SNMP-based QoS Programming Interface MIB for Routers
(draft-kanada-diffserv-qospifmib-00.txt)

“Programming view” (active network view) is important for QoS control

- **The active networks**: Customizable, Downloading programs to nodes.
- **Policy-based QoS control**: Customizing resources, Downloading policies (rule-based programs) to nodes — the first step towards AN.
 - We need programs for configuration, because the function is so complex.
 - Program semantics must be specified formally to be interoperable.

Design of the QoS MIB

- A step toward establishing programming methodology for active networks.
- Features of the QoS MIB
 - **Rule Modularity** — very important for programming.
 - Each classifier, meter, or action is an if-then rule — separated by virtual flow labels.
 - The order of rules is not significant — the conditions are disjoint (no if-then-else).
 - **Classification of scheduling algorithms**: 1) First-in first-out (FIFO) scheduling, 2) Priority scheduling, 3) Packet-fair scheduling, 4) Byte-fair scheduling, 5) Bounded byte-fair scheduling
 - **Classification of dropping algorithms**: 1) Dropping all, 2) Tail dropping (non-early dropping), 3) Random early dropping (RED/WRED), 4) Deterministic early dropping (DED/WDED)

Problems and solutions in current programming interfaces (PIFs)

- Typical PIFs for QoS control: 1) SNMP & MIB, 2) COPS & PIB, 3) API
- Problems in PIFs by MIB (& PIB): Unsuitable for representing program semantics
 - Mismatching of syntactic structures and of unit or operation
- Possible solutions
 - To design a rule-based programming language for the interface.
 - This language may be implemented using any protocol.
 - The language semantics must be mapped to the protocol usage formally.
 - Or, the definition of a protocol must embed a language definition.
 - A new method of specifying protocols is required.