COMPILTNG ALGORITHMS AND TECHNIQUEZ
FOR TEE 3-8%0 VECTOR PRGCESSCR

Michiski Yasumura,

Yoshikazu Tanaka,

Yasusi Kanadsa

Cenmtral Hesearch Laborstory

Hitachi Co.
Kokubunii, Tokyo

Japan

Led.
185

fixio Aovama
Software Works

Hitacki Co.

Ltd.

Totauka, Yowchama Z4L

Abstract -~ This paper describes the compiling
algorithms eand techniques for the Hitachi 5-810
vector processor., The data dependency analysis
method presented here is pased ovn the algorithm by
E, Takanuki, et.al.[il. The results are similer
te but the approach different from the ioop
distribution algorithm by b. Kuck, et.al.[53. &
new data fiow algorithm for data dependency of
variables wunder IF 3tatements is described, For
this DUr po se new dats flow cperators are
introduced. Some program transformation
techniques are shown o be useful for enhancing
vectorization. The issues on vesotor gobject
sptimization Ybechniques are alsc described. With
these algorithms, S$yplesal vectorization ratic of
the S-810 vector compiler is about 30% higher than

that of Hitachi's previous veetor compiler and
more than ABROMFLOPS were attained for one FORTRAN
program. Most of these algorithms and technigues

are eazsily adaptable to other vecior processors.

Irtroduction
Over the pest decade Hitachi has been
developing two %types of vector processcrs and
their compilers. One, called IAPF { Integrated
Array Processor J, is integrated in general
purpose mainframes. Examples are the Bitachi M180
TAP, MZ00H IAF, and M2B0H IAP. Other companies in

Japan also make this kind of vector processor, for
exampie, Nippon Electric Company { ACOS1000 IAP)
and Mitsubishi (MELCOM COSMOTOO IAP), The
congeptusl base of IAF is transparency and high
zost/performance. Transparency is achieved
through the interruptable veetor instruwctions (
“hus they are memory-to-memory instructions) and
automatic vector compilers, Therefore, IAF can be
used not only for FCRTRAN programs in batch mode
hut alsc for APL programs in interactive mode,
The IAP system can be put together with a small
Bmount of extra hardware, However, the
performance ratio of IAP to scelar processor is
generelly not s8¢ high. typical performance
ratio for IAP is about 2 to 2 Wwith & maximum
ratio of about 10,

The other type of vector processoer s the
Hitachi 5-81C model 20 and model 10, This type is
dedicated scilentific super computer with vector
CLher companias in Japan have
nave heen deveioping this type as

”
A

'

=
registers,

developed or

Japan

well, e.g., Fujitsu { VF=-200 apnd VP-100), and
Mippor Flectric Company (SX-2 and SX-1). The
primary gosl of these processors is high
performance, But uger friendliness is &lso
important, and the automatic vector compiler is

the key to achieving these goals.

4 basic d dependency algorithm has been
deveioped for the MiB0D and MPOOH IAP compiler[i].
Technigues for wvectorizing IF statements and
program transformetion techniques have been
developed for the MPBOH IAP compilerlii,isi,[12].
Based on the above algorithm and techniques, we
have developed extended vecforization technigues
and zlgorithms for the $-81(compiler to enhance
vectorization and to generaste more efficient
vector objects,

In this paper, we first briefly describe basic
algorithms for data dependency analysis, The data
dependency analysis under IF statements is then
explained. Finally, the issues on vecter object
optimization are described.

P

aug

Datz Dependency Analysis

To vectorize FORTRAN programs automatically,
the order of operation execution in DO loops has
te be changed., In the scalar processing mode, one
operation is executed for each index value, After
ail operations in a DO loop are executed for an
index value, the index value is incremented, and
each operation is executed again for the new index

value, and sc on. In the vector processing mode,
esch operation 1is executed for all index values,
and the next operaztion is executed for all index
values, and so on. This change in execution order
is calied lgop distribution or vectorizaticn
(Fig. 1).

FGRTRAN DO loop Vector mode
DO 10 121, K
Ali)=BCi)aC(

10 Dli)=A(i)¥E(

)
)

=2 (ﬁ{ =B, +0, ,i=1, N

{D;=Ai*£i'i:1'N}

5
i

Fig. 1 Loop Distribution(Vectorization)

Whether ar net ioop distribution is
permissible depends on the vaiue defined and its
usage for esch data. This dependency 1s generally
called date dependency, Datz dependency analysis
nas beern studied for many years for veriables in
whe fieid of scalar object optimization. However,
the study of deve dependency anslysis of arrays
for wectorization 18 relatively new. Dne study
publicized in this flelid 1is the work done by
D, Kuck, et.ezl.l6l.

The method of & data dependency analysis
descrioed hnere is silightiy different from theirs.
in thiz meihod, data dependency relations zre
classified inte {ive categories: the first is
suitsbly dependent, the second unsuitably
deEendent, the third specislliy dependent, the
fourih unknown dependent, and the fifth
independent.

Examples of the unsuitably dependent case are
shown in Fig. 2. Array &4 is unsuitably dependent
in Do 13, whereas veriable £ is unsuitably
dependent in DG 2U.

D320 i=1,HK
A(L)=3%E(1)
20 S=C{ii+ali)

Fig. 2 Unsultsbly Dependent {ase

The speciglly dependent case 1s a variation of
unsuitably dependent Sase. Examples of +the
specially dependent case are shown in Table 1.
These =apecisl operstions can be vectorized with
specisl hardware suppori,

Tabie * OSpeciaily Dependent case

+

-

| Macro Cperation | Example

| ¥eetor Sum [S=344{1}

i Vector Product 1 5=5%a(i)
]

iInner Product S=5+A(1y%B(L;
tVector Ioeration | A(i+1)=A(i)*B{i)+C(i)}
Vector Max IOS=MAX(R,ALL))
IVector Min | S=MIK(5,A(i])

Tur basic dependsncy analysis iz done for
variables and for arrays according to the
foilowing two rules:

(1Y & varisble is unsuitably dependent if there

ig a defining ocourrence end its first
ooeurrence is not g defining occurrence.
{2y An arravy is unsuitably dependent if one of

the Lwo DOCUrrences isg 3 defining
coocurrence and the preceding ozcurrence
contains & subscript, the vaiue of which is
Tiess than'{*) the value ¢of the subscript
of the succesding ococurrense,

The vaive of subseript ¥, is
Lhan' the value of subseript F,

3
& peqllcplagn) fog=0p
L u
where F;:(fii,fgz,.....,f:n) znd
Fy A i
Fozif 4, f.2,..0.0,0 .0
J o o o

are ordered set of subscript vaiues,

For more detalls on the hasic data dependency
aLgorithm, seelt].

The vectorization anaiysiz iz based on this
basic algeorithm{!] 2nd is enhanced by some program
cransformation technigues. At least three program
transformation technigues are related to the dats
dependency anziysis, These are statement
eichanging, loop spiitting, and logp unreliing for
& cyelic index.

Puring the datz dependency analysis if two
statements are eychangeable, they are exchanged Lo
reduce unsuitable dependency., Two statements are
exohangeable iff varisbles/arrays in twa
statements are mutually unsultably dependent or
independent [54 noL suitably dependent nar
HNKIIOWD .

I the course of the data dependency anailysis,
2 lioop 1s split ints vectorizable parts and
unvectorizable partes. The laop splitting
algorithm is as follows:

statement or &
ne & S-Block

(1) Let an
conditionsl
(Gpiit=-Biock}.

(2> Analyze the data dependencles within =
vectorizable S-Biock and among 5-Blocks and
mark unvectorizable on the S-Bloek if it
contains unsuitahly dependent or uniknown
dependent variables/arrays.

{3) Combine adjecent unvectorizable S-Blocks.
Repeat step 2 untii 2ll S-~Blocks ars
chercked .

{4) Combine adjscent vectorizable 3-Blocks.

assigmment
atatement

The resultant S«Biock is quite similar to the
PI-Block produced by the datz dependency graphltl.

Dats dependency analysis is effective only for
linear indexes, Dats dependency =znalysis for
non-linear indexes, such zs indirect addressing is
guite diffigult. Therefore, an earrzy with =2
non=linear index can be wvectorized if its
oooNuTrenses are Use only or it appears only onece.
Ceherwise 1t should be declared independent by a
user {Fig. 3.

*YOPTION V
e 10 i

T
L R)
{L0iy+B{L

Fig. 3 Forced to Vectorize Case

A cyslle index is & non-lingar index. &
prograrm with =& eweiice index, however, canb be
vectorized through & loop unrelling techrigue. In
Fig., u oyolin index 3 is removed by loop
unroiling.

Criginal iocp Unralied loop

o
=

o

e

W -~ 0n
v

.
—
o
4

r
[

Fig. 4 Loop Unrolling for A Cyelic Index

Vectorizing IF 3tatements

To vectorize IF statements, contrel fiow and
data flow, or data dependency under IF statements
are first anslyzed.

Tne mzin purposes of control flow analyszis are
te detect anomaiies, such as internal loops, or
hranches into control structures {(see Fig., &} and
clarify control and controiled relationships.

DCOIC di=1, W
IF{e1; GOTD 2
1 51
GOTO 2
2 1F(e2) THEN
se
EL3E
53
aT0 1
EXD IF
3 sk
TG CONTINUE

Fig. 5 A&n Anomalous Control Structure

Control {low analysis is reletively easy and
little is new To vector compiliers,

The situation iz different far dataz flow
ansglysis, Detz dependency of arrays within IF
statements is the same as that without IF
statements. However date dependency of variables
with IF statements is different(Fig. £).

Case & is unvectorizable, even though the
definitien aof wvariable 5 precedes its use
textually. Case B 1s wvectorizable, since the
variable iz totally defined and both definitions
precede its use. Case C 1s vectorizable, though

the variabie is partially defined, Here, a
varisbls iz totelly defined if 1is defining
oogurence appears on every path of the flow graph.
Stherwise it is cailed partislly defined.,

Case Ly IF({)} THER

Case B: JF() THEN
S=...
ELESE
S,
ENDIF
=3

Case C: IF({) THEN
S=...
L e=3
EL3E

ENDIF
Fig. & Dete Dependency Under IF

Thus ithe datz dependency condition is modified
as foilows:

{13 A varisble {2 unsuitsbly dependent if there
is a defining occurrence and there is a
path on which the defiring occurrence does
not precede the other pecurrence,

To check the above condition, the depih-first
traverse approach was first attempted for the IAP
compiler. Thiz methed is simpie and there is no
extra memory except for backiracking. However it
was toc slow te analyze & fairly large IO loop
with many IF statements. Therefore we introduced
if-then-eise reduction method which reduces
if-thern or if-thenwelse branches and that makes
the depth-firss method practical {12]
Nevertheless, the depthefirst method is
intrinsically time cohnsuming process.

S5 we have developed the breadth-first data
flow method for the 5-810 compiler. To faciliitate
this method we have introduced the data flow
operators, 1* and U*,

For each varizble v and each index i in a flow
graph, there are three data flow variables ENi(v),
OWNi(v), OUTi(v} defined as follows:

0% ouT ()
jePred{i}”

¢ =1 (use precedes)
GWN, (v)= { T (not appear!

* l +1 {def precedes)
OU?i(v): INi U* DWHi(V)

N, (v)=

i

Here, IK,{v) 1is +the input status for the
L . . -
variable v in vertex i, TWN_ (v} is the own siatus
i

for +the wvariable v in vertex i, JUT,(v) is the
outpﬁt status for the varisble v in verfex i,
Semantics of 1¥ and U* is cefined in Table Z.
The wvalue =% is interpreted &5 the unsuitabliy
dependent =iate, whereas the value +37 as ihe
suitsbly dependeni state. 4&nd the imitisl state

o

of each variable is set to ¢ as neutral state,

Table Z. Data flow operators.
it U*
Ol

e ————— + + + +
; R P : N
- + + +
- T B R RS e I A

Gl 00t 7 0=t Dol
S I B A R BN RS BT S

Unary (1% is defined by binary N*
zs followa:
%53 = D1 OAMEN* ..., 1%¥%n

=1..0

Using these operators and status variables,
the fiow graph 1s traversed in breadth-first
order, 1f the walue OUT of the final vertex is
not =1, then it is suitably dependent or
independent.{See an example in Fig. T:

Fig. T An Example of the Datas Flow Analysis

This algorithm is efficient in the sense that
ezch vertex 1s traversed only cnce, In general
this aigorithm is guite useful for variocus dats
dependency of wvariables, such as variables under
nested IF statements or partislly defined
variables.

Vectorization of IF statements can be further
extended based or the above gaigorithm. For
example, 31f semantics analysis i1z empleyed. some
special cases can De vectorized as well, OSuch an
example is shown in Fig. E.

DS 16 i=1,N
IF(A{KD.RG. XY 5=BiI}
C{I)=8%D(1}

16 CONTINUE

Fig. & Semantics enalysis of an IF statement

Tniz exanple 1is an unsuitably dependent case
by definition, since there is & definition of 2
variable and there is z path on which there iz no
preceding definition of the usage. However, when
the aemantics of IF statement is considered, this
IF expression is index independent (we call this
type of IF statement loop invarlant IF statement).
Therefore this definitioti or the veriabie is
either &iways executed or not executed st all for
z2il index values. Thus this type of varisbles can
be vectorized.

The other technigue for enhaneing
vectorization of IF statementis is related to the
program transformation technigues. One example is
the loop unroiling of edge conditions. {See
Fig. 90 IF statement of an edge¢ condition is
removed by the ioop unrolling.

DG 10 i=1,N

TF{L.EQ. t) THEN A{13=0.0
A{11=0.0 DO 10 i=&,b
EL2E =5 AC1)=S%B(i}
A{11=5%R(41) 0 CONTINUE
ERD IF

14 CONTINUE

Fig. G Loop Unroliing for an Edge Condition

Vector Object Optimizations

Ohject optimization ‘technigques for vector
compilers are vector text optimizations, vector
register assigmments, vector memory managements,
and cther machine dependent optimizations.

Vector text opiimization is a common technique
for +he LAF and the 3-830 vecteor processor and it
is similar to scalar text optimization. OSome of
the vector text optimization techniques are comaon
expression eiimination, invariant expression
moveout, and dead code elimination. Among Lhem
the first twoe are wmost effective for vector
Processors.

Veotor register zssigmment is the one of the
important tasks for the S«810 Lype vector
processcr. Vector memory managemenit 1is the
important task for IAF type vecltor processors.
The main target of vector memory menagement 1s the
efficient use of temporary vector in memory.

Examples of machine dependent gptimization for
the S-8%0 are:

(1) Use of WA(Vector Multiply with scalar and
Agd) instruction instead of W{Vector
Muitiply) with scalar and VA(Veclor Add)
instructions.

{2y Parallel executien of vector instructions
with their preparing instructionsi{Fig. 10).

Here ‘TestVp instruction, whieh will wait
the end of vectar intructions, is moved out

from the outer DO ioop,

] 14041 .
[PREPENE A, T

e ———— i

; iSeguence of | B ——— +

! Preparing ;///7 ‘Sequence of |
i VInstructions) | Vector |
i o stk i e —— lInstructions|
| EfecuteVP ' +

Te st VP
W

Fig. 10 Secelar/vectoer Parallel Execufion

(2} Compression of vector arguments for

intrinsic functions under IF
statements{Fig. 11}, The argument is
composed of those elemenits, each ol which
aorresponds to the Lrue case of

IF-expression.

DG 10 i=1,N
TF{A{1) NE, 0} THEN
B{i3=SQRT{A(L}:
ENDIF
1 CORTINUE

/R R

i % HH‘HHNH Expand

Fig. %1 4 Cempression of 4 Functieon Argument

fmong Lhese optimization techniques, the
vector register assignment is the most important
and most difficult onme, Little has been reported
on vector register &ssignment. The straiegy
should be different from scalar regiater
sssigmment, since wvector proecessors like 5-8210
exesute multipie veetor instructiens in parallel

end the acoess to the same vector regisiter by
¢ifferant instructions may hinder thelr parallel
execution. The veector instrucition specification
zlsc imposes some restrictions on the vector
register gssigmment for each instruction., Thus we
employ tebulated LRYU (Least Recently Used} method
te =2ssign vector registers in place of simple
Round-Fouin.

Kesulis

Though the basic &lgoritihm of Lhe dats
dependency anzlysis of the 3-815 1s the same a8
that of the I4F, & lot of technigues of enhancing
vectorization are used for the 5-810 compliers.
With %hese enhancements the vectorizstion ratio of
typical large scientific FCORTEAN programs bas
incregsed about 30%. And the performance ratioc of
S~-810 vector mode to scslar mode 1s about 10-100.
Maximum speec which wWas afttalned for & thermal
conduction progrerm written im FORTRAN program
compiled by the GS=§10 compiier is BBT WMFLOPE (

iiiion Floating Operations Per Second) |

154

Conclusion

He have deseribed some Dbasiz dstz flow
aigorithms and some vectorlzing technigues. Among
tnem, the aigorithm of anaiyzing data flow of
variables under IF statements utilizes the
bredth.first sppreach. For <that algorithm, we
have introduced the concept of dats flow operator.

The &lgorithms and techniques developed for
the S«810 vector compiler are effective as well as
practical. Some program transformation technigues
are eapecially useful for enhancing vectorization.
Wwe Dbelisve that program transformations by ventor
compilers should be further extended to vectorlze
many more ordinary programs.

Leknowledgement

Tne authors would tike to acknowledge Sakae
Takanashi for kis helpful comments during the
preparation of this paper.

References

1] FE. Takanuki, Y. Umetani and I, Nakata, "Some
Compiling Algorithms for an Array Processor™,
Proceedings of 3rd USA-JAPAN Computer
Conference, (1078}, pp.&73-279.

21 Y, Umetani, S, Kawabe, H, Horikoshi and
T. (daka, "in Analysis on Applicability of
the Vector Operations to Scientific Programs
and the Determination of an Effective
instruction Repertoire®, ibid, {19781,
pp. 331335,

[3] R. Takanuki and ¥, Umetani, "Optimizing
FORTRANTT", Hitazhi BReview, vel, 30,He. & ,

{1983,

[53 Y., Umetani and M. Yasumura, "4 Vectorizatlen
figorithm for Control Statements™, Journal of

Eae

=
1T
fs

16z

‘M. Yasumurs,

T e £

infarmation Processing, To be published.

Y, Umetani and K, Horikoshi,
"Partial Vectorization Method for Automsatic
Vecter Compilers™, Jowurnal of Information
Processing { in Japanese), Vel. 24, Ko. 1,
(1G85 .

D. Kusk, FE. Kuhrn, T, Padua,
M. Woife, "Dependence Graphs
Optimizations", Proceedings of
Symposium o Principles of
Languages, (19813, pp.207-218.

D. A&, Pedua, D. J. Kuck, and D. H, Lawrie,
"HighwSpeed Multiprocessors and Compilation
Techniques", TEEE Transaction on Computer,
Voi. Cw2G, (Sept. 19807, pp.7H3-T74.

D, J. Buck, "Perallel Processing of Ordinary

E, Lezsure and
and Compiler
the Sth ACM
Programming

Programs™, Advances 1in Computer, Academic
Press, Vol. 15, (1976},
4. V. Ahe and J. D. Ullman, T"Principles of

=
—

s
Lot

roa
L

1.

.
1.

Z2]

Compiier Design", Addison~Wesley, (1577,
E04p .,

L. B. Loveman, "Program Improvemsant by
Zource-towSource Transformstion™, Journal of
the ACM, Voi., 20, No. 3, {Jan. 1G7T7}.

K. L. Sites, “Arn Aneiysis of the CRAY=1
Computer®, Proceedings of the GSth Annual

Symposiwn on
R, 101=106,

M. Yasumursa,

Y. Umetanz, "&

Computer Architecture, {1578},

T. Matsunags, Y. Tanaxa, and
Method of Control Structure

Analysis for z Vector Compiler', Proceedings
of ¥ationel Conferencs of Information
Processing Japan {in Japanese), (Qct. 1G51:,
pp.211=-212.

;Y. Karaki, tEffactive Use af the

Supercomputer”™, (entre Rews, Computer (entre,
tniversity of Tokyo, Veol. 1%, WNo. § 10,
{1%83), pp.3%-62.

