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Abstract — Deep learning has historically developed around 
discrete, matrix-based representations that align naturally with 
GPU-oriented, globally synchronized computation. While this 
paradigm has enabled remarkable computational performance, 
the power required for large-scale training and inference has 
become a significant practical and societal constraint as model 
size and deployment scale continue to grow. In recent years, 
continuous-time and dynamical formulations such as Neural 
Ordinary Differential Equations, diffusion models, and state-
space models have gained increasing attention. This paper 
argues that this representational shift has implications beyond 
modeling style. First, it challenges the implicit reliance on global 
synchronization inherent in matrix-centric computation, 
opening possibilities for more asynchronous or locally 
coordinated execution. Second, it suggests new opportunities for 
improving energy efficiency by reducing synchronization and 
data movement overhead. Third, this transition admits a limited 
but informative structural analogy with the historical 
development of quantum mechanics, in which matrix mechanics 
and wave mechanics emerged as distinct yet complementary 
representational frameworks. Without claiming mathematical 
equivalence, this analogy is proposed as a conceptual 
perspective for understanding an ongoing transition in the 
foundations of deep learning. 

Keywords — Deep learning; Matrix-based computation; 
Continuous-time models; Neural Ordinary Differential Equations 
(Neural ODE); Diffusion models; State space models; Energy 
efficiency; GPU architectures; Dynamical systems; Representation 
learning; Analog computation; Computational sustainability. 

I. INTRODUCTION 
Deep learning has developed predominantly on the assumption 
of matrix-based computation. From early feedforward networks 
to modern architectures such as convolutional neural networks 
and Transformers [22], the core computational abstraction has 
remained largely unchanged: models are constructed as discrete 
layers, each implemented primarily through matrix or tensor 
multiplications. This abstraction has provided a clear 
mathematical framework and has supported rapid progress over 
the past decade [13][8]. It is worth noting that the core learning 
principle underlying neural networks—gradient-based 
optimization [18][19] and its stochastic variants rooted in 
stochastic approximation theory [18][3]—was originally 
developed in the context of continuous optimization and 
stochastic processes, prior to the widespread adoption of layer-
wise, matrix-centric implementations. Later developments, such 
as information-geometric formulations of learning [1], further 
deepened this perspective within neural network models. 

The success of this paradigm is inseparable from the 
evolution of GPU architectures. General matrix–matrix 
multiplication (GEMM) has been optimized to an extraordinary 
degree, becoming the fundamental operation around which 
modern accelerators, software frameworks, and programming 
models are organized. As a result, deep learning systems have 
achieved unprecedented levels of computational throughput by 
aligning model structure with the strengths of GPU hardware. 

At the same time, this tight coupling has also revealed 
growing limitations. High performance is achieved by aligning 
model structure with globally synchronized, batch-oriented 
execution and large-scale data movement, a computational 
organization that, while effective, leads to substantial energy 
consumption at scale [12][11]. As models continue to scale and 
are increasingly deployed in real-world systems, the power 
required for training and inference has emerged as a critical 
constraint. The issue of energy efficiency is no longer a purely 
engineering concern, but one that intersects with economic cost, 
infrastructure capacity, and environmental impact. 

In parallel with these challenges, recent years have witnessed 
the rapid emergence of alternative formulations of deep learning 
based on continuous-time and dynamical representations, 
including Neural Ordinary Differential Equations (Neural ODE) 
[5], stochastic differential equation–based generative models 
[4][21], and state-space models [9][6]. These approaches differ 
fundamentally from the traditional layer-by-layer matrix 
multiplication paradigm and suggest new ways of organizing 
computation. 

The purpose of this paper is to reconsider the current state of 
deep learning by making explicit the representational 
assumptions that underlie models, computational organization, 
and hardware execution. Focusing on the transition from matrix-
centric formulations to continuous-time and dynamical 
representations, we examine how representation influences 
synchronization, scalability, and energy use in modern systems.  

This paper argues that the ongoing shift in deep learning 
from matrix-centric representations toward continuous-time and 
dynamical formulations has several important implications. 
First, this transition challenges the implicit reliance on globally 
synchronized computation that has accompanied matrix-based 
models and GPU-oriented implementations, opening the 
possibility of more asynchronous or locally coordinated 
computational structures. Second, this representational shift 
suggests new opportunities for improving energy efficiency, as 
reduced global synchronization and localized state evolution 
may alleviate data movement and power consumption 
bottlenecks inherent in large-scale matrix computation. Third, 
this development admits a limited but informative structural 
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analogy with historical transitions in quantum mechanics, where 
changes in representational frameworks reshaped theoretical 
understanding without immediate one-to-one mathematical 
correspondence. 

II. DISCRETE, MATRIX-BASED DEEP LEARNING: 
STRENGTHS AND LIMITS 

Modern deep learning architectures are predominantly built 
upon discrete, matrix-based representations [8]. Widely used 
models such as residual networks (ResNet) [10] and 
Transformer-based architectures [22] can be viewed, at an 
abstract level, as compositions of layers, each of which is 
implemented primarily through matrix or tensor multiplications 
followed by element-wise nonlinearities. This formulation has 
proven remarkably successful, enabling both expressive 
modeling and efficient implementation. 

The dominance of this paradigm is closely tied to the 
evolution of GPU architectures. Matrix multiplication has been 
optimized to an extraordinary degree on modern accelerators, 
achieving near-peak hardware utilization under favorable 
conditions. Large-scale general GEMM serves as the 
computational backbone of contemporary deep learning 
frameworks, allowing massive parallelism and high arithmetic 
throughput. 

However, this efficiency is achieved under specific 
assumptions. First, performance depends strongly on batch size 
and sequence length. High utilization of GPU resources requires 
sufficiently large matrices so that parallel execution units can be 
fully occupied. In scenarios involving small batch sizes, short 
sequences, or real-time and streaming inference, computational 
efficiency can degrade significantly. This dependency 
introduces practical constraints for applications that demand low 
latency or incremental processing. 

Second, although matrix multiplication is known to exhibit 
high data reuse in theory, the extent to which weights and 
intermediate representations can be effectively reused is 
structurally limited in deep learning workloads. As model size 
grows, parameters and activations often exceed on-chip memory 
capacity, forcing frequent transfers between memory hierarchies. 
Moreover, successive layers typically involve different weight 
matrices and transformed representations, restricting reuse 
across layers. As a result, data movement increasingly 
dominates computation, giving rise to well-known memory 
bottlenecks that cannot be resolved by faster arithmetic units 
alone. 

Third, scaling model size leads to rapid growth in 
computational cost, memory consumption, and communication 
overhead. As models become deeper and wider, the number of 
parameters and intermediate activations increases accordingly, 
requiring more arithmetic operations and larger memory 
footprints. During training, forward propagation, backward 
propagation, and parameter updates must be repeatedly executed, 
and intermediate states must be stored or recomputed, further 
amplifying resource demands. In distributed settings, these 
effects are compounded by the need to synchronize parameters 
and gradients across devices, leading to increased 
communication overhead. Together, these factors indicate that 

continued scaling imposes growing structural burdens on 
computation and memory systems. 

Taken together, these factors suggest that the matrix-based 
paradigm, while extraordinarily effective, is approaching 
structural limits. This observation resonates with broader 
reflections in the machine learning community, including the 
argument that progress driven primarily by scale and 
computation eventually encounters diminishing returns. In this 
sense, the current “matrix-based era” of deep learning may be 
nearing a point where alternative representations and 
computational paradigms warrant serious consideration. 

III. THE EMERGENCE OF CONTINUOUS-TIME DEEP 
LEARNING 

In contrast to the discrete, layer-wise formulation that has 
dominated deep learning, recent years have seen the rapid 
emergence of models based on continuous-time and dynamical 
representations. Notably, this shift resonates with earlier views 
of learning as a dynamical and stochastic process. Gradient-
based optimization and its stochastic variants were originally 
formulated in the context of continuous optimization and 
stochastic approximation [18], and were later given a geometric 
interpretation within neural network learning through 
information-geometric formulations [1]. More recent work has 
further revisited stochastic gradient descent as a stochastic 
dynamical system with nontrivial long-term behavior in deep 
networks [4]. These approaches depart from the assumption that 
computation must be organized as a sequence of distinct matrix-
based layers, and instead describe learning and inference as the 
evolution of states over continuous time. 

A. Neural Ordinary Differential Equations 
The introduction of Neural Ordinary Differential Equations 
(Neural ODEs) [5] marked a conceptual shift in how deep neural 
networks can be understood. Neural ODEs can be interpreted as 
the continuous-time limit of residual networks, in which the 
depth of the network tends to infinity while the change induced 
by each layer becomes infinitesimal. In this formulation, the 
notion of discrete layers effectively disappears, and network 
behavior is governed by an ordinary differential equation 
parameterized by a neural network. 

A key consequence of this perspective is that parameters are 
reused continuously over time, rather than being tied to 
individual layers [5]. This contrasts sharply with conventional 
deep networks, where each layer introduces a new set of 
parameters and intermediate representations. By framing 
computation as a dynamical system, Neural ODEs suggest 
alternative ways of organizing model capacity, memory usage, 
and temporal evolution. 

B. Neural Stochastic Differential Equations and Diffusion 
Models 

Building on this continuous-time viewpoint, stochastic 
differential equation (SDE)–based models [4][21] have become 
central to modern generative modeling. Diffusion models, 
which have achieved state-of-the-art performance in image, 
audio, and text generation [21], are naturally described as 
continuous-time stochastic processes that progressively 
transform noise into structured data. 
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In this setting, the essence of generation is not a sequence of 
deterministic transformations, but rather the controlled 
evolution of a probability distribution over time. Although these 
models are often implemented using discrete time steps for 
practical reasons, their theoretical foundation lies in continuous 
stochastic dynamics. This represents a further departure from 
traditional layer-based interpretations and reinforces the view 
that generative modeling is increasingly grounded in 
continuous-time processes. 

C. State Space Models and Long-Sequence Modeling 
Another important development is the resurgence of state space 
models (SSMs) for sequence modeling, exemplified by 
architectures such as S4 [9] and Mamba [6]. These models move 
away from both attention mechanisms and conventional 
convolutional formulations, instead leveraging the stability and 
expressive power of continuous-time linear dynamical systems. 

By modeling sequences through latent states that evolve 
according to structured dynamics, SSM-based approaches offer 
favorable scaling properties for long sequences and emphasize 
local state updates rather than global interactions. While matrix 
operations remain part of their implementation, the underlying 
representational framework is fundamentally dynamical, rooted 
in continuous-time system theory rather than being organized 
around layer-wise compositions of large GEMMs. 

D. Continuous Dynamics in Broader Learning Frameworks 
Beyond these specific model classes, continuous-time dynamics 
have also appeared in a wide range of learning paradigms. 
Physics-informed neural networks [16] explicitly encode 
differential equations into the learning process, treating neural 
networks as function approximators for continuous physical 
systems. Similarly, certain approaches in implicit neural 
representations [20], meta-learning [7], and optimization-based 
learning frameworks [3] interpret adaptation and inference as 
trajectories in continuous parameter or state spaces. 

E. Toward Non–Matrix-Centric Representations 
Taken together, these developments indicate a broader trend: the 
representational foundations of deep learning are no longer 
exclusively tied to discrete, matrix-based layer constructions. 
Instead, an increasing number of models are naturally described 
in terms of continuous-time evolution, dynamical systems, and 
state transitions. While matrix operations remain central at the 
level of implementation, the conceptual shift toward continuous 
dynamics suggests an expanding space of representations that 
are not fundamentally defined by matrix multiplication alone. 

This growing diversity of representational frameworks sets 
the stage for reconsidering both the theoretical and practical 
assumptions underlying modern deep learning, particularly in 
relation to scalability, energy efficiency, and computational 
organization. 

IV. IMPLICATIONS OF THE REPRESENTATIONAL 
TRANSITION 

The transition from matrix-centric representations to dynamical 
and continuous-time formulations in deep learning is not merely 
a change in modeling technique. Rather, it carries a set of 
broader implications concerning how computation is organized, 

how resources are consumed, and how theoretical frameworks 
are conceptualized. This section examines three such 
implications: the role of global synchronization in computation, 
its consequences for energy efficiency and scalability, and a 
limited structural analogy with historical conceptual transitions 
in quantum mechanics. 

A. From Global Synchronization to Local Dynamics 
Matrix-based representations implicitly favor a computational 
model built around global synchronization. In conventional 
layer-based neural networks, neurons within a given layer are 
typically evaluated synchronously: the outputs of all units in a 
layer are computed together before computation proceeds to the 
next layer. This layer-wise synchronization is central to how 
such models are both specified and executed in practice. 

The mathematical formalism underlying this mode of 
computation is the matrix. Although matrices as abstract 
mathematical objects do not explicitly encode synchronization, 
they are commonly interpreted as representing simultaneous 
operations over collections of elements. Writing a matrix 
multiplication conceptually groups many operations into a 
single computational step, an interpretation that naturally aligns 
with synchronous execution. 

This interpretation, in turn, matches the design of 
synchronous digital circuits. Modern hardware executes matrix 
operations by coordinating large numbers of arithmetic units 
under a shared clock, ensuring lockstep processing across layers 
and batches. The effectiveness of matrix-centric deep learning is 
therefore closely tied to hardware architectures optimized for 
globally synchronized computation. 

Importantly, synchronization is not an explicit concept in 
most mathematical formulations of learning or computation. 
Nevertheless, many existing theories rely implicitly on 
assumptions of global consistency and ordered updates, even in 
pure mathematics, where theorem proving and formal reasoning 
typically presuppose a well-defined sequence of evaluation steps. 
Such assumptions are largely unproblematic in human reasoning 
and in centrally controlled, synchronous computation. However, 
they become explicit constraints when computation is 
distributed, asynchronous, or subject to formal verification. In 
these settings, removing global synchronization exposes 
ambiguities and inconsistencies that were previously hidden, 
revealing limitations in existing theoretical frameworks and 
motivating the development of new mathematical tools capable 
of reasoning about learning dynamics without implicit global 
order [14]. 

From this viewpoint, global synchronization should be 
understood not as an inherent requirement of neural computation, 
but as a consequence of matrix-centric modeling and its 
associated computational interpretation. The assumption that 
computation proceeds through globally ordered, layer-wise 
updates arises naturally when learning is formulated in terms of 
discrete matrix operations executed in lockstep. However, this 
organizational structure reflects historical and practical design 
choices rather than a fundamental property of learning dynamics 
themselves. Recognizing this distinction is essential for 
understanding how alternative representational frameworks can 
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support different modes of computation, including 
asynchronous, decentralized, or locally coordinated dynamics. 

A similar principle can be observed in biological 
computation. Neural processing in the brain unfolds through 
continuous-time dynamics and predominantly local interactions, 
without relying on explicit matrix multiplications or strict global 
synchronization. While biological systems differ fundamentally 
from artificial neural networks in their physical realization and 
learning mechanisms, their existence demonstrates that highly 
efficient computation can be achieved without globally 
synchronized, layer-wise execution. This observation reinforces 
the view that global synchronization is a contingent feature of 
particular representational and hardware choices, rather than a 
universal requirement for effective computation. 

B. Synchronization and Energy Consumption 
The limitations discussed in Section II are often described in 
terms of hardware efficiency, memory bandwidth, or system-
scale optimization. In this section, we revisit these issues from a 
different perspective. Rather than treating energy consumption 
and scalability as purely engineering challenges, we interpret 
them as consequences of representational and organizational 
assumptions embedded in matrix-centric computation, 
particularly its reliance on global synchronization. 

The implications of reduced reliance on global 
synchronization extend beyond conceptual clarity to practical 
concerns of energy consumption and scalability. In large-scale 
matrix-based systems, a significant portion of energy is 
expended not on arithmetic operations themselves, but on data 
movement and coordination. Global synchronization often 
amplifies these costs by requiring frequent communication, 
memory transfers, and idle waiting across processing units. 

As model sizes grow, these overheads become increasingly 
dominant. The need to maintain synchronized execution across 
large batches and deep layer stacks exacerbates memory 
bandwidth demands and contributes to rising power 
consumption in training and inference. From this perspective, 
energy inefficiency is not merely a byproduct of large models, 
but is closely tied to the organizational assumptions embedded 
in matrix-centric computation. 

Dynamical representations suggest alternative 
organizational principles. Local state updates, parameter reuse 
over time, and continuous evolution can reduce the frequency 
and scope of global coordination. In such settings, computation 
may be structured around localized interactions and incremental 
updates, potentially alleviating some of the data movement and 
synchronization overheads that dominate energy consumption in 
current systems [2][17]. 

It is important to emphasize that energy efficiency is not the 
primary objective of adopting dynamical representations. Rather, 
any potential reductions in power consumption should be 
viewed as secondary consequences of a broader representational 
shift. Whether and to what extent these advantages can be 
realized in practice depends on hardware design, numerical 
methods, and system-level considerations. Nonetheless, the 
transition away from strict global synchronization opens a 
plausible pathway toward more energy-efficient and scalable 
learning systems. 

C. A Structural Analogy with Quantum Mechanics 
The historical development of quantum mechanics provides a 
useful reference point for situating the representational 
transition discussed in this paper, in which multiple 
mathematical frameworks coexist to describe the same 
underlying phenomena. In the mid-1920s, quantum theory 
emerged through two seemingly distinct formulations: matrix 
mechanics, developed by Heisenberg, and wave mechanics, 
introduced by Schrödinger. Matrix mechanics described 
physical observables using discrete algebraic structures, 
emphasizing operator relations and non-commutative matrices. 
Wave mechanics, by contrast, formulated quantum phenomena 
in terms of continuous wave functions evolving over space and 
time. 

Despite their markedly different mathematical forms and 
conceptual intuitions, matrix mechanics and wave mechanics 
were soon understood as complementary descriptions of the 
same physical phenomena. Each emphasized different structural 
aspects of quantum theory, offering distinct perspectives on 
quantum behavior. This relationship was later clarified—most 
notably through the work of von Neumann [15]—by showing 
that the two formulations are mathematically equivalent 
representations of a single underlying theory. Their coexistence 
therefore reflected not merely an alternative choice of notation, 
nor a simple replacement of one formalism by another, but a 
deeper conceptual reorganization of how physical systems could 
be described at a time when classical intuitions about dynamics, 
measurement, and representation were being fundamentally 
revised. More broadly, this episode illustrates how shifts in 
representational frameworks can reshape theoretical 
understanding without necessitating the immediate 
abandonment of established formalisms. 

A similar, though not mathematically equivalent, situation 
can be observed in contemporary deep learning. Matrix-based 
models and dynamical formulations represent different ways of 
organizing and interpreting computation. Neither framework 
fully subsumes the other, and both continue to coexist in practice. 
The analogy lies in the recognition that shifts in representation 
can reshape conceptual understanding without requiring 
immediate unification or equivalence. 

It is crucial to stress that this analogy is structural and 
historical rather than formal. This paper does not claim any 
mathematical correspondence between the equations of 
quantum mechanics and learning dynamics. Instead, the analogy 
serves as a conceptual aid for interpreting the current 
diversification of representational frameworks in deep learning. 
By viewing the emergence of dynamical models as part of a 
broader transition in how computation is represented, it becomes 
possible to situate recent developments within a larger pattern of 
theoretical evolution. 

V.  IMPLICATIONS FOR ENERGY-EFFICIENT 
HARDWARE 

Matrix-based deep learning architectures implicitly rely on 
globally synchronized execution. In layer-based models, all 
activations within a layer must be computed and aligned before 
the next transformation can proceed. These layer-wise 
synchronization barriers induce concentrated data movement, 
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idle waiting, and bursts of memory access, leading to high 
energy density and significant power consumption in modern 
GPU-based accelerators, as observed in large-scale accelerator 
studies such as TPU and GPU deployments [12]. 

By contrast, dynamical representations do not require strict 
layer-wise global synchronization as a principle. State evolution 
can, at least conceptually, proceed through asynchronous or 
locally coordinated updates, allowing different components of 
the system to evolve without centralized coordination. Although 
practical implementations often reintroduce discretization and 
partial synchronization, the representational framework itself 
does not mandate global barriers. 

From an energy perspective, this distinction is significant. A 
substantial fraction of energy consumption in large-scale 
systems arises not from arithmetic operations alone, but from 
synchronization overhead, data movement, and waiting induced 
by global coordination, as extensively analyzed in hardware-
level studies [11]. Relaxing global synchronization therefore 
opens the possibility of reducing these overheads, even when the 
total number of parameters or arithmetic operations remains 
comparable. 

Importantly, any potential reduction in energy consumption 
should be understood as a consequence of altered 
synchronization structure rather than as an intrinsic property of 
continuous-time models. The transition from matrix-based to 
dynamical representations does not guarantee energy efficiency 
by itself, but it expands the design space in which alternative 
trade-offs between synchronization, data movement, and power 
consumption can be explored. 

From this viewpoint, the evolution of deep learning 
representations and the pursuit of energy-efficient hardware 
appear to be aligned through a shared shift away from globally 
synchronized computation toward more flexible, locally 
coordinated execution. Recognizing this alignment may be 
essential for sustaining progress in deep learning under 
increasingly stringent energy and resource constraints. 

The implications discussed in this section do not arise from 
a reduction in model size or parameter count. Instead, they stem 
from differences in computational organization, particularly the 
degree to which global synchronization is required during 
execution. From this perspective, energy efficiency is not treated 
as a purely engineering concern, but as a consequence of 
representational assumptions embedded in matrix-centric 
computation. 

Removing global synchronization also exposes assumptions 
that are usually left implicit in mathematical formulations of 
learning dynamics. While such assumptions are largely 
unproblematic under synchronous execution, studies of 
asynchronous and decentralized optimization have shown that 
they become explicit constraints when synchronization is 
relaxed, requiring new theoretical tools to reason about 
consistency, convergence, and stability [14]. 

VI. CONCLUDING REMARKS: A POSITION, NOT A 
PRESCRIPTION 

The preceding sections have argued that contemporary deep 
learning is undergoing a shift in its dominant representational 

assumptions. Discrete, matrix-based formulations—long 
aligned with GPU-oriented, globally synchronized 
computation—are increasingly complemented by continuous-
time and dynamical perspectives. This paper has approached this 
development not as a proposal of new models, but as a 
conceptual reexamination of how representation, computation, 
and constraint interact. 

A central theme of this work is that many practical 
challenges commonly framed as engineering issues—such as 
scalability, energy consumption, and system-level efficiency—
are deeply connected to representational and organizational 
assumptions embedded in matrix-centric computation. In 
particular, the reliance on global synchronization emerges not as 
a fundamental requirement of learning itself, but as a 
consequence of how computation has been structured around 
discrete matrix operations. 

From this perspective, continuous-time and dynamical 
formulations are not presented as replacements for matrix-based 
models, nor as guaranteed solutions to efficiency concerns. 
Rather, they expand the space of possible computational 
organizations, including those that relax strict global 
synchronization and emphasize local or incremental state 
evolution. Whether such possibilities translate into practical 
advantages depends on many factors, including algorithm 
design, hardware support, and system integration. 

More broadly, this work suggests that deep learning may not 
admit a single, essential mathematical representation. Matrix-
based and dynamical formulations emphasize different aspects 
of learning—algebraic composition on the one hand, and 
trajectories, stability, and evolution on the other. Their 
coexistence should therefore be understood not as a temporary 
inconsistency, but as an expression of the field’s increasing 
conceptual richness. 

In this sense, the contribution of this paper is not prescriptive. 
It does not advocate a specific architecture, training method, or 
hardware platform. Instead, it articulates a position: that ongoing 
developments in deep learning are best understood by making 
explicit the representational assumptions that underlie 
computation, synchronization, and energy use. By clarifying 
these assumptions, we hope to provide a framework for 
interpreting current trends and for motivating future work that 
aligns expressive power with sustainable computation. 
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