
High-level Portable Programming Language

for Optimized Memory Use of Network Processors

Yasusi KanadaYasusi Kanada
Hitachi, Ltd., Central Research Laboratory

1. Introduction
►Network -processor (NP) programming is important for

high -performance networking and in -network processing.
• NPs enable quick development of arbitrary protocols and functions.

►Problems of NP programming:
• No portability because of hardware/vendor-dependent proprietary

tools are required.
• Difficulty in development because of required specialized skill

and knowledge (which are not widely available).

►Focus: Programmers must distinguish SRAM and DRAM
to achieve 10 -100 Gbps wire -rate packet processing.
• Whole packet must be stored in DRAM.
• Operations on data in DRAM may disable wire-rate processing.
• NPs might not have cache, or cache mishit may cause serious

problems in NPs.problems in NPs.

►Means for solving these problems:
• Phonepl : an open, high-level, and portable programming language.
• Four packet-data representations , which programmers can be

mostly unaware of.

2. Phonepl language design
►Syntax and semantics are close to Java.

• Java/C++ programmers can use Phonepl easily.

►Packets are immutable byte -strings.
• Basic operations on packets are substring, concatenation, etc.
• Non-IP protocols can be programmed easily.
• Immutability enables data sharing among (input/output) packets.

►Byte strings and packets are different types of obj ects.
• They are handled by quire different methods.

►Assumptions on packet and string data
• Whole packet is stored only in DRAM, but the header is in SRAM

(cached).
• Whole byte string is cached (in SRAM and maybe stored in DRAM).

►Packet and byte string operations►Packet and byte string operations
• substring and subpacket operations

• subpacket generates a packet from part of a packet.
• substring generates a byte string from part of a packet or string.

• Concatenation operations
• concat generates a byte string from byte strings.
• “new Packet” generates a packet from byte strings and a packet.
• No methods for concatenating two or more packets.

►Simple MAC header
addition/removal

3. Phonepl program example
AddRemMAC

MAC header addition
(process1)

MAC header removal
NetStream1

(10 Gbps)
NetStream2

(10 Gbps)MAC header removal
(process2)

(10 Gbps) (10 Gbps)

001 import NetStream1;
002 import NetStream2;
003 class AddRemMAC {
004 NetStream out1;
005 NetStream out2;
006 public AddRemMAC(NetStream port1 > process1,
007 NetStream port2 > process2) {

Input to port1 is
passed to process1

Two packet I/O streams

Bidirectional packet stream processing

007 NetStream port2 > process2) {
008 out1 = port1;
009 out2 = port2;
010 }
011 void process1(Packet i) { // Port 1 to 2 (no VLAN -> no VLAN)
012 Packet o = new Packet(i.substring(0,14),i); // MAC header of original packet
013 out2.put(o);
014 }
015 void process2(Packet i) { // Port 2 to 1 (no VLAN -> no VLAN)

Input to port2 is
passed to process2

015 void process2(Packet i) { // Port 2 to 1 (no VLAN -> no VLAN)
016 Packet o = i.subpacket(14); // remove MAC header (no VLAN)
017 out1.put(o);
018 }
019 void main() {
020 new AddRemMAC(new NetStream1(), new NetStream2());
022 }
023 }

Object that process packets (singleton) is created.

4. Implementation method
►A Phonepl implementation selects four packet

representations statically or dynamically.

►Four representations of packet type►Four representations of packet type
• Cached : whole packet is in SRAM.

• No copy is assumed to be in DRAM.

• Mixed : whole packet is in DRAM and
packet header is in SRAM.

• Header size is variable.
Outline of packet data structure:

Four representations• Header size is variable.

• Gathered : packet consists
of multiple fragments.

• Represented by an array
or list of fragments.

• Uncached : whole packet
is in DRAM

SRAM DRAM
Cached size (Cached data)

(Stored data)
Mixed size (Descriptor)

(Cached data)

(1) Cached packet

(2) Mixed packet

Four representations

is in DRAM
• No copy is assumed to be

in SRAM.
Gather size

(Stored data 2)

(Stored data 1)

(3) Gathered packet

(Stored data)
Uncach size

(4) Uncached packet

(Cached data)

5. Prototyping and Evaluation
►Prototype

• Phonepl was implemented for Cavium Octeon® NP.

►Evaluation using two Phonepl programs►Evaluation using two Phonepl programs
• Prototype was evaluated by using a program for MAC header

addition/deletion and a pass-through program.
• An Octeon board with these programs was connected to each node

in VNode Infrastructure (a network-virtualization infrastructure).
• NP Board: GE WANic 56512 10

►Evaluation result
• The throughput was

over 7.5 Gbps (close to
10-Gbps wire-rate).

4

6

8

Th
ro

ug
hp

ut
 (

G
b

p
s)

Addition

0

2

0 500 1000 1500

Th
ro

ug
hp

ut
 (

G
b

p
s)

Packet size (Byte)

Deletion

Pass-through (forward)

Pass-through (backward)

6. Conclusion
►To make NP programming easier, Phonepl language and

a method for implementing Phonepl are proposed.
• Programmers can use SRAM and DRAM appropriately without • Programmers can use SRAM and DRAM appropriately without

distinguishing them.
• Four representations of packet type and usage of them were

proposed.

►The evaluation result shows Phonepl for Octeon NP
enables high throughput (close to 10 -Gbps wire -rate) in enables high throughput (close to 10 -Gbps wire -rate) in
simple packet processing.

Appendix: Detailed packet data structures

(Descriptor)0 size Cached

(1) Cached packet

offset

SRAM

(Stored data)

(Descriptor)0 size Mixed

size03 size’ Mixed

(Cached data)3 size’ Cached

(2) Mixed packet

offset = size0 − size

offset offset’

offset

offset’

offset2

SRAM DRAM

(Cached data)

(3) Gathered packet

0 size Gather size1

size2
6 size’ Gather

(Stored data 2)

offset’

offset

SRAM DRAM

offset’ = 6

(Cached data)

(Cached data)

offset = size0 − size

size36 size’ Gather
(Stored data 1)offset’ offsets

(Stored data)

0 size Uncached

8 size’ Uncached

(4) Uncached packet

offset

offset’

DRAM

Appendix: Detailed usage of four representations
►Mixed representation is required.

• In packet processing, only packet headers are usually processed.
• In such cases, it is better to store only packet headers to SRAM

and tails to DRAM.

►Gathered representation is required.
• This representation is useful when generating a packet by

concatenating multiple data in DRAM or SRAM.concatenating multiple data in DRAM or SRAM.
• If trying to collect whole data into contiguous area in DRAM, DRAM

to DRAM copy, which requires much time, is required.

►State transition between four representations

subpacket

Cached Uncached

Mixed

Gathered
subpacket

subpacketsubpacket

concat

concat

concat

subpacket, concat

