Federation-less-federation of Network-virtualization Platforms

Yasusi Kanada, Toshiaki Tarui, and Kei Shiraishi
Hitachi, Ltd.
Introduction

- We are developing VNode and VNode Platform in a collaborative project.

- **VNode** is a *deeply-programmable* physical node with network-virtualization function.

- **Deeply-programmable**: packet data processing, such as new *non-IP* protocol processing, can be programmable.

- **VNode Platform** is a virtualization platform, which enables concurrent creation and use of multiple slices (virtual networks).
Research Goals

- Research goals are federation among two or more virtualization platforms including the VNode Platform.

- Final goal: Heterogenous federation
 - To federate new VNode Platform and several other platforms including ProtoGENI (developed in GENI Project in US).

- First goal: Homogenous federation of VNode Platforms
 - To federate two or more previously-developed VNode Domains.
 -- This VNode Platform does not have federation functions.
 - To enable Non-IP data communication on a cross-domain slice.
Network Virtualization Platform and VNode

- Multiple slices can be created on one physical network in this architecture and platform.
 - Slices means virtual networks.

- VNode (virtualization node) is a component of the network virtualization platform.
 - VNode is a physical node.
 - VNode forwards packets on the platform as a router.
 - Slices are implemented as overlay networks on the platform.
 - VNodes are connected by tunnels using GRE/IP.
 - GRE (Generic Routing Encapsulation) is a protocol standardized by IETF.
Slice Creation and Management in the VNode Platform

- The developer describes a slice design that represents the specification of the virtual network.
 - The design describes virtual nodes, virtual links, and binds them (binding relationships between them).
 - The design is described by using an XML-based language.

- A slice is created by sending a slice design to the domain controller (DC) of the VNode Platform.
Federation between Virtualization Platforms

- Federation functions between virtualization platforms
 - Resource discovery functions
 - Slice handling functions
 - Queries on statistics and manifests

- In this paper/presentation, we focus on slice handling functions, especially, slice creation.

- Slice handling functions
 - Functions to create and to manage a slice that spread among multiple virtualization platforms from a single platform.
Federation between Virtualization Platforms

(cont’d)

- **Basic federation method**
 - Instead of submitting the slice specification to both domains, it is passed to one domain and it passes the slice specification to the other domain.

- **More complicated messaging pattern**
A virtualization platform without federation functions does not have a concept of “other domain”.
- The “own domain” is the only domain.

The part of the slice in other domain must belong to the own domain.
- This means that the other domain is a sub-domain of the own domain.
- Information in the part of the slice in the other domain must be hidden from the DC in the original domain.
 - The part is to be managed only by the DC in the other domain.
 - Duplicated management of the part must be avoided, this part must be hidden.
Conceptual Outline of Federation-less Federation (cont’d)

- **Domain proxy node (DPN) concept**
 - The only way to express a sub-domain is to use a virtual node.
 -- to express as a node belongs to a pseudo VNode (DPN)
 - DC can manage a DPN in the same way as a normal VNode.

- DPN conceptually contains an image of the other domain.
 - DC maps a *pseudo virtual node* (PVN) on a DPN by using the same way as for a normal virtual node.
 - The PVN must contain a part of the slice specification for the other domain (B) as a sub-structure.
Federation Architecture: Three components

- Domain proxy node (DPN)
 - DPN receives a specification of PVN that contains the other-domain-part of slice definition and sends it to Gatekeeper.

- Gatekeeper
 - Gatekeeper receives the other-domain-part of slice definition and sends it to the other domain through the *Federation API*.

- Gateway
 - Gateway converts the data packet from intra-domain format to inter-domain format.

- The numbers of DPN, gatekeeper, and gateway may be the same or different in federation of three or more domains.
Homogenous federation
Process 0: Propositions

- A symmetrical slice is used for example.

- This example handles a homogenous federation, but this method can be applied to heterogenous federations.

[Diagram showing a canonical slice specification (Domain-independent form) with domains D1 and D2, and nodes VN1, VN2, VN3, VN4, N11, N12, N21, N22.]
Homogeneous Federation
Process 1: Sender side

- In a slice specification given to the DC, the PVN encloses the part of the slice for the other domain.
 - The DC does not look at the inside of the PVN.

- The DC distributes the slice specification to the DPN, as well as normal VNodes, using the same API (step 2).

- The DPN sends the slice specification to the other domain through the gatekeepers (steps 3, 4).
 - The slice definition is in the domain-independent form.

Slice specification S1 (domain dependent form)

```
[Diagram showing slice specification S1 with VNodes and gatekeepers]
```

Domain independent form

```
[Diagram showing domain independent form with gatekeepers and VNodes]
```

Data exchange protocol (GRE, VLAN-based tunneling, etc.)
Homogenous Federation
Process 2: Receiver side

- The gatekeeper of the receiver-side encloses the part of the slice for the sender domain and send the slice specification to the DC (step 5).
- The DC distributes the slice specification to the DPN, as well as normal VNodes, using the same API (step 6).
- The slice definition is processed in the same method as in the sender side except the gatekeeper does not send it to the sender side.
 - Gatekeepers tracks the state.
Message Loop Avoidance

- Inter-domain messages may cause an infinite loop because the conceptual structure is recursive.
 - There may be many recursion patterns when there are three or more domains.

- An Infinite loop must be avoided by using message identification and/or marking.
Manageable Inter-domain Links for Non-IP Communication

- A link that corresponds to each inter-domain virtual link is created by stitching three sections.
 - The inter-domain section is created through the gateway control interface (GCI) while inter-domain messaging.
 - The intra-domain sections are created in the same method as normal virtual links in a domain.

- The gateways may convert inter- and intra-domain protocols if necessary.
 - E.g., In the current VNode Platform, GRE is used for intra-domain, VLAN is used for inter-domain.
 - Gateways may be bipassed if no protocol conversion is required.
Issues in Federation-less-Federation Method

- **Restriction on modification**
 - If the domain does not have a command to update a virtual node, there is no way to update the structure of the other domain.

- **Difficulty in collecting information**
 - Resource discovery, statistical query, and asking manifests* may be difficult to implement because the DC of a domain does not collect information of the other domain.
 *manifests: virtual-node host-names or addresses, etc.
Implementation and Evaluation*

An example of slice specification used for the evaluation is shown.

- Slice specification given to domain 1
 - XML text
 - Diagram

- Slice specification generated for domain 2
The sequence and measured time is as follows.

Domain D1
- **0**
 - reserveSlice (request)
 - reserveSlice (request)
 - reserveSlice (request)
- **0.002**
 - Downward processing: 3.8 s (estimated)
 - Waiting time: 10.5 s
- **0.025**
 - Upward processing: 4.0 s (estimated)

Domain D2
- **0**
 - Preprocessing: 0.3 s
- **0.047**
 - Downward processing: 3.8 s
- **0.297**
 - Upward processing: 4.0 s
- **4.033**
 - Postprocessing: 2.5 s
- **4.044**
- **4.074**
- **7.960**
- **7.961**
- **8.067**
- **10.539**

Preprocessing:
- Login (request / reply)
- reserveSlice (request)
- reserveSlice (request)
- reserveSlice (request)
- reserveLink (request & reply)
- reserveNode (request)
- createSlivers (request)
- bind (request & reply)

Downward processing:
- reserveSlice (request)
- reserveSlice (request)
- reserveSlice (request)
- reserveNode (request)
- reserveLink (request & reply)

Waiting time: 10.5 s

Upward processing:
- bind (request & reply)
- bind (reply)
- bind (request)
- logout (request / reply)
- reserveSlice (reply)
- reserveNode (reply)
- createSlivers (reply)
- createSlivers (request)

Postprocessing:
- 2.5 s
Conclusion

- This paper proposes a method of federation between domains without a federation function.
- The proposed method enables non-IP data communication on the slice.
- The federation method was successfully implemented on the VNode Platform.
- Future work includes heterogeneous federation, especially federation between VNode Platform and ProtoGENI.
 - A limited implementation has been already demonstrated in GEC 16 (i.e., 16th GENI Engineering Conference).