a

l

d
V I!IQ::r:qQ

h且cktr再ok

Outllut 2

succccd

包
ト一 一ーー

f aì I h;lcklrack
E・・p・・・・

Figure 7: An阻ecution example of p町a1lel backtracking
vJIle::r:ge

is the re問。n why tbis technique凶called the “parallel
backtracking technique."

4 Explosion-free execution of Prolog

The explosive increa.se of vect.or el相官nts is very c10・e色O
tbe proce鑓explc沼田n in or-paralle1 proc国sing of Prolog
If the parallel backtracking tecbnique described in the
1M'揖ction is slightly modified， it is applicable to tbe
vectorued execution of Prolog，もhereby avoiding a pr。
oe鍋expl08ion without tbe expense of e侃ciency. Tbis田0-
tion explains tbe method of applying tbe paral\el back
traclúng technique to Prolog

Firs色， tbe program points， where the vectors sbould
be split and choice points 町e made， m\胤be decided to
apply出is tecbnique. Vectors are split only in v.-1IIerge，
&nd choice pαnts are made ooly in V.lle::r:g・m our par
aUel backtracking execution. Because the vector length
IS mcre田ed in the execution of procedure v一回rge of the
intermediate language， and it is kept constant in other
execution steps岨the ex民ution method shown in our
previous paper {Kan 8811.]. Proeedu問VJO・::r:ge outputs
the input vectors 田 they stand if the vector lengths are
sufficient， or merges them if not sufficient. Tbis merge
may be a p町凶1m町ge， Le. m町ging some of山e vectors
but not 11.11

Figure 1 shows an execution example ofv.-1ll・rge un
der its parallel backtracking interpretation. Procedure
VJO・::r:ge inputs three vectors to merge， At， A:l and A3，
。utputs two vectors， A; and A2' and an input mask vec
tor which is not shown in Figure 7. The input vectors
。f '-"町ge 8re formed into lìst of v田tors，抽Y.llerge
aεtually inputs one list of vectors and outputs one vec
tor. The fìrsも and the second input vectors are merged
and the r四ulting vector is outputted， and 色he third one
悶outputted M比stands. This means v...JIle::r:ge do四a
partial merge here. A dead element ìn A:l， which is dìs
played by the ìnput vector，凶not included in A�

When v且・rge is called， it succeeds and outputs the

Prolo8
Pro&r嗣

Vecto同'"

lntcm\ed.l山
"""�

m.百司o&.tikc:
I�F品"

Built.in
p同dic.aIC:1

ω.

Objca
p"，，，苛百

..・cutlon
・Imurator

凶刷。.

相thc: S-810
{白仙..�同

Figure 8: The proce騎of Prolog compilation and execu
tion for vector proc田町四

自国間ult， A�，聞d it makes a choice point for A;、Nben
a backtracking to the cboice point in v..me::r:g・occurs，
VJO町g・outputs tbe明cond tesult， A2. Since the Înter.
mediate language is Prolog-like， backtrackings are han.
dled appropreately. A more backtracking to v..me::r:ge just
caus田a failure because 色here is no more choice point，
8nd it c&uses a further baεktracking

This functional change of v...llIerge can be done with.
。叫syntactic changes of the intermediate code. Only
the interp問lation of出e intermediate code is cbanged
No global choice points are created in the interpretation
given in our previous paper， but cboice points are created
and global back色rackings to出em are occurred in the new
interpretation. So the intermediate 111.且guage may have
been a. ptocedura.l one in the previous paper， but it must
be a Prologーlike language with autom叫Îc back住民king
for applying the parallel backもracking technique

There are two methods for rτlerging and splitting vec.
tors. One is to merge finJt then to -，plit， and the 0出ec凶
to merge only when 1Jedor fength i.J 5hort. The former
method merges all the input vectors first and then splits
them appropriately. The good point of出is method is
tbat vector length can be ch師団町bitrary. However， this
method is inefficient because both merging and splitting
require the copying of vecto悶The latter method merges
vec旬開。oly when they are too short and it d。回not ac.
tually split vectors. The la.tter method is proba.bly better
because it require less co叩ying of vectors. In the latter
method， it is probably good to merge the input vecto四
one by one until the vector length becomes sufficient for
achieving high performance by vector processors

We bave developed a simul叫or for vectorized execu
tion， and a compiler which inputs a Prolog program with
mode declarations and generates vectorized intermedi
ate language program. Both. programs are written in
Prolog. The structure of this system is outlined in Fig
U四8. Th陪叩termediate language (IL) is 11. Prolog-like
language with vCctors. Its syntax: is the same as the IL
in our previous paper. The simulator inputs the IL， and
comput四the田lutions using vectors， which are simu-

Kanada and Sugaya 155

lated by functor削)， a functor whose name is“，" ， in
Prolog. A functor is good fot剖mulating vectors because
elements of a functor can be acce.ssed by Îndices using
buHt-in predicate arg in Prolog， and vector e\ements are
immutab\e (unassignable) in our model. E配h build-in
procedure in the intemediate language， such剖v...JIlerge，
is simulated by a Prolog procedure. 50 the intermediate
c吋e is executed directly by the simulator

Though山e computation 凶performed in pseud。
pa日Uel， the simu\ator decomposes resulting vectors and
retums the solutions one by one to the user. 50， the u.ser
interface凶very similar to Prolog's， 色houghもhe ord町。f
田lutions町、ay b e diffe問叫from sequential Prolog's. For
examp\e， we assume that the user types a question and
the first veclor of田lusions of the program， 5" contains
two solutÎons， 311 and 3'2. It will take a little time untÎl
Su is printed， because it requir白to compute the value
of 51 and to extract Slt from 51. However， if the user
'yp四ヤ，冊目qUIr回a backt日cking， S12 will be printed
immediately hecause比叩ly requires to extract it from
51. If出e user requires a more solution， the user may
have to wait a little because it requires to compute the
second vector of回lutions， 52

Though Prolog is used， most part of 色he simulator
program is deterministic; no choice points are made in
m国t part. However， there are two pr目0<1.. 四 where
gIobal backtrð.cking Îs used. One is procedure v...JIlerge，
.od色he叫her Îs the procedure which d田omp値目vectors
for the user

5 Conclusion
This pap町h田shown a technique for executing Prolog
prograrr渇00 v目tor proceS!拘rs without proc四s expl。
sion. This technique is called 色he parallel backt日cking
tecbnique. We developed a executÎon叩nulator using
this technique， which inputs interrnediate code gener.
ated by a vecto�izing compiler de筑ribed in our previous
paper lKan 88aJ

We have no色 yet developed a real execution system
However， using this technique， we can certainly make a
Prolog system whose performance ranks more than eight
times higher than the mainframe rnachine Îo solviog the
eight-queens program. Because the non-backtracking ex
ecution of this program achieves a high perrormance of
nine times higher than scal町processing， and backtrack
ings do回not take much time川the parallel backtracking
execution

Acknowledgement
The authors wish toもhank Dr. Sakae Takahashi and 5ei
ichi Yi咽hizumi of Hitachi Ltd. for their continuing刊?
port of OUf research

References
[Kan 85] Kanada， Y.: Improving Prolog Performance

using 5upercomp川er， Procudmg 01 �6/h Program
ming Symposium， pp. 4ï-56， 1985 (in Japanese)

[Kan 88a] Kanada， Y.， Kojima， K.， and Sugaya， r-.I
Vectorization Techniqu咽for Prolog， A CJl (nlerna

156 Parallel and Oistributed Proce錨，ng

-

/ional Conference on Supe向。mpu/ing， 1988
[Kan 88b] Kanada， Y.， and Sugaya， M.: A 5chema of

SolvÎng 5earch Problems on V.田tor Proc田sors: Pa.r
allel Back色racking Schema， Transadion of lnfo円η，
tion Processing， Vol. 29 ， No. 10， 19田(凶Japan田，)

[Nag 84J Nagashima， 5.，叫al.: 0田ignCo田ideration for
High-Speed Vector Processor: 5-810， Proceedings 01
IEEE lntemational Conference on Computer De
sign， pp. 238-242， 1984

[Nak 83] Nakashima， H.: Introduction to Prolog， San
poh-5huppan， 1983 (in Japanese)

[Nil 86] Nils田n， M.: - FLENG Prolog - The Lan
guage which turns Supercomputers into Para.J
lel Prolog Machin凹， Logic Programming '86 (in
Japan)， pp. 209引6， 19師

[Nil 88] Nil!田n， M.， and Tanaka， H.: A Flat GHC
lmplementation for Supercomputers， Fifth lnlerna
tional Sympo!lum 0πLogic Programming， 1988

[Tat 87] Tat!珂uchi， Y.， and Muraoka， Y.: An lmp\e
mentation of a Parallel Logic Programming La.n
guage on a Vector Processor， 35th Nahonal Con
ftrence 01 JaplJn SocÎdy of lnformo.lion Processing，
5Q-l， pp. 753-754， 1987 (in Japane揖)

[Ued 85] Ueda， K.: Guarded Horn Clauses， !COT Tech
nÎClJ1 Reporl， TR・103， Institute for New Generation
Computer Technology， 1985

