A Node Plug-in Architecture
for Evolving Network Virtualization Nodes

Yasusi Kanada

Central Research Laboratory, Hitachi, Ltd.
Totsuka-ku Yoshida-cho 292, Yokohama 244-0817,dapa
Yasusi.Kanada.\@hitachi.con

Abstract — Virtualization nodes, i.e., physical nodes with
network virtualization functions, contain computational and
networking components. Virtualization nodes called
“VNodes” enabled mutually independent evolution of
computational component called programmer and
networking component called redirector. However, no
methodology for
Accordingly, a method for evolving programmer and
redirector and developing new types of virtualized
networking and/or computational functions in two seps is
proposed. The first step is to develop a new functh without
updating the original VNode, which continues servies to
existing slices, using a proposed plug-in architeate. This
architecture defines predefined interfaces called pen
VNode plug-in interfaces (OVPIs), which connect aata and
a control plug-ins to a VNode. The second step i® tmerge
the completed plug-ins into the original programmer or
redirector. A prototype implementation of the aboveplug-in
architecture was developed, tested, and evaluatedlhe
prototype extends the redirector by adding new type of
virtual links and new types of network accommodatio.
Estimated throughputs of a VLAN-based network
accommodation and a VLAN-based virtual link using
network processors are close to a wire rate of 10lps.

Keywords — Network-node plug-in architecture, Data plug-
in, Control plug-in, Network virtualization, Virtua lization
node, VNode, Virtual link, Network processors.

I. INTRODUCTION

In Japan, several

protocols and architectures (i.e., the
approach [Fel 07]) as well as various applicatitirag are
difficult to run on IPs but work well on NwWGNs. lhe

Virtualization Node Project (VNP), a virtualization

platform architecture consisting of virtualizatiorodes
(VNodes), namely, a “VNode architecture,”

developed a high-performance, fully
virtualization testbed in JGN-X, which is a testhveidely
used by network researchers. The goal of this ViB i
develop an environment in which multiple slicest(yl

networks) with independently and arbitrarily desidgn
and programmed NwGN functions run concurrently, b

are logically isolated, on a physical network.

this evolution has been available.

projects targeting new-generatiq
networks (NwGNs) have been conducted [Aoy 09
[AKA 10]. These projects aim to develop new networ

“clean B8lat

they are modular, and the interface between them is
clearly defined and works efficiently, each vendan
develop software and/or hardware components indepen
dently from other components. No method for thisodd
evolution, however, has been available.

In the present study, such a method for evolving
VNodes, especially for developing advanced redimsct
and new types of virtual links, is proposed. By neaf
this method, a VNode is evolved in two steps. Ting f
step is to develop a new redirector or programmer
component as software and/or hardware plug-instand
install and to connect them to the redirector oe th
programmer of an existing VNode, without updatihg t
original VNode, through predefined open interfacEse
VNode can continue services to existing slices bsea
they are isolated from slices that use the plug-ins
Combinations of data and control plug-ins are uJés:
second step is to merge the plug-ins into the eethr or
the programmer and, thereby, to create an evolved
VNode. Plug-in interfaces and prototype plug-insrave
implemented, and the evolved VNode can be used to
create new types of virtual links and new methofls o
network accommodation.

The rest of this paper is organized as follows.
Section Il describes the method for virtualizingeawork
on the evolvable architecture platform and the inde
pendently evolvable VNode architecture. Sectiondigt
scribes the two proposed evolution steps, and &eb

scribes the plug-in architecture for the firgtpsof the

volution including the open VNode plug-in intedac
OVPI) and control and data plug-ins. Section \&tfir

Cdescribes a prototype plug-ins that implements this

architecture and then presents the results of aluation
of this architecture. Sections VI describes relatetk,
and Section VII gives some concluding remarks.

was
developed by Nakao et al. [Nak 10]. They have also
functional,Network virtualization, the structure of a virtuation

Il. METHOD FORNETWORK-V IRTUALIZATION

platform (i.e., a physical network), and the stauet of
the virtual network are described as follows.

A. Network virtualization

uyVhen many users and systems share a limited anodunt
r

esources on computers or networks, virtualization

The VNode architecture enabled mutually independefchnology creates the illusion that each userystes

development and evolution gfrogrammers i.e., pro-

owns resources of their own. Concerning networkdew

grammable computational node-components in VNodedrea networks (WANSs) are virtualized by using \aftu
and redirectors i.e., networking node-components inPrivate networks (VPNs). When VPNs are used, a
VNodes [Nak 12]Kan 12a]. In future, a VNode may Physical network can be shared by multiple orgaiuna,

contain various types of programmers and redirectiér

and these organizations can securely and convéniese
VPNSs in the same way as virtual leased lines. Naysd

SNC: Servicenetwork C. Structure of slices

controller :
—— TNC: Transportnework 1N the virtual-network model developed by the VNP,
controller virtual network is called alice, which consists of the

m&d:e’y,i{gﬂiﬁ?;ﬁ’gggfde following two componentsRigure 2) [Nak 10][Nak 12].

(7] [r] S - R Rediector « Node sliver(virtual-node resource) represents compu-
b o tational resources that exist in a VNode (in a
L VNode | SRR programmer). It is used for node control or protoco
processing of arbitrary-format packets. A nodeesliig
éféi?& %Va;;e,- |—|VNo de|_‘ P HVNO e %vagg éfém ggnera_ted by_ sllcmg physical computational resesirc
 Link sliver (virtual-link resource) represents network-
Figure 1. Physical structure of virtualization fdam ing resources such as a virtual link that connests
node slivers and that any IP and non-IP protocals c
networks in data centers are virtualized as VLANKile be used on. A link sliver is mapped on a physit# |
servers are virtualized as virtual machines (VMs). between two VNodes or a VNode and a gateway. A

Many programmable virtualization-network research link sliver is generated by slicing physical-netkor
projects have been carried out, and many models, resources such as bandwidth.

including PlanetLab [Tur 07], VINI [Bav 06], GENI gqin hode slivers and both link slivers are isalagand
[Due 12], and Genesis [Kou O1], have been proposef, concurrently, so two slices that consist oésth
Slices are created by network virtualization usiag g ers are also isolated and work concurrently.
virtualization platform(substrate) that operates the slices. The SNC of a domain receives an abstract slegign
In the VNP, network-virtualization technology Wasby using an XML-basedslice definiton The SNC

developed by Nakao et al. [Nak 10][Nak 12]. Thisjiquip tes the slice definition to each VNM, whisénds
technology makes it possible to build programmablg,, ecessary definitions to the programmer and the
virtual-network environments in which slices areladed . 4iactor the programmer receives informatiorue
logically, securely, and in terms of performanceofp for configuring a node-sliver, and the redirectecaives

[K"f[‘” 1?(3] :” Ithese ben\élronlmen;cjs, new-lgenerlzts\rt]logqe information required for configuring link slixee For
NEtwork protocols can be developed on a Slice WINO oy ample 3 slice definition may contain an abstlia:

disrupting other slices. sliver specification such as the following linkvei with
B. Structure of virtualization platform two virtual ports, i.e., end points: vport0 and o

In the VNP, a physical network is assumed to corafis <L nkSjLver type='link® name=tvirtual -Iink-1">
one or more domains, which are managed by a service <vport name="vporto0" />
network controller (SNC) and a transport network _svport name=‘vporti® />
controller (TNC). SNC was formerly called a domain </ PRSI Pver >
controller (DC) [Nak 12][Kan 12a]. Each domain la® . .
types of nodes: VNode and gatewajg(ire 1). D. Inqlependent evolutllon of programmers anpl redirector
An overlay technology is used in the current vers6 An aim of the VNP is to enable mutually independent
VNode platform; that is, & Node forwards packets on development and evolution of programmers and redire
the platform, and each packet on the platform dnsthe tors. Programmers consist of programmable hardeade
contents of a virtual packet in a slice as the gayl software and implements node slivers. Redirectonsist
VNodes are connected by tunnels using a protoati as Of flexible (and maybe programmable) hardware and
Generic Routing Encapsulation (GRE) [Far 00], amel t software and |mp_lement link slivers. It is necegpstr
Internet Protocol (IP) is used in the current vamsof the establish modularity of these components to entisée
virtualization platform. A domain may contain independence; in other words, the interfaces betviiee
conventional routers or switches that do not haveomponents (both data-plane and control-plane -inter
virtualization functions. A slice is therefore nwit faces) must be clearly defined. _ _
constrained by the topology of the physical netwook In future, virtualization platforms will probablyoaosist
by the specific functions of these nodes. A VNoda ¢ of computational and networking hardware and safwa
operate as a router or a switch for platform paxken it developed by various vendors. A VNode may contain
can be deployed in conventional networks. VNodes ca/arious types of computational components, such as
thus be distributed to any place connected by FheAh Linux VMs, Microsoft Windows VMs, network
arbitrary packet format and protocol can be used in processors, and GPGPUs. A network composed of
slice, so they can be used in a VNode anywhere. VNodes may consist of various types of networking
A VNode consists of three components: a programmeg0mponents, such as VLAN, WDM, and light paths.

a redirector, and a VNode manager. A programmer
processes packets on slices. Slice developersnjact i —
Link sliver2 Link sliver5

programs into programmers. A redirector forwards

(redirects) packets from another VNode to a prognam

or from a programmer to another VNode. \WNode , = [Gatoway] ,
manager (VNM) (a software component) manages thgéi;,\jl Lﬁiﬁﬁferj‘ { e T sivert ahoer If;f,fjjrj o
VNode according to instructions from the SNC.

Link sliver 3

Link sliver 4
7

Figure 2. Exampleof dlice desigi

VNM VNM [NewVNM | Controller v OVPIfor | Control plug-ins
Redirector Regirecto = Control Redirector
i eetor L T - - .
Redirector Redirector -+ component &%’gg,ﬁg},’t | mEmEnE - - - - - - H Plugins J control plug-in
Stepl m Step2 | L-Original+new Programmer ||| _ _ _ _ | _ _| Programmer
|:> @%?D |:> — resources 7 manager control plug-in
Programmer Programmer|]] ot e i ____________ e 1| C-plane L—— —————— i
ProgrammerH— component component ST ; Dplane ---F
T (Reg;gctor | Redirector
- VNode VNode Programmer part) H OVPI for | | data plug-in
VNodeina extensions New VNodeina Slow paths Data
public testbed Extended VNode public testbed & fast paths B Programmer
— , (Programmer part) || — 49! data plug-in
(a) Original VNode (b) Evolving VNode (c) Evolved VNode VNode Data plug-ns
Extended VNode plug-

Figure 3. Proposed VNode evolution steps : . -
Figure 4. Open VNode plug-in (OVPI) architecture

If the interface between the software/hardware)
components and subcomponents is clearly defined af@de with a new type of network processor, new syple
works efficiently, a component can be evolvedirtual link, or new types of physical subnode ikl If
independently from other components, and thé&formation on the plug-ins must be exchanged betwe
components will be modular. That means they can B&o or more VNodes through the management
freely chosen and used in combination and candmyfr components, the information should be passed tiroug
enhanced or replaced by other components in acoceda the components without interpreting or testing Tihis
with emergence of new technology. No method fos thitunneling mechanism can be calledntrol information

evolution, however, has been available. tunneling(CIT).
If redirectors, programmers, and the management
. PROPOSEDEVOLUTION STEPS components, i.e., SNC, TNC, and VNM, are desigmed t

i , . _exclude interference between them and newly intedu

The proposed method for evolving VNodes is expldinep|yg-ins, a publicly available platform can be ugedthe
as follows. This method is applicable to not onlades gevelopment of new functions. It was intended tplgap
but also other types of nodes for software-defineghis method to JGN-X, i.e., a testbed that contains
networks (SDNs). However, the architecture desdribe \/Nodes. The original VNode is probably placed in a
the previous section is assumed for S|r_an|C|ty. place, such as a carrier's building, that is nosilga

As for the proposed method, redirector/programmegccessible for temporary experimental purposes. -How
plug-ins are used for developing new functions,nisas eyer, the plug-ins can be placed in private envirents
creating or deleting new types of virtual nodeioklin for experiments, such as university laboratoriesftices
two steps (se€igure 3). The first step is to develop new of vendors, and are connected by a layer-2 netwack
subcomponents of redirector or programmer as pi8g-i g5 3 VLAN or a layer-2 tunnel over IP networks.
and to install and to connect them to the redirectahe In the second step, an evolved VNode is create; th
programmer of an existing VNode. The second stép is i5 the plug-in functions developed in the firsepstare
merge the plug-ins into the redirector or the paogmer jniroduced into the core part of the platform. The
and to create an evolved VNode. _ programmer data-plug-in functions are merged it t
_An “evolvable” VNode is created in the first stépat hrogrammer, the redirector data-plug-in functione a
is, in this step, the plug-ins can be updated gttane merged into the redirector, and the functions afites
without affecting the operation of the original V&) yg-ins developed in the fist step are introduited the
Not only the redirector and the programmer in thgnanagement components including programmer man-
original VNode but also th_e SNC and TNC (i.e., reatw ager, redirector manager, SNC, TNC, and VNM. Beeaus
managers) and the VNM (i.e., the management patteof {he resource managers are merged into the coretpart
VNode) remain unchanged. They manage the resourcggginal and new resources are also merged. Asuatre
and the configuration of the original virtualizatio they can select the best method and resource fevinus
platform, but they do not manage the resourcesta@d methods and resources that were originally implegten

configuration of plug-ins. _ in the VNode and added to it for fulfiling slice
The plug-ins can be tested by using newly Create(aevelopers' requests.

slices that specify the VNode and the plug-in. ViNode
can continue services to existing slices whileghgg-ins
are developed because the existing slices do mothes)
plug-ins and are isolated from the testing slidégshe A.Outline
VNode has isolation function that separates packe®he plug-in architecture described in this seci®nsed
generated by the plug-ins from packets for exissiiiges, in the first step of the VNode evolution. Plug-iase
the plug-ins can be tested without significant iifgge installed and connected to a VNode using a predéfin
rences with existing slices. interface called anpen VNode plug-in interfad®VPI),
The resources and the configuration of the plug-inghich should be built into both the programmer dnel
must be managed by the plug-ins themselves. Becthase redirector of the VNode (sd&gure 4).
resource managers are separated and the originalThere are two types of OVPI: a data-plane (D-plane)
managers do not know the new resources, the ofiginaterface and a control-plane (C-plane) interfakdee D-
resources and the new resources must be completelgane interface connectkata plug-insthat handle data
separated. The new resources may be new typestadilvi packets to slow-path or fast-path components (sofiw

IV. OPENVNODEPLUG-IN ARCHITECTURE

and/or hardware components) in the case of progemnRPC [XML] or SOAP [Mit 03]. In this case, the pliig-
extension or to a switch (which is a part of theéinector) identifier and the parameters are passed to thé dws
in the case of redirector extension. The C-plateriace XML elements and attributes.
connectscontrol plug-insthat manage the data plug-ins In general, identifiers and parameters in an OVB$tm
and the programmer manager or the redirector managbe supplied by the slice definition or the VNodee (i
The data and control plug-ins are therefore used medirector, programmer, or VNM). An example of rakh
combination. The management interface between diver specification, which is similar to the lindiver
control plug-in and a data plug-in is a privateeiface, shown in section 1I-D, is shown below. This defimit
which has no predefined specification. contains the domain names or addresses of theotontr
Plug-ins may be placed at a distant place from thglug-ins and the physical data ports of data phgy-irhe
VNode. A VNode may exist in a publicly available VLAN identifier and MAC addresses are not included
network, and the plug-ins may exist in a privatehis definition because they are generated by tNedés
environment such as a university laboratory. and the control plug-ins.
Many implementation methods can be used for the<iinksliver type="link" nane="virtual-1ink-1">
OVPI. For control plug-ins, command-line interfaces <‘é€85}f>nam:..vporto..
(CLIs) and APIs (such as remote procedure calls or <params>

XMLs) can be used. Because an OVPI is an interface <param key="control I er” val ue="plug-in-0-addr" />
<param key="port" val ue="data-plug-in-O-port"/ >

connected through networks, the host name or g (| <! -- Additional parameters - >
address is required to identify the host node efplug-in </<</pg; ans>
in the case of a control plug-in. In the case dadaug- <Vp8rt name="vport 1"
ins, packet headers such as VLAN header or GREbean paramE> e es olucinLaddr [
used. Interface parameters can be passed through —SBaraR KEYZ. SOM L0 Pl e Baudinport | =
procedure arguments, XML tags, VLAN identifiers, BR /<! -- Additional parameters - >
</ par ans>
keys, and so on. /</vport>
.. < t

B. C-plane plug-in interface <p\éf’gﬂ5§: | R

i i ifi <par am key="Ext ensi onNane" val ue="vl an_link" />
The following identifiers and parameters must be ZP2T2R G parameters - >
specified in a control message of an OVPI for atrdn </ par ans>
plug_ln </li1nkSliver>

1. Host name or addresspecifies the host that containsC. D-plane plug-in interface
the plug-in. In usual cases, a domain name or an Ifhe following parameters must be specified in aadat
address is used, but a non-IP address or anofbeiofy packet as an OVPI for a data plug-in.

name may also be used. 1. Plug-in channel tag In contrast to the C-plane
2. Plug-in identifier specifies a plug-in in the host. This interface, a host and a plug-in are not specified
identifier may be structured; namely, plug-ins nisey separately. A tag, which may be a protocol paramete
hierarchical. such as a VLAN identifier, specifies a channel or a
3. Parameters specify control information including ~ Collection of plug-ins. Multiple plug-ins specifidy a
information that identifies the slice that the inf@tion tag may be in one host or distributed to multipsts
represents. Plug-in parameters may be named or connected by a network channel (such as a VLAN).
positional; that is, each parameter may have ak Parameters Plug-in parameters are specified as
identifier and a value or parameter values may be protocol parameters. Some parameters identify the

specified in a specific order without identifiers. slice of the data path that the plug-in implements.
Two examples of C-plane interfaces are described SOMe parameters may be used for identifying a plug-
here. A CLI is used in the first example. In thi@mple, among the plug-ins specified by the plug-in channel

the host name or address is specified as it el net

server’s domain name or address, a command nane (or Two examples of D-plane interfaces are described

file name) can be used for the plug-in identifiand here. In the first example, a VLAN is used for tbe

command arguments can be used for specifyinglane protocol. In this case, the plug-in chanagl may

parameters. For example, the following command witbe specified as a VLAN identifier. The parameteisich

named parameters may be used for creating a viitkal represent the end-point addresses of the virtnal| kre

plug-in (see section V-C): expressed as source and destination MAC addredses.

; ; i only one (or a few) VLAN identifier can be usedibno

_add_lmk vlanid e.s_macpl edmacp?2 |smac=p3. tagged VLANs can be used, plugins may be

This command specifies a set of control informafina gistinguished by a set of MAC addresses; in otherds,

data plug-in; namely, it specifies an addition ofidual they can be used for specifying both a plug-in ag

link (i.e., link sliver) between external virtualogis parameters.

specified apl andp2 by the specified VLAN identifier * | the second example, GRE/IP is used for the Depla

(id). Virtual portp3 specifies the internal port of the node.protocol. In this case, the plug-in tag is représerby a

In this example, all the parameters are named ane ey in the GRE header, and the parameters are

specified in an arbitrary order. represented by addresses in the IP header.
The second example is as follows. The same contents

are specified by an XML-based interface, such ad XM

V.PROTOTYPING ANDEVALUATON @t—: Exchanging virtual link parameters

A version of the OVPIs wa T .
. . 7 OVPI for OVPI for \Controller
implemented, and two sets of plug-i i||Controller | conygl Control || ‘Controller
were installed and connected by us Lo VML P|(l(1:9|_-:;15 Control Control P(Iég—li)n - \; N
the OVPIs and partially evaluate |||i Redrector L S0 H plug-in plug-in H-==1 R Redrector
L _manager | . L_manager |
The hardware and software for t === e S I o Ep— _,,g__E’.:?_U.‘%_.._ ,,,,,,, el RN e
OVPIs and the plug-ins are describ Switch Dataplugin] || 0 a”ef Data plug-in Switch
3 . i . Network ewtype o Network .
: L= o L ; Redirect
b8|OW fl!‘St, the Qes,lgn (Re';i;rr(te)ctor GVPTfor] || Processar V|_rtua¥' inksg pIocessa" | v ior (ep;rr%c or
implementation, and preliminar Data ||i (Qoteon i Es(linkslivers)=3 1 (Qcteon) & 1= h
results of an evaluation of the plu il VNode Plug-ins | Le==——e=r ~ | ! Inter:-VNode | | L=====—=—===- - |Plug-ins VNode
ins are described after that. Extended VNode (VLAN) — LinuxPC git‘\”j;s/ LinuxPC __ (VLAN) Extended VNode
A. Har(_:iware and . software Figure 6. VNode plug-in and interaction architeetfor extension of a virtual
environment for plug-ins link
The prototype system and th
environment used for prototyping and MAC header) is the packet format for the slice.

evaluation are described as follows. A preliminary As shown in Figure 5, successful IP communication
version of the OVPIs is implemented in the redivestof between a PC in the external network and a VM & th
the VNodes. A CLI is used for the C-plane interfeeed virtual node was confirmed by gi ng command. The

a VLAN-based interface is used for the D-plane.aDatperformance of the whole prototype system, which
plug-ins are implemented in two sets of PCs withtO& contains two VNodes and plug-ins, has not yet been
(Linux). Each PC has a PCle board with a networkneasured. However, the performance of the dataiplug
processor, Cavium Octeon [Cav 10]. This board ikeda implemented on the Octeon board was measured. When
WANIic-56512 (developed by General Electricpacket size was sufficiently large, i.e., 600 byiefarger,
Company). An open and high-level language calle® CShe throughput was measured to be 8 Gbps or more,
(Continuous Stream Programming) and its developmentimely, close to the wire rate, i.e., 10 Gbps.

environment, “+Net,” for Octeon [Kan 13b] is usear f . . .
developing the plug-in programs. Control plug-ine a C-/mplementing a new type of virtual link

implemented in the PCs. The second set of plug-ins implements a new type of

Two sets of plug-ins were developed. The firstafet Virtual link. GRE-based virtual links are the ortiype
plug-ins, a control plug-in and a data plug-in, lempents available in the current version of VNodes. VLANskd
a network-accommodation function that connectsiae sl Virtual links are thus implemented by using thegpiis.
to an external network through a VLAN, and the seco The architecture for the VLAN-based virtual linis
set of plug-ins implements VLAN-based virtual linksshownin Figure 6, and the packet formats and example
(link slivers) between VNodes. contents are shown in Figure7. To separate a

) . . . programmer from the network and other programmers,

B. Re-implementing network-accommodation function jnternal MAC addresses of the programmer, which are
The first set of plug-ins implements a networkpart of the data plug-in interface, must be hiddatside
accommodation function that connects a slice of thef the programmer [Kan 12a]. The redirector datayph
VNode platform to an external network through a \W.A therefore swaps the MAC addresses in data packets a
(see Figure 5). This function is similar to that of shown in Figure 7.
“network accommodation equipment” (NACE or NC) To operate a virtual link correctly, control plugsiin
[Kan 12b], which is built into the VNode platform. two VNodes, which are the end-points of the virtlirai,
However, this function is re-implemented to test phug- must exchange control parameters through the inter-
in architecture and the network-accommodation-fionct VNode C-plane (see the top of Figure 6). The eridtpo
implementation. addresses in the control parameters identify tlee $b

The data plug-in converts the packet format; thathie which the virtual link belongs. This negotiatiorositd be
packet format for the external network is X/Etheérne performed by the VNode managers (VNMs) of the
where X is usually IP but other protocols can di& VNodes when a virtual link is created or deleted.
used, and the internal format for a VNode isHowever, currently they only have negotiation fimetof
X/Ethernet/Ethernet. The outer MAC header contéies

platform parameters, and X/Ethernet (lnCIUdlng itheer < [0003b0000042] 000360010004] x88bs] .. | < [0004b0010004] 0004b0000032] x6558] .. |
MAC header DMAC SMAC DMAC SMAC
<« [000360000010] 000360010004 x88bS] ... | < [0004b0010004] 0004b0000021] x6558] ... |
Extended VNode MAC yf--Swan. ‘Extended VNode
----------- PC 0003b0000010 47 3 MAC
4 000360000042 %
VNode Sow] ~ pi ng 000450010004
path VM ~~=== 1= ! MAC \ MAC
) 1P/Ethernet [[Control pliigFmA IP/Ethernet 1000350000004 ' 000460000021
Slice T SR _-----"7,0004b0000032

[Eth,
Slice IMP y
VNode platt External network |0003b0010004] 0003b0000010[x88bS] ...| —> [0004b0000021 | 0004b0010004]x6558] ... | —>
oge platrorm MAC header DMAC SMAC DMAC SMAC
| 000460000032 0004b0010004] x6558] ...|

) . . [000300010004] 0003b0000042] x88bT .| —>
F| g ure 5 . Re—| m p | ementation Of netwo rk- Ethernettype x88b5 = IEEE 802.1 Local Experimental Ethertype 1, x6558 = Transparent Ethernet Bridge

accommodation functic Figure 7. Packet formats for the VLA-based virtual lin

GRE-based virtual links. Therefore, in this preliany types of network accommodation functions and caater
and temporary implementation, the GRE-based linkew types of virtual links. The throughput of thetwork
parameters, i.e., IP addresses (and a GRE keypagsed accommodation and the VLAN-based virtual links is
to the control plug-ins and they are converted He t close to a wire rate of 10 Gbps. This result meéhasthe
VLAN-based link parameters, i.e., MAC addressesl @n first step of VNode evolution was succeeded fors¢he
VLAN ID). In a future version of redirector plug-in new functions.
architecture, VNMs should implement a tunneling Future work includes implementing CIT to the VNM
mechanism, i.e., CIT. The VNMs can exchange VLANand implementing new types of virtual links andwatk
based link parameters or any other type of contr@lccommodation methods, including non-IP-protocol
information that control plug-ins manage using CIT. based ones, using advanced technologies and methods
Successful IP communication between the virtuahlso includes applying this method, including teesd
nodes connected by the VLAN virtual-link was comfdd step, to VNodes in JGN-X.
by api ng command; although virtual links in VNodes
can transmit arbitrary format packets such as IPEC ACKNOWLEDGMENTS

packets [Kan 12¢], IP was used because it reqaings Part of the research results is an outcome of “Aded

two commands (i.ei,f confi g andpi ng) built into the Network Virtualization Platform Proi ”

: ject A” funded bhe
\slggi::nnvsgse.ngthsnepa?srﬂ?;gagﬁtetr?é EEFOLYg;]cp))lSt gg;;g;ypNational Institute of Information and Communicagon
plug-in was measured to be 9 Gbps or more when t eechnology (NICT). The author thanks Kazuhisa Yaamad
packet size was 900 bytes or larger rom NTT, Akihiro Nakao from the University of Toky

' Toshiaki Tarui from Hitachi, and other members loé t
above project for their valuable discussions onviNede

VI. RELATED WORK evolution process. The author also thanks Yasushi

Click [Koh 00] is a software architecture that use®- Kasugai, Kei Shiraishi, Takanori Ariyoshi, and Take
level description for describing routers modularlshe Ishikura from Hitachi for implementing the plug-in
lower-level components, which are described indd lse interfaces in the redirector.
regarded as plug-ins. The higher level is described
domain-specific language, which connects modules in REFERENCES

several ways. Both data and control plug-ins may bﬁ : ; : «

¢ ; e o ittt KA 10] AKARI Architecture Design Project, “New
described by using C.I'Ck’ however, Cl'Ck. IS sul Generation Network Architecture— AKARI Conceptual
(data) packet processing but not well suited totr@dn pesign (ver 2.0)", May 2010.

processing and hardware plug-ins.) [Ale 98] Alexander, D. S., Arbaugh, W. A., Hicks,.NV.,
OpenFlow [McK 08] enables easy implementation and Kakkar, P., Keromytis, A. D., Moore, J. T., Gunt&, A.,
extension of network control. It is easy to use Wpew Nettles, S. M., and Smith, J. M., “The SwitchWaretive

to design a plug-in architecture for management and Network Architecture”,JEEE Network Vol. 12, No. 3, pp.

control. It cannot, however, be used to implemeatad = 29-36. .

plug-ins. [Aoy 09] Aoyama, T., “A New Generation Network: Bed
Active networks enabled ad hoc extension of data (€ Intermet and NGN'JEEE Communication Magazine

. . Vol. 47, Vol. 5, pp. 82-87, May 2009.
paths. Capsules, or active packets [Wet 98], which [Bav 06] Bavier, A., Feamster, N.. Huang, M., Pster, L.,

packets containing programs, may be regarded as"a,ng Rexford, J., “In VINI Veritas: Realistic and @mlled

temporary plug-ins. There are, however, two issues Network Experimentation”,SIGCOMM 2006 pp. 3-14,
concerning capsules. First, capsules are not suiled September 2006.

repeatedly used functions because of redundanayigh [Cav 10] “OCTEON Programmer’s Guide, The
multiple packets contain the same program. Secitey, Fundamentals”, Cavium Networks, 2010,
cannot be used for hardware plug-ins. Other types o ht_tp_://univ_ersity.caviumnetyvorks.com/downloads/-

active networks, such as SwitchWare [Ale 98], sdive Mini_version_of_Prog_Guide_EDU_July_2010.pdf

first issue but not the second one. [Due 12] Duerig, J., Ricci, R., Stoller, L., Strud., Wong,

: . G., Carpenter, C., Fei, Z., Griffioen, J., Nasir, Reed, J.,
In contrast to OpenFlow and active networks deeckib and Wu, X., “Getting Started with GENI: A User Tritd”,

above, the plug-in architecture proposed. in thisepaan ACM SIGCOMM Computer Communication Revis\wl. 42,
be used for both control and data plug-ins, andbfath No. 1., pp. 7277, January 2012.

software and hardware plug-ins. [Far00] Farinacci, D., Li, T., Hanks, S., Meyer,, Dand
Traina, P., “Generic Routing Encapsulation (GRERFC
VIl. CONCLUSION 2784, IETF, March 2000.
. . . [Fel07] Feldmann, A., “Internet Clean-Slate Desigfihat
A method for evolving programmer and redirectog,,i. and Why?”", ACM SIGCOMM Computer Communication

computational and networking components of a VNode, Review Vol. 37, No. 3, pp. 59-74, July 2007.
independently was proposed and tested. This method[Kan 12a] Kanada, Y., Shiraishi, K., and Nakao, ‘Aletwork-
composed of two steps. In the first step, plugaberifaces Virtualization Nodes that Support Mutually Independ
called “open VNode plug-in interfaces” (OVPIs) footh Development and Evolution of ComponentsIEEE
data and control plug-ins are used. These OVPIbuaite %ig‘a&'onm gonfze(;igce on Communication Systd@ES
in both the programmer and the redirector of VNodes , November s .

A protot)epegof OVPIs and plug-ins were developedkan 12b] Kanada, Y., Shiraishi, K., and Nakao, Atigh-

: performance Network Accommodation into Slices and |
and evaluated. The evolved VNode can implement new slice Switching Using A Type of Virtualization Noge2nd

International Conference on Advanced Communicatems
ComputationInfocomp 201p IARIA, October 2012.

[Kan 12c] Kanada, Y. and Nakao, A., “Development Af
Scalable Non-IP/Non-Ethernet Protocol With Learrlbaged
Forwarding Method”,World Telecommunication Congress
2012(WTC 2012, March 2012.

[Kan 13a] Kanada, Y., Shiraishi, K., and Nakao, ‘Network-
resource Isolation for Virtualization NodedEICE Trans.
Commun.Vol. E96-B, No. 1, pp. 20-30, 2013.

[Kan 13b] Kanada, Y., “Open, High-level, and Poltab
Programming Environment for Network ProcessofEICE
7th Meeting of Network Virtualization S|Guly 2013 (in
Japanese).

[Koh 00] Kohler, E., Morris, R., Chen, B., Jannptii, and
Frans Kaashoek, M., “The Click Modular RouteACM
Transactions on Computer Syste(M©CS, Vol. 18, No. 3,
pp. 263-297, 2000.

[Kou 01] Kounavis, M., Campbell, A., Chou, S., Mado F.,
Vicente, J., and Zhuang, H., “The Genesis Kernel: A
Programming System for Spawning Network Architeesly
IEEE J. on Selected Areas in Commurml. 19, no. 3, pp.
511-526, 2001.

[McK 08] McKeown, N., Anderson, T., Balakrishnan,.,H
Parulkar, G., Peterson, L., Rexford, J., Shenkey, a&d
Turner, J., “OpenFlow: Enabling Innovation in Carapu
Networks”, ACM SIGCOMM Computer Communication
Review pp. 69—74, Vol. 38, No. 2, April 2008.

[Mit 03] Mitra, N., and Lafon, Y., “SOAP version2 part O:
Primer”, W3C Recommendation 24 (2003): 12.

[Nak 10] Nakao, A., “Virtual Node Project- Virtualization
Technology for Building New-Generation Network&|CT
News No. 393, pp. 1-6, Jun 2010.

[Nak 12] Nakao, A., “VNode: A Deeply Programmable
Network Testbed Through Network Virtualization3rd
IEICE Technical Committee on Network Virtualization
March 2012, http://www.ieice.org/~nv/05-nv20120302-
nakao.pdf

[Tur 07] Turner, J., Crowley, P., Dehart, J., Ftees, A.,
Heller, B., Kuhms, F., Kumar, S., Lockwood, J., Lu,
J.,Wilson, M., Wiseman, C., and Zar, D., “Supergiay
PlanetLab— High Performance, Multi-Application, Overlay
Network Platform”, ACM SIGCOMM Computer
Communication Review/ol. 37, No. 4, pp. 85-96, October
2007.

[Wet 98] Wetherall, D., et al. “ANTS: A Toolkit foBuilding
and Dynamically Deploying Network Protocolsl'st IEEE
Conference on Open Architectures and Network
Programming(OPENARCH’98, pp. 117-129, April 1998.

[XML] XML-RPC Home Page, http://www.xmlrpc.com/

