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Abstract – Virtualization nodes, i.e., physical nodes with 
network virtualization functions, contain computational and 
networking components. Virtualization nodes called 
“VNodes” enabled mutually independent evolution of 
computational component called programmer and 
networking component called redirector. However, no 
methodology for this evolution has been available. 
Accordingly, a method for evolving programmer and 
redirector and developing new types of virtualized 
networking and/or computational functions in two steps is 
proposed. The first step is to develop a new function without 
updating the original VNode, which continues services to 
existing slices, using a proposed plug-in architecture. This 
architecture defines predefined interfaces called open 
VNode plug-in interfaces (OVPIs), which connect a data and 
a control plug-ins to a VNode. The second step is to merge 
the completed plug-ins into the original programmer or 
redirector. A prototype implementation of the above plug-in 
architecture was developed, tested, and evaluated. The 
prototype extends the redirector by adding new types of 
virtual links and new types of network accommodation. 
Estimated throughputs of a VLAN-based network 
accommodation and a VLAN-based virtual link using 
network processors are close to a wire rate of 10 Gbps. 

Keywords – Network-node plug-in architecture, Data plug-
in, Control plug-in, Network virtualization, Virtua lization 
node, VNode, Virtual link, Network processors.  

I. INTRODUCTION 

In Japan, several projects targeting new-generation 
networks (NwGNs) have been conducted [Aoy 09] 

[AKA 10]. These projects aim to develop new network 
protocols and architectures (i.e., the “clean slate” 
approach [Fel 07]) as well as various applications that are 
difficult to run on IPs but work well on NwGNs. In the 
Virtualization Node Project (VNP), a virtualization-
platform architecture consisting of virtualization nodes 
(VNodes), namely, a “VNode architecture,” was 
developed by Nakao et al. [Nak 10]. They have also 
developed a high-performance, fully functional, 
virtualization testbed in JGN-X, which is a testbed widely 
used by network researchers. The goal of this VNP is to 
develop an environment in which multiple slices (virtual 
networks) with independently and arbitrarily designed 
and programmed NwGN functions run concurrently, but 
are logically isolated, on a physical network.  

The VNode architecture enabled mutually independent 
development and evolution of programmers, i.e., pro-
grammable computational node-components in VNodes, 
and redirectors, i.e., networking node-components in 
VNodes [Nak 12] [Kan 12a]. In future, a VNode may 
contain various types of programmers and redirectors. If 

they are modular, and the interface between them is 
clearly defined and works efficiently, each vendor can 
develop software and/or hardware components indepen-
dently from other components. No method for this VNode 
evolution, however, has been available. 

In the present study, such a method for evolving 
VNodes, especially for developing advanced redirectors 
and new types of virtual links, is proposed. By means of 
this method, a VNode is evolved in two steps. The first 
step is to develop a new redirector or programmer 
component as software and/or hardware plug-ins and to 
install and to connect them to the redirector or the 
programmer of an existing VNode, without updating the 
original VNode, through predefined open interfaces. The 
VNode can continue services to existing slices because 
they are isolated from slices that use the plug-ins. 
Combinations of data and control plug-ins are used. The 
second step is to merge the plug-ins into the redirector or 
the programmer and, thereby, to create an evolved 
VNode. Plug-in interfaces and prototype plug-ins were 
implemented, and the evolved VNode can be used to 
create new types of virtual links and new methods of 
network accommodation. 

The rest of this paper is organized as follows. 
Section II describes the method for virtualizing a network 
on the evolvable architecture platform and the inde-
pendently evolvable VNode architecture. Section III de-
scribes the two proposed evolution steps, and Section IV 
describes the plug-in architecture for the first step of the 
evolution including the open VNode plug-in interface 
(OVPI) and control and data plug-ins. Section V first 
describes a prototype plug-ins that implements this 
architecture and then presents the results of an evaluation 
of this architecture. Sections VI describes related work, 
and Section VII gives some concluding remarks. 

II. METHOD FOR NETWORK-V IRTUALIZATION  

Network virtualization, the structure of a virtualization 
platform (i.e., a physical network), and the structure of 
the virtual network are described as follows. 

A. Network virtualization 
When many users and systems share a limited amount of 
resources on computers or networks, virtualization 
technology creates the illusion that each user or system 
owns resources of their own. Concerning networks, wide-
area networks (WANs) are virtualized by using virtual 
private networks (VPNs). When VPNs are used, a 
physical network can be shared by multiple organizations, 
and these organizations can securely and conveniently use 
VPNs in the same way as virtual leased lines. Nowadays, 
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networks in data centers are virtualized as VLANs, while 
servers are virtualized as virtual machines (VMs). 

Many programmable virtualization-network research 
projects have been carried out, and many models, 
including PlanetLab [Tur 07], VINI [Bav 06], GENI 
[Due 12], and Genesis [Kou 01], have been proposed. 
Slices are created by network virtualization using a 
virtualization platform (substrate) that operates the slices.  

In the VNP, network-virtualization technology was 
developed by Nakao et al. [Nak 10][Nak 12]. This 
technology makes it possible to build programmable 
virtual-network environments in which slices are isolated 
logically, securely, and in terms of performance (QoS) 
[Kan 13a] In these environments, new-generation 
network protocols can be developed on a slice without 
disrupting other slices.  

B. Structure of virtualization platform 
In the VNP, a physical network is assumed to consist of 
one or more domains, which are managed by a service 
network controller (SNC) and a transport network 
controller (TNC). SNC was formerly called a domain 
controller (DC) [Nak 12][Kan 12a]. Each domain has two 
types of nodes: VNode and gateway (Figure 1).  

An overlay technology is used in the current version of 
VNode platform; that is, a VNode forwards packets on 
the platform, and each packet on the platform contains the 
contents of a virtual packet in a slice as the payload. 
VNodes are connected by tunnels using a protocol such as 
Generic Routing Encapsulation (GRE) [Far 00], and the 
Internet Protocol (IP) is used in the current version of the 
virtualization platform. A domain may contain 
conventional routers or switches that do not have 
virtualization functions. A slice is therefore neither 
constrained by the topology of the physical network nor 
by the specific functions of these nodes. A VNode can 
operate as a router or a switch for platform packets, so it 
can be deployed in conventional networks. VNodes can 
thus be distributed to any place connected by the IP. An 
arbitrary packet format and protocol can be used in a 
slice, so they can be used in a VNode anywhere.  

A VNode consists of three components: a programmer, 
a redirector, and a VNode manager. A programmer 
processes packets on slices. Slice developers can inject 
programs into programmers. A redirector forwards 
(redirects) packets from another VNode to a programmer 
or from a programmer to another VNode. A VNode 
manager (VNM) (a software component) manages the 
VNode according to instructions from the SNC. 

C. Structure of slices 
In the virtual-network model developed by the VNP, a 
virtual network is called a slice, which consists of the 
following two components (Figure 2) [Nak 10][Nak 12].  

• Node sliver (virtual-node resource) represents compu-
tational resources that exist in a VNode (in a 
programmer). It is used for node control or protocol 
processing of arbitrary-format packets. A node sliver is 
generated by slicing physical computational resources. 

• Link sliver (virtual-link resource) represents network-
ing resources such as a virtual link that connects two 
node slivers and that any IP and non-IP protocols can 
be used on. A link sliver is mapped on a physical link 
between two VNodes or a VNode and a gateway. A 
link sliver is generated by slicing physical-network 
resources such as bandwidth. 

Both node slivers and both link slivers are isolated and 
work concurrently, so two slices that consist of these 
slivers are also isolated and work concurrently. 

The SNC of a domain receives an abstract slice design 
by using an XML-based slice definition. The SNC 
distributes the slice definition to each VNM, which sends 
the necessary definitions to the programmer and the 
redirector: the programmer receives information required 
for configuring a node-sliver, and the redirector receives 
the information required for configuring link slivers. For 
example, a slice definition may contain an abstract link-
sliver specification such as the following link sliver with 
two virtual ports, i.e., end points: vport0 and vport1. 
<linkSliver type="link" name="virtual-link-1"> 
 <vports> 
  <vport name="vport0" /> 
  <vport name="vport1" /> 
 </vports> 
</linkSliver> 

D. Independent evolution of programmers and redirectors 
An aim of the VNP is to enable mutually independent 
development and evolution of programmers and redirec-
tors. Programmers consist of programmable hardware and 
software and implements node slivers. Redirectors consist 
of flexible (and maybe programmable) hardware and 
software and implement link slivers. It is necessary to 
establish modularity of these components to enable their 
independence; in other words, the interfaces between the 
components (both data-plane and control-plane inter-
faces) must be clearly defined.  

In future, virtualization platforms will probably consist 
of computational and networking hardware and software 
developed by various vendors. A VNode may contain 
various types of computational components, such as 
Linux VMs, Microsoft Windows VMs, network 
processors, and GPGPUs. A network composed of 
VNodes may consist of various types of networking 
components, such as VLAN, WDM, and light paths.  
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Figure 1. Physical structure of virtualization platform 
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If the interface between the software/hardware 
components and subcomponents is clearly defined and 
works efficiently, a component can be evolved 
independently from other components, and the 
components will be modular. That means they can be 
freely chosen and used in combination and can be freely 
enhanced or replaced by other components in accordance 
with emergence of new technology. No method for this 
evolution, however, has been available.  

III.  PROPOSED EVOLUTION STEPS 

The proposed method for evolving VNodes is explained 
as follows. This method is applicable to not only VNodes 
but also other types of nodes for software-defined 
networks (SDNs). However, the architecture described in 
the previous section is assumed for simplicity.  

As for the proposed method, redirector/programmer 
plug-ins are used for developing new functions, such as 
creating or deleting new types of virtual node or link, in 
two steps (see Figure 3). The first step is to develop new 
subcomponents of redirector or programmer as plug-ins 
and to install and to connect them to the redirector or the 
programmer of an existing VNode. The second step is to 
merge the plug-ins into the redirector or the programmer 
and to create an evolved VNode.  

An “evolvable” VNode is created in the first step; that 
is, in this step, the plug-ins can be updated at any time 
without affecting the operation of the original VNode. 
Not only the redirector and the programmer in the 
original VNode but also the SNC and TNC (i.e., network 
managers) and the VNM (i.e., the management part of the 
VNode) remain unchanged. They manage the resources 
and the configuration of the original virtualization 
platform, but they do not manage the resources and the 
configuration of plug-ins.  

The plug-ins can be tested by using newly created 
slices that specify the VNode and the plug-in. The VNode 
can continue services to existing slices while the plug-ins 
are developed because the existing slices do not use the 
plug-ins and are isolated from the testing slices. If the 
VNode has isolation function that separates packets 
generated by the plug-ins from packets for existing slices, 
the plug-ins can be tested without significant interfe-
rences with existing slices. 

The resources and the configuration of the plug-ins 
must be managed by the plug-ins themselves. Because the 
resource managers are separated and the original 
managers do not know the new resources, the original 
resources and the new resources must be completely 
separated. The new resources may be new types of virtual 

node with a new type of network processor, new types of 
virtual link, or new types of physical subnode or link. If 
information on the plug-ins must be exchanged between 
two or more VNodes through the management 
components, the information should be passed through 
the components without interpreting or testing it. This 
tunneling mechanism can be called control information 
tunneling (CIT ). 

If redirectors, programmers, and the management 
components, i.e., SNC, TNC, and VNM, are designed to 
exclude interference between them and newly introduced 
plug-ins, a publicly available platform can be used for the 
development of new functions. It was intended to apply 
this method to JGN-X, i.e., a testbed that contains 
VNodes. The original VNode is probably placed in a 
place, such as a carrier’s building, that is not easily 
accessible for temporary experimental purposes. How-
ever, the plug-ins can be placed in private environments 
for experiments, such as university laboratories or offices 
of vendors, and are connected by a layer-2 network such 
as a VLAN or a layer-2 tunnel over IP networks.  

In the second step, an evolved VNode is created; that 
is, the plug-in functions developed in the first step are 
introduced into the core part of the platform. The 
programmer data-plug-in functions are merged into the 
programmer, the redirector data-plug-in functions are 
merged into the redirector, and the functions of control 
plug-ins developed in the fist step are introduced into the 
management components including programmer man-
ager, redirector manager, SNC, TNC, and VNM. Because 
the resource managers are merged into the core part, the 
original and new resources are also merged. As a result, 
they can select the best method and resource from various 
methods and resources that were originally implemented 
in the VNode and added to it for fulfilling slice 
developers’ requests.  

IV.  OPEN VNODE PLUG-IN ARCHITECTURE 

A. Outline 
The plug-in architecture described in this section is used 
in the first step of the VNode evolution. Plug-ins are 
installed and connected to a VNode using a predefined 
interface called an open VNode plug-in interface (OVPI), 
which should be built into both the programmer and the 
redirector of the VNode (see Figure 4).  

There are two types of OVPI: a data-plane (D-plane) 
interface and a control-plane (C-plane) interface. The D-
plane interface connects data plug-ins that handle data 
packets to slow-path or fast-path components (software 
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and/or hardware components) in the case of programmer 
extension or to a switch (which is a part of the redirector) 
in the case of redirector extension. The C-plane interface 
connects control plug-ins that manage the data plug-ins 
and the programmer manager or the redirector manager. 
The data and control plug-ins are therefore used in 
combination. The management interface between a 
control plug-in and a data plug-in is a private interface, 
which has no predefined specification. 

Plug-ins may be placed at a distant place from the 
VNode. A VNode may exist in a publicly available 
network, and the plug-ins may exist in a private 
environment such as a university laboratory. 

Many implementation methods can be used for the 
OVPI. For control plug-ins, command-line interfaces 
(CLIs) and APIs (such as remote procedure calls or 
XMLs) can be used. Because an OVPI is an interface 
connected through networks, the host name or the (IP) 
address is required to identify the host node of the plug-in 
in the case of a control plug-in. In the case of data plug-
ins, packet headers such as VLAN header or GRE can be 
used. Interface parameters can be passed through 
procedure arguments, XML tags, VLAN identifiers, GRE 
keys, and so on.  

B. C-plane plug-in interface 
The following identifiers and parameters must be 
specified in a control message of an OVPI for a control 
plug-in. 

1. Host name or address specifies the host that contains 
the plug-in. In usual cases, a domain name or an IP 
address is used, but a non-IP address or another type of 
name may also be used. 

2. Plug-in identifier specifies a plug-in in the host. This 
identifier may be structured; namely, plug-ins may be 
hierarchical. 

3. Parameters specify control information including 
information that identifies the slice that the information 
represents. Plug-in parameters may be named or 
positional; that is, each parameter may have an 
identifier and a value or parameter values may be 
specified in a specific order without identifiers. 

Two examples of C-plane interfaces are described 
here. A CLI is used in the first example. In this example, 
the host name or address is specified as the ssh/telnet 
server’s domain name or address, a command name (or a 
file name) can be used for the plug-in identifier, and 
command arguments can be used for specifying 
parameters. For example, the following command with 
named parameters may be used for creating a virtual-link 
plug-in (see section V-C): 

add_link vlan=id esmac=p1 edmac=p2 ismac=p3.  

This command specifies a set of control information for a 
data plug-in; namely, it specifies an addition of a virtual 
link (i.e., link sliver) between external virtual ports 
specified as p1 and p2 by the specified VLAN identifier 
(id). Virtual port p3 specifies the internal port of the node. 
In this example, all the parameters are named and can be 
specified in an arbitrary order.  

The second example is as follows. The same contents 
are specified by an XML-based interface, such as XML-

RPC [XML] or SOAP [Mit 03]. In this case, the plug-in 
identifier and the parameters are passed to the host as 
XML elements and attributes. 

In general, identifiers and parameters in an OVPI must 
be supplied by the slice definition or the VNode (i.e., 
redirector, programmer, or VNM). An example of a link-
sliver specification, which is similar to the link sliver 
shown in section II-D, is shown below. This definition 
contains the domain names or addresses of the control 
plug-ins and the physical data ports of data plug-ins. The 
VLAN identifier and MAC addresses are not included in 
this definition because they are generated by the VNodes 
and the control plug-ins. 
<linkSliver type="link" name="virtual-link-1"> 
 <vports> 
  <vport name="vport0" 
   <params> 
    <param key="controller" value="plug-in-0-addr" /> 
  <param key="port" value="data-plug-in-0-port"/> 
  <!-- Additional parameters --> 
   </params> 
  </vport> 
  <vport name="vport1" 
   <params> 
  <param key="controller" value="plug-in-1-addr" /> 
  <param key="port" value="data-plug-in-1-port"/> 
  <!-- Additional parameters --> 
   </params> 
  </vport> 
 </vports> 
 <params> 
  <param key="ExtensionName" value="vlan_link" /> 
 <!-- Additional parameters --> 
 </params> 
</linkSliver> 

C. D-plane plug-in interface 
The following parameters must be specified in a data 
packet as an OVPI for a data plug-in. 

1. Plug-in channel tag: In contrast to the C-plane 
interface, a host and a plug-in are not specified 
separately. A tag, which may be a protocol parameter 
such as a VLAN identifier, specifies a channel or a 
collection of plug-ins. Multiple plug-ins specified by a 
tag may be in one host or distributed to multiple hosts 
connected by a network channel (such as a VLAN). 

2. Parameters: Plug-in parameters are specified as 
protocol parameters. Some parameters identify the 
slice of the data path that the plug-in implements. 
Some parameters may be used for identifying a plug-in 
among the plug-ins specified by the plug-in channel 
tag. 

Two examples of D-plane interfaces are described 
here. In the first example, a VLAN is used for the D-
plane protocol. In this case, the plug-in channel tag may 
be specified as a VLAN identifier. The parameters, which 
represent the end-point addresses of the virtual link, are 
expressed as source and destination MAC addresses. If 
only one (or a few) VLAN identifier can be used or if no 
tagged VLANs can be used, plug-ins may be 
distinguished by a set of MAC addresses; in other words, 
they can be used for specifying both a plug-in tag and 
parameters. 

In the second example, GRE/IP is used for the D-plane 
protocol. In this case, the plug-in tag is represented by a 
key in the GRE header, and the parameters are 
represented by addresses in the IP header. 
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V. PROTOTYPING AND EVALUATION  

A version of the OVPIs was 
implemented, and two sets of plug-ins 
were installed and connected by using 
the OVPIs and partially evaluated. 
The hardware and software for the 
OVPIs and the plug-ins are described 
below first; the design, 
implementation, and preliminary 
results of an evaluation of the plug-
ins are described after that. 

A. Hardware and software 
environment for plug-ins 

The prototype system and the 
environment used for prototyping and 
evaluation are described as follows. A preliminary 
version of the OVPIs is implemented in the redirectors of 
the VNodes. A CLI is used for the C-plane interface, and 
a VLAN-based interface is used for the D-plane. Data 
plug-ins are implemented in two sets of PCs with CentOS 
(Linux). Each PC has a PCIe board with a network 
processor, Cavium Octeon [Cav 10]. This board is called 
WANic-56512 (developed by General Electric 
Company). An open and high-level language called CSP 
(Continuous Stream Programming) and its development 
environment, “+Net,” for Octeon [Kan 13b] is used for 
developing the plug-in programs. Control plug-ins are 
implemented in the PCs. 

Two sets of plug-ins were developed. The first set of 
plug-ins, a control plug-in and a data plug-in, implements 
a network-accommodation function that connects a slice 
to an external network through a VLAN, and the second 
set of plug-ins implements VLAN-based virtual links 
(link slivers) between VNodes. 

B. Re-implementing network-accommodation function 
The first set of plug-ins implements a network 
accommodation function that connects a slice of the 
VNode platform to an external network through a VLAN 
(see Figure 5). This function is similar to that of 
“network accommodation equipment” (NACE or NC) 
[Kan 12b], which is built into the VNode platform. 
However, this function is re-implemented to test the plug-
in architecture and the network-accommodation-function 
implementation.  

The data plug-in converts the packet format; that is, the 
packet format for the external network is X/Ethernet, 
where X is usually IP but other protocols can also be 
used, and the internal format for a VNode is 
X/Ethernet/Ethernet. The outer MAC header contains the 
platform parameters, and X/Ethernet (including the inner 

MAC header) is the packet format for the slice. 
As shown in Figure 5, successful IP communication 

between a PC in the external network and a VM in the 
virtual node was confirmed by a ping command. The 
performance of the whole prototype system, which 
contains two VNodes and plug-ins, has not yet been 
measured. However, the performance of the data plug-in 
implemented on the Octeon board was measured. When 
packet size was sufficiently large, i.e., 600 bytes or larger, 
the throughput was measured to be 8 Gbps or more, 
namely, close to the wire rate, i.e., 10 Gbps. 

C. Implementing a new type of virtual link 
The second set of plug-ins implements a new type of 
virtual link. GRE-based virtual links are the only type 
available in the current version of VNodes. VLAN-based 
virtual links are thus implemented by using the plug-ins. 
The architecture for the VLAN-based virtual link is 
shown in Figure 6, and the packet formats and example 
contents are shown in Figure 7. To separate a 
programmer from the network and other programmers, 
internal MAC addresses of the programmer, which are 
part of the data plug-in interface, must be hidden outside 
of the programmer [Kan 12a]. The redirector data plug-in 
therefore swaps the MAC addresses in data packets as 
shown in Figure 7. 

To operate a virtual link correctly, control plug-ins in 
two VNodes, which are the end-points of the virtual link, 
must exchange control parameters through the inter-
VNode C-plane (see the top of Figure 6). The end-point 
addresses in the control parameters identify the slice to 
which the virtual link belongs. This negotiation should be 
performed by the VNode managers (VNMs) of the 
VNodes when a virtual link is created or deleted. 
However, currently they only have negotiation function of 
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GRE-based virtual links. Therefore, in this preliminary 
and temporary implementation, the GRE-based link 
parameters, i.e., IP addresses (and a GRE key), are passed 
to the control plug-ins and they are converted to the 
VLAN-based link parameters, i.e., MAC addresses (and a 
VLAN ID). In a future version of redirector plug-in 
architecture, VNMs should implement a tunneling 
mechanism, i.e., CIT. The VNMs can exchange VLAN-
based link parameters or any other type of control 
information that control plug-ins manage using CIT. 

Successful IP communication between the virtual 
nodes connected by the VLAN virtual-link was confirmed 
by a ping command; although virtual links in VNodes 
can transmit arbitrary format packets such as IPEC 
packets [Kan 12c], IP was used because it requires only 
two commands (i.e., ifconfig and ping) built into the 
virtual node. The performance of the whole prototype 
system was not measured, but the throughput of the data 
plug-in was measured to be 9 Gbps or more when the 
packet size was 900 bytes or larger. 

VI.  RELATED WORK 

Click [Koh 00] is a software architecture that uses two-
level description for describing routers modularly. The 
lower-level components, which are described in C, can be 
regarded as plug-ins. The higher level is described in a 
domain-specific language, which connects modules in 
several ways. Both data and control plug-ins may be 
described by using Click; however, Click is suited to 
(data) packet processing but not well suited to control 
processing and hardware plug-ins. 

OpenFlow [McK 08] enables easy implementation and 
extension of network control. It is easy to use OpenFlow 
to design a plug-in architecture for management and 
control. It cannot, however, be used to implement data 
plug-ins.  

Active networks enabled ad hoc extension of data 
paths. Capsules, or active packets [Wet 98], which are 
packets containing programs, may be regarded as a 
temporary plug-ins. There are, however, two issues 
concerning capsules. First, capsules are not suited to 
repeatedly used functions because of redundancy; that is, 
multiple packets contain the same program. Second, they 
cannot be used for hardware plug-ins. Other types of 
active networks, such as SwitchWare [Ale 98], solve the 
first issue but not the second one. 

In contrast to OpenFlow and active networks described 
above, the plug-in architecture proposed in this paper can 
be used for both control and data plug-ins, and for both 
software and hardware plug-ins. 

VII.  CONCLUSION 

A method for evolving programmer and redirector, i.e., 
computational and networking components of a VNode, 
independently was proposed and tested. This method is 
composed of two steps. In the first step, plug-in interfaces 
called “open VNode plug-in interfaces” (OVPIs) for both 
data and control plug-ins are used. These OVPIs are built 
in both the programmer and the redirector of VNodes.  

A prototype of OVPIs and plug-ins were developed 
and evaluated. The evolved VNode can implement new 

types of network accommodation functions and can create 
new types of virtual links. The throughput of the network 
accommodation and the VLAN-based virtual links is 
close to a wire rate of 10 Gbps. This result means that the 
first step of VNode evolution was succeeded for these 
new functions.  

Future work includes implementing CIT to the VNM 
and implementing new types of virtual links and network 
accommodation methods, including non-IP-protocol 
based ones, using advanced technologies and methods. It 
also includes applying this method, including the second 
step, to VNodes in JGN-X. 
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