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A General-Purpose Conjunctive Iterative Control
Structure for Prolog

Yasusi Kanada1

Abstract
A loop-like control structure without using backtracking, or conjunctive iteration, is

expressed using recursion in Prolog.  However, recursion is too powerful to express an
iteration, which needs more restrictive syntax and semantics.  This paper presents a
general-purpose iteration predicate do.  Predicate do enables a programmer to write most
iterations, such as arithmetical iterations, append, member, mapcar or reduce, and
so on, more easily and in more readable way, in combination with the extended λ term,
which is a concept similar to the λ expression in Lisp.  Unification and logical variables in
Prolog enables some extensive usage of the control structure compared with those of
other programming languages, such as Lisp.

1. Introduction

One of the problems encountered when using Prolog in a large scale application is the lack of
structures, i.e., the lack of modules and control structures, limited data structures, and so on.
The only way to write conjunctive iteration, or a loop-like control structure without using
backtracking, in Prolog is to write it using recursion.  However, recursion is too powerful to
write simple iterations.  Recursion is so powerful that it may lead programmers to an unread-
able and undebuggable programming style.  Restricted iterative control structure, or predi-
cate, is more suited for writing simple iterations than recursion.

Some disjunctive iterative control structures, or in other words, iterative backtracking con-
trol structures, can be defined using predicate repeat in Prolog or using other predicates de-
fined in several papers.  Predicate repeat is used for making a disjunctive iterative control
structure, though it is not a structured one.  Dodson and Rector [Dod 83] define several struc-
tured disjunctive control structures for the purpose of structured use of cut, fail and
repeat.  Munakata [Mun 86] also shows some structured control structures.  Some
conjunctive iteration predicates, or in other words, tail recursion control structure, such a s
mapcar, also appeared in some papers or programs, e.g., Kondoh and Chikayama [Kon 87].
However, these conjunctive iteration predicates can be used only for limited purposes.  

This paper explains a general-purpose conjunctive iterative control predicate do, which
enables a programmer to write most conjunctive iterative control structures, such as arith-
metical iterations, append, member, mapcar, and so on, more easily and in more readable
way, in combination with the extended λ term, which is a concept similar to λ expression in
Lisp.  Section 2 shows the definitions of λ term and predicate do.  Section 3 shows a usage of
do in arithmetical iterations, in iterative list processing and in mapping.  In Section 4, we dis-
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cuss the advantages and disadvantages of do compared to recursion, and we also discuss the
efficiency of do.

2. Definitions of λ term and do

2.1 λ term

A λ term is an unnamed clause or predicate.  The syntax of a λ term is as follows:

term \ term

The left-hand side of \ is usually a list of terms: [term, term, …, term]; it is called the
lambda list.  The right-hand side is called the lambda body.  The semantics of λ term is close
to λ expression in Lisp:

(lambda (var,var, … ,var) expression)

The first term in λ term corresponds to the variable list in λ expression, and the second term
corresponds to the expression.

However, the form of each term in the lambda list is not limited to a variable, but it can be
a list or other structured term and “λ binding” is done by unification.  A λ term is defined in λ
Prolog [Nad 88], but the major difference between ours and λ Prolog’s is in this point.  

For example, instead of defining predicate add as

add(X,Y,Z) :- Z is X + Y.

and using it as  add(1,2,R), we can use a λ term  [X,Y,Z]\(Z is X + Y).  Instead of
using add(1,2,R), we can apply the predicate to a list by the following term:

apply([X,Y,Z]\(Z is X + Y), [1,2,R]).

Though there is no strict reason to use a list for binding the lambda variables X, Y, Z and the
arguments 1, 2, R, it is a good convention to do so.  (Note that the following term has the
same meaning as the above one:  apply(f(X,Y,Z)\(Z is X + Y), f(1,2,R).)  The
unification-based binding is so powerful that a lot of predicate can be written with an empty
lambda body, such as […]\true.  Examples are shown later.  

If predicate apply is used for applying a globally defined predicate p, such as add, the re-
sult caused by  apply(p, l)  is equivalent to that by  (X=..[p| l], call(X))  where X
is a new variable.  A simple but inefficient implementation of apply in Prolog is shown in
Appendix.  

An or-composition of two λ terms is defined as follows: if t1 and t2 are λ terms, or-com-
position of t1 and t2 is written t1; t2.  The meaning of term  apply(t1; t2, l)  is equivalent
to that of term  (apply(t1, l); apply(t2, l)).  An and-composition can be defined in the
same way, but it is omitted here.  

For example, the definition of the recursive append predicate is shown below.
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def append =

([[],X,X]\true; [[H|T1],Y,[H|T2]]\append(T1,Y,T2))).

2.2 Predicate do

We can define predicate do with two or more parameters: do(P,X1-X1e, … ,Xn-Xne).
The first parameter, P, is the predicate to be applied repeatedly.  It may be called the “loop
body.”  Other parameters are the data to be applied, and they are difference data (d-data).
D-data are expressed by structures with two arguments, Xi-Xie which is semantically the
same as '-'(Xi,Xie).  A d-data is, in a sense, an extension of a d-list (difference list).  If
it is used as a parameter of a predicate, it can also be regarded as a Prolog counterpart of a
variable or variable parameter in procedural languages.  For example, in do(P,-
[X|Xe]-Xe), the second parameter can be regarded as a single-element d-list of X, and it
can also be informally regarded as a variable parameter whose input value is [X|Xe] and
output value is Xe.  Concrete examples are shown in the following section.  

A part of each d-data is used as a parameter in the predicate application.  The informal
meaning of a part is explained below.  If Xi-Xie is a d-data, then Xi-Xi1, Xi1-Xi2, …,
and Xin-Xie are interpreted as parts of the d-data.  If Xi-Xie is a d-list, a part of the d-
data (d-list) means a sublist of the d-list.  For example, d-list [b,c|X]-X is a part of d-list
[a,b,c,d|Xe]-Xe.  

Predicate do with one parameter can be defined as follows:

do(P,A1-A1).

do(P,A1-A1e) :- apply(P,[A1-A1a]), do(P,A1a-A1e).

And predicate do with two parameters can be defined as follows:

do(P,A1-A1,A2-A2).

do(P,A1-A1e,A2-A2e) :-

apply(P,[A1-A1a,A2-A2a]), do(P,A1a-A1e,A2a-A2e).

Here, A1-A1a and A1a-A1e are parts of d-data A1-A1e.  A2-A2a and A2a-A2e are parts of
d-data A2-A2e.

Predicates do with more than two parameters can also be defined in the same way.  

3. Usage of do

Three kinds of usage are shown below: arithmetical iteration, iterative list processing, and
mappings.  

3.1 Arithmetical iteration

The first example of arithmetical iteration is the factorial function.  Predicate call fac1(X,Y)
inputs the value of X and outputs the value of X! as Y.
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fac1(X,Y) :- do(fac1a, 0-X, 1-Y), !.

fac1a(I-I1,J-J1) :- I1 is I + 1, J1 is J * I1.

The second definition can be rewritten using a λ term.

fac1(X,Y) :-

do([I-I1,J-J1]\(I1 is I + 1, J1 is J * I1), 0-X, 1-Y), !.

The second parameter of fac1 can be regarded as the values of the loop control variable.
Its initial value is 0, and its final value is X, which is defined in the execution of fac1a or the
λ term.  The “control variable” is incremented by 1 in each iteration step.  

In each iteration step, the value of the “control variable” is inputted to fac1a or the λ
term as I, and its new value is outputted as I1.  The second parameter is handled in the
same way.  J is inputted and the new value of J is defined as J*I where I is the old value.
D-data, I-I1 and J-J1, can be informally regarded as variable parameters here.  The initial
values of I and J are 0 and 1 respectively, and the above step is repeated until the value of I
becomes equal (unifiable) to X.  The result Y is the value of J at the end of the repetition.  

In fact, recursive factorial predicate can be defined more simply.

fac2(0,1) :- !.

fac2(I,J) :- I1 is I - 1, fac2(I1,J1), J is J1 * I.

However, fac1 is more efficient than fac2 if it is compiled by an optimizing compiler, be-
cause the recursion in fac1 is a tail recursion while the recursion in fac2 is not.  A tail-re-
cursive factorial predicate can be defined in conventional way as follow:

fac3(X,Y) :- fac3(0,X,1,Y).

fac3(I,I,J,J) :- !.

fac3(I,Ie,J,Je) :- I1 is I + 1, J1 is J * I1,

fac3(I1,Ie,J1,Je).
fac3 is as efficient as fac1, but fac1 seems to be simpler and more structured than fac3
and at least it is less redundant because there is no repetition of the predicate name fac3.
More detailed comparison is given in Section 4.  

The second example is Newton’s method.  Predicate newton calculates the solution of
the equation f(x) = 2 x3 + 2x2 – 1 = 0.

newton(X) :- do(newton1, 1-X, 999-Eps), Eps<1e-5.

newton1(X-X1,_-Eps) :-

f(X,Fx,Dfdx), D is Fx / Dfdx, X1 is X - D, abs(D,Eps).

f(X,Fx,Dfdx) :-

Fx is sqrt(2)*X^3 + 2*X^2 - 1, Dfdx is sqrt(18)*X^2 + 4*X.

abs(X,Y) :- X >= 0 -> Y is X; Y is -X.
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Here, predicate f computes f(x) and f '(x), and abs(X,Y) results Y = X  .  Constant 999
in predicate newton is an arbitrary value which is greater than 1e-5.  The loop termination
condition, Eps<1e-5, is tested outside of the do construct because a comparison of numbers
cannot be described in a call of predicate do.  A loop termination condition can be described in
the actual parameters of do only when it can be tested by unification as far as using the syn-
tax and the semantics of DEC-10 Prolog.  

3.2 Iterative list processing

Predicate append is defined using do as follows.

append(X,Y,Z) :- do([[H|T1]-T1,[H|T2]-T2]\true, X-[], Z-Y).

The first parameter of do is a λ term predicate that unifies each element of a list with each
element of another list, or, in other words, that copies a single-element d-list.  The second pa-
rameter of do can be regarded as the control variable when the first and second parameters of
append are used as input parameters and the third as an output parameter.  X is the initial
value and [] is the final value.  

The λ term in the do construct unifies an element of d-list X-[] with an element of d-list
Z-Y in each iteration step, until the value of the “control variable” becomes [].  Because the
last half of d-list Z-Y is Y, Z becomes the concatenation of the copied list and Y, the second
argument of append, after executing the loop.  

The above predicate append can be used in reverse direction.  For example, if the second
and third parameters are used as input and the first as output, append finds a list, X, which
satisfies the relation append(X,Y,Z).  In this case, the third parameter of do works as the
“control variable.”  Its initial value is Z and its final value is Y.  This exchangeability of
“control variables” is the most remarkable feature of do, because control variables are syn-
tactically fixed in conventional iterative control structures of procedural languages.  The above
append can also be used for nondeterministically decomposing a list into two lists the same
as the recursively-defined append.  

The definition of predicate append is slightly complicated in its syntax because two d-lists
are appeared.  If a syntactic sugaring for d-lists is introduced, it becomes simpler.  We ab-
breviate d-list [x1, x2, …, xn| y]- y to <x1, x2, …, xn>.  Then the above definition be-
comes

append(X,Y,Z) :- do([<H>,<H>]\true, X-[], Z-Y).

This abbreviation is possible because variables T1 ans T2 are not used outside of the d-lists.

Other iterative list processing predicates are also defined using do.  The following exam-
ples are some of them.

member(X,Y) :- do([<_>\true, Y-[X|_]).

reverse(X,Y) :- do([<H>,T1-[H|T1]]\true, X-[], []-Y).

length(X,Y) :- do([<_>,L-L1]\(L1 is L + 1), X-[], 0-Y).
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Predicate member tests whether the first parameter X is a member of the second parameter,
list Y.  Predicate reverse is an optimized version of predicate that reverses a list.  An
“optimized version” means it is not a so-called naive reverse which takes O(n2) time for list
reversal.  Predicate length that counts the number of elements in the list which is passed
as the first parameter, X.  It can also be used in reverse direction as length(X,5), which
results in a five element list, all the elements of which are logical variables.

3.3 Mappings

Two examples of mappings are shown below, i.e., mapcar and mapcan.  

The first example is predicate mapcar, whose function is similar to the function of the
same name in Lisp, is defined as follows:

mapcar(P,X,Y) :-

do([<H1>,<H2>]\apply(P,[H1,H2]), X-[], Y-[]).

The first parameter of mapcar is a λ term predicate, and the second and third parameters are
lists.  The predicate is applied to each pair of elements of the lists.  

The second parameter of mapcar can be used as input and the third as output.  For ex-
ample, mapcar(length,[[a],[b,c,d],[e,f]],Y) results in Y=[1,3,2].  The sec-
ond parameter works as the “control variable” in this case.  Predicate mapcar is symmetric
on the second and third parameters, so the second parameter can be used as output, and the
third as input.  The third parameter works as the “control variable” in this case.  

Predicates mapcar with two arguments (mapcar/2) or more than three arguments can
also be defined in the same way.  The function of the former is close to that of function mapc
in Lisp because mapcar/2 does not have an argument for returning a result.  

The second example is predicate mapcan.  In Lisp, mapcan is a convenient function
which may generates zero or more than one element of the resulting list from each element of
the input list.  For example, function double, which doubles each element of the input list, is
defined as follows:

(defun double (x) (mapcan #'(lambda (h) `(,h ,h)) x))

For example, expression (double '(a b c)) is evaluated to be '(a a b b c c).  

Function mapcan destructively concatenates the list that the function given as the first
parameter of mapcan returns.  So it is impossible to rewrite this program into Prolog directly.
A d-list can be used to simulate the destructive concatenation.  Then, the Prolog version of
mapcan and double can be defined as follows:

mapcan(P,X,Y) :- do([<H>,DL]\apply(P,[H,DL]), X-[], Y-[]).

double(X,Y) :- mapcan([E,<E,E>]\true, X, Y).
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The first parameter of mapcan is a λ term predicate; its first parameter is an element of
list X and its second parameter, DL, is a d-list.  Predicate mapcan outputs the concatenation
of these d-lists as list Y.  

However, it is simpler to define double directly using do:

double(X,Y) :- do([<H>,<H,H>]\true, X-[], Y-[]).

For example, expression double([a,b,c],Y) results in Y=[a,a,b,b,c,c].  The above
example shows that predicate do can be used for the programs for which function mapcan
should be used if it is written in Lisp.  

4. Discussion

The power of iterations using do is discussed in this section.  The good and bad points of the
description of loop termination conditions using do, and the efficiency of iterations using do
are also discussed.  

4.1 Extending the power of iterations

Some repetitions which cannot be written using iterations in pure Lisp or other languages can
be written using do in pure way.  This means, in a sense, predicate do extends the power of
iterations.  We will compare the two predicates with the counterparts of Lisp.

The iterative version of predicate append shown in Section 3.2 does not use any de-
structive operations.  However, the function of predicate append cannot be implemented by a
loop or a tail recursion in Lisp without using destructive operations such as rplacd.  The
normal definition of append in Lisp is as follows:

(defun append (x y)

(if (null x)

y

(cons (car x) (append (cdr x) y))))

A list cell is to be created by the function cons after a recursion of append, so it is not a tail
recursion and then it cannot be transformed to an iteration.  If append is rewritten so that the
list cell is created before the recursion, it can be a tail recursion, but the tail of the list cell
must be rewritten by a non-pure destructive function, rplacd.  The logical variable in Prolog
(the third argument in this case) enable the iterative or tail-recursive append procedure.

 Predicates mapcan shown in Section 3.3 are not a destructive operation because Prolog
does not allow a destructive assignment.  It calls a predicate repeatedly and concatenates the
resulted d-lists into a normal list or a d-list by unifying logical variables.  For example, when
double([a,b,c],Y) shown in Section 3.3 is executed using the first version of double
which calls mapcan, predicate [E,<E,E>]\true is called three times with the elements a,
b and c respectively, and it returns [a,a|T1]-T1, [b,b|T2]-T2 and [c,c|T3]-T3 a s
the second arguments, where T1, T2 and T3 are arbitrary new logical variables.  These d-
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lists are concatenated by unifying T1, T2 and T3, and mapcan and double returns the list
[a,a,b,b,c,c].

On the contrary, the function mapcan in Lisp is a destructive operation even in its specifi-
cation.  It applies a function to all the elements of the list which is an argument of mapcan,
and concatenates the resulting lists destructively.  For example, when evaluating (double
'(a b c)) shown in Section 3.3, the function  #'(lambda (h) `(,h ,h)) x) is ap-
plied to the elements a, b and c and it returns (a a), (b b) and (c c) respectively.
These resulting lists are destructively concatenated and mapcan and double returns the list
'(a a b b c c).

Though predicate mapcan and function mapcan are different in specification, the former
can be used for most of the purposes that the latter is used such as the above example.  This
functionality of predicate mapcan is also enabled by the logical variable.

4.2 Termination conditions in the do construct

The termination condition is described separately from the “loop body” in a do construct.
This feature is explained along with its good points below.  

For example, in fac1 in Section 2, the final value of the “control variable”, X, is given in
an actual parameter of do.  The termination condition is that the value of X calculated in the
loop is unifiable with this final value.  On the contrary, termination conditions are usually writ-
ten in the definition of the recursive predicate when using recursion.  For example, in fac2,
the final value, 0, is given as a formal parameter in the first clause of fac2.  

In comparison to a normal termination condition of recursion, writing a termination condi-
tion outside of the loop body has two major good points.  

The first good point is readability.  A reader of the program can find the termination condi-
tion more easily if it is written in a do construct.  Though one can find the termination condi-
tion easily in a well-formulated recursive program, programs are not easily well-written using
recursion.  That means that loops are written in more uniform and readable way using do,
than using recursions.  

The second good point is that the loop body is more generally usable than a normal recur-
sive program because it can be used with different termination conditions from the original
one.  For example, if X is a list and X1 is a sublist of X, partial list operations can be easily
written as follows:  if X-[] in the right-hand side of reverse is replaced by X-X1, the par-
tial list is reversed.  If X-[] in the right-hand side of length is replaced by d-list X-X1, the
length of this d-list is computed.  On the contrary, termination conditions are usually hard-
wired in recursive predicate definitions, so it is difficult to use them in other purposes.  

4.3 Termination conditions outside of the do construct

The termination condition can even be written outside of a do construct.  This feature is ex-
plained along with the merits and demerits below.  
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If termination conditions could not be written outside of the do construct, unification would
be the only possible operation with which to test them.  However, any predicate can be used
for testing them outside of do.  Even termination conditions can be supplied by user.  For ex-
ample, with respect to Newton’s method in the example in Section 2, predicate ‘<’ is used for
testing, and the precision of the solution can be easily changed by changing the termination
condition Eps<1e-5.  The termination can also be controlled by user.  In fact, the program in
Section 2 can be used as follows.  A user can type ?-newton(X). and will get a result.  If it
is not satisfiable in precision, he or she can type ‘;’ (requires backtracking) and will get a
more precise result.  

This feature has both good and bad points.  It is obvious from the above explanation that
termination conditions have powerful describability.  However, they are also unstructured and
unreadable.  Extensive use of termination conditions outside of loops results in unstructured
loops, thus loosing the main benefit of the do construct, namely readability of programs.  

A functional refinement of predicate do will clear up this problem.  The following is an ex-
ample of a refined version of do and its usage in Newton’s method.  An additional predicate
for the termination test is given to do.

do(P,C,A1-A1,A2-A2) :- apply(C,[A1,A2]).

do(P,C,A1-A1e,A2-A2e) :-

apply(P,[A1-A1a,A2-A2a]), do(P,A1a-A1e,A2a-A2e).

newton(X) :- do(newton1, [_,Eps]\Eps<1e-5, 1-X, 999-_).

Predicate newton1 is the same as in Section 2.  The λ term given as the second parameter of
do tests the termination condition.  

4.4 Efficiency

The implementation of do shown in Section 3 is inefficient because the “loop body” is exe-
cuted interpretively.  However, it is easy to compile do constructs into normal loops.  There
are two methods to compile as such.  The first method is to compile do constructs into loops
in machine code or a procedural language directly by a specialized Prolog compiler.  The sec-
ond method is to expand do and apply and translate them into tail recursions in Prolog, and
then to compile them into loops using a Prolog compiler that performs tail-recursion optimiza-
tion.  The second method is much easier because there is no need to develop a new Prolog
compiler because predicates using do and apply can be expanded into normal Prolog predi-
cates and no syntactic and semantic extension are necessary.  The object code is as efficient
as, or more efficient than code generated from recursions in either method.

5. Conclusion

This paper presented a general purpose iterative predicate do and the extended λ term.
Their combination enables a programmer to write most iterative control structures, such a s
arithmetical iterations, append, member or mapcar, in more readable way and to make
them more general-purpose without loosing their efficiency.  Unification and logical variables
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in Prolog enables some extensive uses of the control structures compared to those of other
programming languages such as Lisp.  It would be better to extend Prolog to include do or its
refined version into its language specification for the sake of better program development.  

References
[Dod 83] Dodson, D.  C., and Rector, A.  L.: “LOGAL” : Algorithmic Control Structures for

Prolog, Eighth International Conference on Artificial Intelligence, pp. 536-538,
1983.  [Kon 87] Kondoh, S., and Chikayama, T.: Macro Processing in Prolog, Proc. Fifth
International Conference and Symposium on Logic  Programming, pp. 466-480,
1987.  [Mun 86] Munakata, T.: Procedurally Oriented Programming Techniques in Prolog, IEEE
Expert, Vol. 1, No. 2, pp. 41-47, 1986.  

[Nad 88] Nadathur, G., and Miller, D.: An Overview of λ Prolog, Proc. Fifth International
Conference and Symposium on Logic Programming, pp. 810-827, 1988.  

Appendix: An implementation of apply

An interpretive implementation of apply is shown below:

apply(Lambda\Body,Args) :- !,

s_subst(Args,Lambda,Body,Goal), Goal.

apply((Term1,Term2),Args) :- !,

apply(Term1,Args), apply(Term2,Args).

apply((Term1;Term2),Args) :- !,

(apply(Term1,Args); apply(Term2,Args)).

apply(\+Term,Args) :- !, \+apply(Term,Args).

apply(Term,Args2) :-

Term=..[F|Args1], append(Args1,Args2,Args),

Goal=..[F|Args], Goal.

The first clause is for the λ term application.  Logical variables in the λ term are renamed by
predicate s_subst.  The implementation of predicate s_subst is shown below.  The second
clause of apply is for and-composition, and the third for or-composition.  The fourth clause is
for negation.  The last clause is for named predicate application, but its function is extended.
The first parameter, Term, can be an atom or a functor.  If it is an atom, it is applied in the
same manner as described in Section 2.  If it is a functor, its arguments are regarded a s
“constant parameters” for the predicate.  For example, mapcar(append([a]),[b,c],Y)
results in  Y=[[a,b],[a,c]].  That means list [a] is supplied as the first parameter for all
the application of append.

A simple but inefficient and ugly implementation of s_subst is as follows:

s_subst(N,O,OStruct,NStruct) :-

asserta(s_subst_(O,OStruct)),

retract(s_subst_(N,NStruct)), !.
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The above predicate s_subst uses assert and retract.  All the variables in the λ
term are renamed in this simple implementation.  It is sometimes inconvenient and it will be
better not to rename variables that do not appear in lambda list.  The above implementation is
also probably slower because of assert and retract.  Thus, more sophisticated implemen-
tation without using assert and retract will be preferred.  


