Internet QoS Guarantee and Its Approaches

- **Needs of QoS guarantee in the Internet**
 - Mission-critical communications are increasing.
 - Multi-media traffics are increasing.

- **IntServ and DiffServ from IETF**
 - Integrated services (IntServ)
 - Flow-based QoS control architecture
 - High overhead and not scalable
 - Differentiated services (DiffServ)
 - Class-based QoS control architecture
 - Low overhead and scalable — practical in large-scale networks
A Model of A DiffServ-ready Network

- **A QoS policy server**
 - Required for controlling QoS conditions or routers.

- **QoS-ready routers (and QoS-ready switches)**

- **Interface between a policy server and network nodes**
 - SNMP
 - COPS
 - API (CORBA IIOP)
 - CLI (command language)

Problems of conventional PS-Router Interfaces

- **Poor syntax**
 - SNMP: get/set a single value.
 - API: function calls only.
 - No structuring methods (control structures).

- **Poor semantics**
 - No relation nor constraints can be described.
 - Protocols specify only very limited part of the semantics.
 - Semantics must be specified formally for interoperability.
 - Standard protocols do not guarantee interoperability any longer.
An Alternative Interface:
A Rule-based Programming Language

Why a language?
• Because a language is a combination of syntax and semantics.

Why programming?
• Policy-based control is programming.
 • Network nodes have been configured only using parameters (data).
 • We need programs for configuration, because the function to be
 configured is so complex.

Why rule-based?
• Because a policy is a rule-based program.
• This language may be similar to languages for expert systems,
 such as OPS5 or Nexpert Object.

Elements of the Rule-based Language

The language consists of
• Building block rules
 • Primitive rules to construct policy rules.
• Linking labels
 • Connections between building blocks.

What is linking labels?
• A linking label is something like a DSCP.
• The number of linking labels is almost not limited.
 • The number of DSCPs is only 64 — not sufficient!
• The linking label is not put on a packet.
 • The linking label never goes out from a router — it is internal to the
 router.
 • The linking label may exist out of a packet, or it may be virtual.
A Model of DiffServ-ready Routers

Required Primitives: Building Block Rule Types

Matching rules
- Rules for flow classification.
- Example: if (Source_ip == 192.168.1.*) …;

Policing rules (Metering rules)
- Rules for policing (bandwidth control, etc.).
- Example: if (Average_rate <= 1Mbps) …;

Marking rules
- Rules for writing a DSCP.
- Example: if (...) DSCP = 46;

Discarding rules
- Rules for discarding packets.
- Example: if (...) discard_all;

Scheduling rules
- Rules for shaping and/or scheduling packets.
- Example: if (...) queue_priority = 6;
Outline of the Rule-based Language

A policy rule example — a procedural description

• if (Source_ip == 192.168.1.*) {
 if (Average_rate <= 1Mbps) {
 DSCP = 46; // EF
 queue_priority = 6;
 } else {
 discard_all;
 }
};

Representation of the policy in the language

■ Matching rule
 • if (Source_ip == 192.168.1.*) Label = s1;

■ Policing rules
 • if (Label == s1 && Average_rate <= 1Mbps)
 Label = s1_conformant;
 if (Label == s1 && Average_rate > 1Mbps)
 Label = s1_non_conformant;

■ Marking rule
 • if (Label == s1_conformant) {
 DSCP = 46; Label = s1_EF;
 }

■ Discarding rule
 • if (Label == s1_non_conformant) discard_all;

■ Scheduling rule
 • if (Label == s1_EF) queue_priority = 6;
Outline of the Rule-based Language (cont’d)

Are decomposed rules too complicated?
• The program not much complicated.

Building Blocks on Top of Conventional Protocols and/or APIs

The language can be implemented on top of
• SNMP (using a MIB)
• PIB (using a PIB)
• API (using function calls)

A MIB/PIB for the building block approach
• A preliminary version was proposed to 46th IETF (November 1999)
 • Draft name: draft-kanada-diffserv-qospifmib-00.txt
 • Presented at:
 – RAP WG (Resource Allocation Protocol WG)
 – CFGMGMT BOF (Configuration Management BOF)
 – Diffserv WG — Q&A only
Concluding Remarks

Most policy rules for DiffServ can be described using
- Five types of building block rules: matching, policing, marking, discarding, and scheduling.
- Linking labels.

Building block rule architecture is not restricted to DiffServ.
- Applicable to other QoS services.
- Applicable to Active Networks (programming networks).

Future work
- Definition and implementation of the rule-based language
 - Including an implementation for Hitachi GR2000.