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Abstract — Deep learning has historically developed around
discrete, matrix-based representations that align naturally with
GPU-oriented, globally synchronized computation. While this
paradigm has enabled remarkable computational performance,
the power required for large-scale training and inference has
become a significant practical and societal constraint as model
size and deployment scale continue to grow. In recent years,
continuous-time and dynamical formulations such as Neural
Ordinary Differential Equations, diffusion models, and state-
space models have gained increasing attention. This paper
argues that this representational shift has implications beyond
modeling style. First, it challenges the implicit reliance on global
synchronization inherent in matrix-centric computation,
opening possibilities for more asynchronous or locally
coordinated execution. Second, it suggests new opportunities for
improving energy efficiency by reducing synchronization and
data movement overhead. Third, this transition admits a limited
but informative structural analogy with the historical
development of quantum mechanics, in which matrix mechanics
and wave mechanics emerged as distinct yet complementary
representational frameworks. Without claiming mathematical
equivalence, this analogy is proposed as a conceptual
perspective for understanding an ongoing transition in the
foundations of deep learning.
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I. INTRODUCTION

Deep learning has developed predominantly on the assumption
of matrix-based computation. From early feedforward networks
to modern architectures such as convolutional neural networks
and Transformers [22], the core computational abstraction has
remained largely unchanged: models are constructed as discrete
layers, each implemented primarily through matrix or tensor
multiplications. This abstraction has provided a clear
mathematical framework and has supported rapid progress over
the past decade [13][8]. It is worth noting that the core learning
principle  underlying neural networks—gradient-based
optimization [18][19] and its stochastic variants rooted in
stochastic approximation theory [18][3]—was originally
developed in the context of continuous optimization and
stochastic processes, prior to the widespread adoption of layer-
wise, matrix-centric implementations. Later developments, such
as information-geometric formulations of learning [1], further
deepened this perspective within neural network models.

The success of this paradigm is inseparable from the
evolution of GPU architectures. General matrix—matrix
multiplication (GEMM) has been optimized to an extraordinary
degree, becoming the fundamental operation around which
modern accelerators, software frameworks, and programming
models are organized. As a result, deep learning systems have
achieved unprecedented levels of computational throughput by
aligning model structure with the strengths of GPU hardware.

At the same time, this tight coupling has also revealed
growing limitations. High performance is achieved by aligning
model structure with globally synchronized, batch-oriented
execution and large-scale data movement, a computational
organization that, while effective, leads to substantial energy
consumption at scale [12][11]. As models continue to scale and
are increasingly deployed in real-world systems, the power
required for training and inference has emerged as a critical
constraint. The issue of energy efficiency is no longer a purely
engineering concern, but one that intersects with economic cost,
infrastructure capacity, and environmental impact.

In parallel with these challenges, recent years have witnessed
the rapid emergence of alternative formulations of deep learning
based on continuous-time and dynamical representations,
including Neural Ordinary Differential Equations (Neural ODE)
[5], stochastic differential equation—based generative models
[4][21], and state-space models [9][6]. These approaches differ
fundamentally from the traditional layer-by-layer matrix
multiplication paradigm and suggest new ways of organizing
computation.

The purpose of this paper is to reconsider the current state of
deep learning by making explicit the representational
assumptions that underlie models, computational organization,
and hardware execution. Focusing on the transition from matrix-
centric formulations to continuous-time and dynamical
representations, we examine how representation influences
synchronization, scalability, and energy use in modern systems.

This paper argues that the ongoing shift in deep learning
from matrix-centric representations toward continuous-time and
dynamical formulations has several important implications.
First, this transition challenges the implicit reliance on globally
synchronized computation that has accompanied matrix-based
models and GPU-oriented implementations, opening the
possibility of more asynchronous or locally coordinated
computational structures. Second, this representational shift
suggests new opportunities for improving energy efficiency, as
reduced global synchronization and localized state evolution
may alleviate data movement and power consumption
bottlenecks inherent in large-scale matrix computation. Third,
this development admits a limited but informative structural



analogy with historical transitions in quantum mechanics, where
changes in representational frameworks reshaped theoretical
understanding without immediate one-to-one mathematical
correspondence.

II. DISCRETE, MATRIX-BASED DEEP LEARNING:
STRENGTHS AND LIMITS

Modern deep learning architectures are predominantly built
upon discrete, matrix-based representations [8]. Widely used
models such as residual networks (ResNet) [10] and
Transformer-based architectures [22] can be viewed, at an
abstract level, as compositions of layers, each of which is
implemented primarily through matrix or tensor multiplications
followed by element-wise nonlinearities. This formulation has
proven remarkably successful, enabling both expressive
modeling and efficient implementation.

The dominance of this paradigm is closely tied to the
evolution of GPU architectures. Matrix multiplication has been
optimized to an extraordinary degree on modern accelerators,
achieving near-peak hardware utilization under favorable
conditions. Large-scale general GEMM serves as the
computational backbone of contemporary deep learning
frameworks, allowing massive parallelism and high arithmetic
throughput.

However, this efficiency is achieved under specific
assumptions. First, performance depends strongly on batch size
and sequence length. High utilization of GPU resources requires
sufficiently large matrices so that parallel execution units can be
fully occupied. In scenarios involving small batch sizes, short
sequences, or real-time and streaming inference, computational
efficiency can degrade significantly. This dependency
introduces practical constraints for applications that demand low
latency or incremental processing.

Second, although matrix multiplication is known to exhibit
high data reuse in theory, the extent to which weights and
intermediate representations can be effectively reused is
structurally limited in deep learning workloads. As model size
grows, parameters and activations often exceed on-chip memory
capacity, forcing frequent transfers between memory hierarchies.
Moreover, successive layers typically involve different weight
matrices and transformed representations, restricting reuse
across layers. As a result, data movement increasingly
dominates computation, giving rise to well-known memory
bottlenecks that cannot be resolved by faster arithmetic units
alone.

Third, scaling model size leads to rapid growth in
computational cost, memory consumption, and communication
overhead. As models become deeper and wider, the number of
parameters and intermediate activations increases accordingly,
requiring more arithmetic operations and larger memory
footprints. During training, forward propagation, backward
propagation, and parameter updates must be repeatedly executed,
and intermediate states must be stored or recomputed, further
amplifying resource demands. In distributed settings, these
effects are compounded by the need to synchronize parameters
and gradients across devices, leading to increased
communication overhead. Together, these factors indicate that

continued scaling imposes growing structural burdens on
computation and memory systems.

Taken together, these factors suggest that the matrix-based
paradigm, while extraordinarily effective, is approaching
structural limits. This observation resonates with broader
reflections in the machine learning community, including the
argument that progress driven primarily by scale and
computation eventually encounters diminishing returns. In this
sense, the current “matrix-based era” of deep learning may be
nearing a point where alternative representations and
computational paradigms warrant serious consideration.

III. THE EMERGENCE OF CONTINUOUS-TIME DEEP
LEARNING

In contrast to the discrete, layer-wise formulation that has
dominated deep learning, recent years have seen the rapid
emergence of models based on continuous-time and dynamical
representations. Notably, this shift resonates with earlier views
of learning as a dynamical and stochastic process. Gradient-
based optimization and its stochastic variants were originally
formulated in the context of continuous optimization and
stochastic approximation [ 18], and were later given a geometric
interpretation within neural network learning through
information-geometric formulations [1]. More recent work has
further revisited stochastic gradient descent as a stochastic
dynamical system with nontrivial long-term behavior in deep
networks [4]. These approaches depart from the assumption that
computation must be organized as a sequence of distinct matrix-
based layers, and instead describe learning and inference as the
evolution of states over continuous time.

A. Neural Ordinary Differential Equations

The introduction of Neural Ordinary Differential Equations
(Neural ODEs) [5] marked a conceptual shift in how deep neural
networks can be understood. Neural ODEs can be interpreted as
the continuous-time limit of residual networks, in which the
depth of the network tends to infinity while the change induced
by each layer becomes infinitesimal. In this formulation, the
notion of discrete layers effectively disappears, and network
behavior is governed by an ordinary differential equation
parameterized by a neural network.

A key consequence of this perspective is that parameters are
reused continuously over time, rather than being tied to
individual layers [5]. This contrasts sharply with conventional
deep networks, where each layer introduces a new set of
parameters and intermediate representations. By framing
computation as a dynamical system, Neural ODEs suggest
alternative ways of organizing model capacity, memory usage,
and temporal evolution.

B. Neural Stochastic Differential Equations and Diffusion
Models

Building on this continuous-time viewpoint, stochastic
differential equation (SDE)-based models [4][21] have become
central to modern generative modeling. Diffusion models,
which have achieved state-of-the-art performance in image,
audio, and text generation [21], are naturally described as
continuous-time  stochastic processes that progressively
transform noise into structured data.



In this setting, the essence of generation is not a sequence of
deterministic transformations, but rather the controlled
evolution of a probability distribution over time. Although these
models are often implemented using discrete time steps for
practical reasons, their theoretical foundation lies in continuous
stochastic dynamics. This represents a further departure from
traditional layer-based interpretations and reinforces the view
that generative modeling is increasingly grounded in
continuous-time processes.

C. State Space Models and Long-Sequence Modeling

Another important development is the resurgence of state space
models (SSMs) for sequence modeling, exemplified by
architectures such as S4 [9] and Mamba [6]. These models move
away from both attention mechanisms and conventional
convolutional formulations, instead leveraging the stability and
expressive power of continuous-time linear dynamical systems.

By modeling sequences through latent states that evolve
according to structured dynamics, SSM-based approaches offer
favorable scaling properties for long sequences and emphasize
local state updates rather than global interactions. While matrix
operations remain part of their implementation, the underlying
representational framework is fundamentally dynamical, rooted
in continuous-time system theory rather than being organized
around layer-wise compositions of large GEMM:s.

D. Continuous Dynamics in Broader Learning Frameworks

Beyond these specific model classes, continuous-time dynamics
have also appeared in a wide range of learning paradigms.
Physics-informed neural networks [16] explicitly encode
differential equations into the learning process, treating neural
networks as function approximators for continuous physical
systems. Similarly, certain approaches in implicit neural
representations [20], meta-learning [7], and optimization-based
learning frameworks [3] interpret adaptation and inference as
trajectories in continuous parameter or state spaces.

E. Toward Non—Matrix-Centric Representations

Taken together, these developments indicate a broader trend: the
representational foundations of deep learning are no longer
exclusively tied to discrete, matrix-based layer constructions.
Instead, an increasing number of models are naturally described
in terms of continuous-time evolution, dynamical systems, and
state transitions. While matrix operations remain central at the
level of implementation, the conceptual shift toward continuous
dynamics suggests an expanding space of representations that
are not fundamentally defined by matrix multiplication alone.

This growing diversity of representational frameworks sets
the stage for reconsidering both the theoretical and practical
assumptions underlying modern deep learning, particularly in
relation to scalability, energy efficiency, and computational
organization.

IV. IMPLICATIONS OF THE REPRESENTATIONAL
TRANSITION

The transition from matrix-centric representations to dynamical
and continuous-time formulations in deep learning is not merely
a change in modeling technique. Rather, it carries a set of
broader implications concerning how computation is organized,

how resources are consumed, and how theoretical frameworks
are conceptualized. This section examines three such
implications: the role of global synchronization in computation,
its consequences for energy efficiency and scalability, and a
limited structural analogy with historical conceptual transitions
in quantum mechanics.

A. From Global Synchronization to Local Dynamics

Matrix-based representations implicitly favor a computational
model built around global synchronization. In conventional
layer-based neural networks, neurons within a given layer are
typically evaluated synchronously: the outputs of all units in a
layer are computed together before computation proceeds to the
next layer. This layer-wise synchronization is central to how
such models are both specified and executed in practice.

The mathematical formalism underlying this mode of
computation is the matrix. Although matrices as abstract
mathematical objects do not explicitly encode synchronization,
they are commonly interpreted as representing simultaneous
operations over collections of elements. Writing a matrix
multiplication conceptually groups many operations into a
single computational step, an interpretation that naturally aligns
with synchronous execution.

This interpretation, in turn, matches the design of
synchronous digital circuits. Modern hardware executes matrix
operations by coordinating large numbers of arithmetic units
under a shared clock, ensuring lockstep processing across layers
and batches. The effectiveness of matrix-centric deep learning is
therefore closely tied to hardware architectures optimized for
globally synchronized computation.

Importantly, synchronization is not an explicit concept in
most mathematical formulations of learning or computation.
Nevertheless, many existing theories rely implicitly on
assumptions of global consistency and ordered updates, even in
pure mathematics, where theorem proving and formal reasoning
typically presuppose a well-defined sequence of evaluation steps.
Such assumptions are largely unproblematic in human reasoning
and in centrally controlled, synchronous computation. However,
they become explicit constraints when computation is
distributed, asynchronous, or subject to formal verification. In
these settings, removing global synchronization exposes
ambiguities and inconsistencies that were previously hidden,
revealing limitations in existing theoretical frameworks and
motivating the development of new mathematical tools capable
of reasoning about learning dynamics without implicit global
order [14].

From this viewpoint, global synchronization should be
understood not as an inherent requirement of neural computation,
but as a consequence of matrix-centric modeling and its
associated computational interpretation. The assumption that
computation proceeds through globally ordered, layer-wise
updates arises naturally when learning is formulated in terms of
discrete matrix operations executed in lockstep. However, this
organizational structure reflects historical and practical design
choices rather than a fundamental property of learning dynamics
themselves. Recognizing this distinction is essential for
understanding how alternative representational frameworks can



support  different modes of computation, including
asynchronous, decentralized, or locally coordinated dynamics.

A similar principle can be observed in biological
computation. Neural processing in the brain unfolds through
continuous-time dynamics and predominantly local interactions,
without relying on explicit matrix multiplications or strict global
synchronization. While biological systems differ fundamentally
from artificial neural networks in their physical realization and
learning mechanisms, their existence demonstrates that highly
efficient computation can be achieved without globally
synchronized, layer-wise execution. This observation reinforces
the view that global synchronization is a contingent feature of
particular representational and hardware choices, rather than a
universal requirement for effective computation.

B. Synchronization and Energy Consumption

The limitations discussed in Section II are often described in
terms of hardware efficiency, memory bandwidth, or system-
scale optimization. In this section, we revisit these issues from a
different perspective. Rather than treating energy consumption
and scalability as purely engineering challenges, we interpret
them as consequences of representational and organizational

assumptions embedded in matrix-centric computation,
particularly its reliance on global synchronization.
The implications of reduced reliance on global

synchronization extend beyond conceptual clarity to practical
concerns of energy consumption and scalability. In large-scale
matrix-based systems, a significant portion of energy is
expended not on arithmetic operations themselves, but on data
movement and coordination. Global synchronization often
amplifies these costs by requiring frequent communication,
memory transfers, and idle waiting across processing units.

As model sizes grow, these overheads become increasingly
dominant. The need to maintain synchronized execution across
large batches and deep layer stacks exacerbates memory
bandwidth demands and contributes to rising power
consumption in training and inference. From this perspective,
energy inefficiency is not merely a byproduct of large models,
but is closely tied to the organizational assumptions embedded
in matrix-centric computation.

Dynamical representations suggest alternative
organizational principles. Local state updates, parameter reuse
over time, and continuous evolution can reduce the frequency
and scope of global coordination. In such settings, computation
may be structured around localized interactions and incremental
updates, potentially alleviating some of the data movement and
synchronization overheads that dominate energy consumption in
current systems [2][17].

It is important to emphasize that energy efficiency is not the
primary objective of adopting dynamical representations. Rather,
any potential reductions in power consumption should be
viewed as secondary consequences of a broader representational
shift. Whether and to what extent these advantages can be
realized in practice depends on hardware design, numerical
methods, and system-level considerations. Nonetheless, the
transition away from strict global synchronization opens a
plausible pathway toward more energy-efficient and scalable
learning systems.

C. A Structural Analogy with Quantum Mechanics

The historical development of quantum mechanics provides a
useful reference point for situating the representational
transition discussed in this paper, in which multiple
mathematical frameworks coexist to describe the same
underlying phenomena. In the mid-1920s, quantum theory
emerged through two seemingly distinct formulations: matrix
mechanics, developed by Heisenberg, and wave mechanics,
introduced by Schrodinger. Matrix mechanics described
physical observables using discrete algebraic structures,
emphasizing operator relations and non-commutative matrices.
Wave mechanics, by contrast, formulated quantum phenomena
in terms of continuous wave functions evolving over space and
time.

Despite their markedly different mathematical forms and
conceptual intuitions, matrix mechanics and wave mechanics
were soon understood as complementary descriptions of the
same physical phenomena. Each emphasized different structural
aspects of quantum theory, offering distinct perspectives on
quantum behavior. This relationship was later clarified—most
notably through the work of von Neumann [15]—by showing
that the two formulations are mathematically equivalent
representations of a single underlying theory. Their coexistence
therefore reflected not merely an alternative choice of notation,
nor a simple replacement of one formalism by another, but a
deeper conceptual reorganization of how physical systems could
be described at a time when classical intuitions about dynamics,
measurement, and representation were being fundamentally
revised. More broadly, this episode illustrates how shifts in
representational ~ frameworks can reshape theoretical
understanding ~ without  necessitating the immediate
abandonment of established formalisms.

A similar, though not mathematically equivalent, situation
can be observed in contemporary deep learning. Matrix-based
models and dynamical formulations represent different ways of
organizing and interpreting computation. Neither framework
fully subsumes the other, and both continue to coexist in practice.
The analogy lies in the recognition that shifts in representation
can reshape conceptual understanding without requiring
immediate unification or equivalence.

It is crucial to stress that this analogy is structural and
historical rather than formal. This paper does not claim any
mathematical correspondence between the equations of
quantum mechanics and learning dynamics. Instead, the analogy
serves as a conceptual aid for interpreting the current
diversification of representational frameworks in deep learning.
By viewing the emergence of dynamical models as part of a
broader transition in how computation is represented, it becomes
possible to situate recent developments within a larger pattern of
theoretical evolution.

V. IMPLICATIONS FOR ENERGY-EFFICIENT
HARDWARE

Matrix-based deep learning architectures implicitly rely on
globally synchronized execution. In layer-based models, all
activations within a layer must be computed and aligned before
the next transformation can proceed. These layer-wise
synchronization barriers induce concentrated data movement,



idle waiting, and bursts of memory access, leading to high
energy density and significant power consumption in modern
GPU-based accelerators, as observed in large-scale accelerator
studies such as TPU and GPU deployments [12].

By contrast, dynamical representations do not require strict
layer-wise global synchronization as a principle. State evolution
can, at least conceptually, proceed through asynchronous or
locally coordinated updates, allowing different components of
the system to evolve without centralized coordination. Although
practical implementations often reintroduce discretization and
partial synchronization, the representational framework itself
does not mandate global barriers.

From an energy perspective, this distinction is significant. A
substantial fraction of energy consumption in large-scale
systems arises not from arithmetic operations alone, but from
synchronization overhead, data movement, and waiting induced
by global coordination, as extensively analyzed in hardware-
level studies [11]. Relaxing global synchronization therefore
opens the possibility of reducing these overheads, even when the
total number of parameters or arithmetic operations remains
comparable.

Importantly, any potential reduction in energy consumption
should be understood as a consequence of altered
synchronization structure rather than as an intrinsic property of
continuous-time models. The transition from matrix-based to
dynamical representations does not guarantee energy efficiency
by itself, but it expands the design space in which alternative
trade-offs between synchronization, data movement, and power
consumption can be explored.

From this viewpoint, the evolution of deep learning
representations and the pursuit of energy-efficient hardware
appear to be aligned through a shared shift away from globally
synchronized computation toward more flexible, locally
coordinated execution. Recognizing this alignment may be
essential for sustaining progress in deep learning under
increasingly stringent energy and resource constraints.

The implications discussed in this section do not arise from
a reduction in model size or parameter count. Instead, they stem
from differences in computational organization, particularly the
degree to which global synchronization is required during
execution. From this perspective, energy efficiency is not treated
as a purely engineering concern, but as a consequence of
representational assumptions embedded in matrix-centric
computation.

Removing global synchronization also exposes assumptions
that are usually left implicit in mathematical formulations of
learning dynamics. While such assumptions are largely
unproblematic under synchronous execution, studies of
asynchronous and decentralized optimization have shown that
they become explicit constraints when synchronization is
relaxed, requiring new theoretical tools to reason about
consistency, convergence, and stability [14].

VI. CONCLUDING REMARKS: A POSITION, NOT A
PRESCRIPTION

The preceding sections have argued that contemporary deep
learning is undergoing a shift in its dominant representational

assumptions. Discrete, matrix-based formulations—Ilong
aligned  with  GPU-oriented, globally  synchronized
computation—are increasingly complemented by continuous-
time and dynamical perspectives. This paper has approached this
development not as a proposal of new models, but as a
conceptual reexamination of how representation, computation,
and constraint interact.

A central theme of this work is that many practical
challenges commonly framed as engineering issues—such as
scalability, energy consumption, and system-level efficiency—
are deeply connected to representational and organizational
assumptions embedded in matrix-centric computation. In
particular, the reliance on global synchronization emerges not as
a fundamental requirement of learning itself, but as a
consequence of how computation has been structured around
discrete matrix operations.

From this perspective, continuous-time and dynamical
formulations are not presented as replacements for matrix-based
models, nor as guaranteed solutions to efficiency concerns.
Rather, they expand the space of possible computational
organizations, including those that relax strict global
synchronization and emphasize local or incremental state
evolution. Whether such possibilities translate into practical
advantages depends on many factors, including algorithm
design, hardware support, and system integration.

More broadly, this work suggests that deep learning may not
admit a single, essential mathematical representation. Matrix-
based and dynamical formulations emphasize different aspects
of learning—algebraic composition on the one hand, and
trajectories, stability, and evolution on the other. Their
coexistence should therefore be understood not as a temporary
inconsistency, but as an expression of the field’s increasing
conceptual richness.

In this sense, the contribution of this paper is not prescriptive.
It does not advocate a specific architecture, training method, or
hardware platform. Instead, it articulates a position: that ongoing
developments in deep learning are best understood by making
explicit the representational assumptions that underlie
computation, synchronization, and energy use. By clarifying
these assumptions, we hope to provide a framework for
interpreting current trends and for motivating future work that
aligns expressive power with sustainable computation.
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