
1

Federation-less-federation of Network-virtualization
Platforms

Yasusi Kanada and Toshiaki Tarui
Hitachi, Ltd., Central Research Laboratory

Yokohama, Japan
{ Yasusi.Kanada.yq, Toshiaki.Tarui.my} @hitachi.com

Kei Shiraishi
Hitachi, Ltd., Telecommunications & Network Systems Division

Kawasaki, Japan

shiraishi_kei@itg.hitachi.co.jp

Abstract – A method for federating multiple network-
virtualization platforms by creating and managing slices
(virtual networks) is proposed. A cross-domain slice can be
created, deleted, or modified by sending a slice specification to
the domain controller (network manager) of one domain. The
specification is then propagated to other domains. Two chal-
lenges were addressed while this method was developed. The
first challenge is to enable federation among multiple domains
that do not support federation functions by only adding a few
components without modification of the existing network-
virtualization-platform architecture. A domain-dependent
specification of a slice, containing a pseudo virtual node that
encloses a part of the slice specification in the other domains, is
used, and this part is handled by a proxy node that represents
another domain and a control component that implements a
federation API to create a cross-domain slice. The second
challenge is to enable manageable non-IP (arbitrary-format)
data communication on a cross-domain slice. For an inter-
domain communication, underlay VLAN parameters including
MAC addresses are negotiated in advance and data packets on
a slice are tunneled between gateways in these domains. The
proposed federation method was implemented on two network-
virtualization platforms, federation between two homogeneous
domains was successfully demonstrated, federation perfor-
mance was measured, and several issues on functional
restrictions and implementation difficulty were found.

I. INTRODUCTION

In Japan, several projects targeting “new-generation
networks” (NwGN) have been conducted [Aoy 09]
[AKA 10]. These projects aim to develop new network
protocols and architectures (i.e., the “clean slate” approach
[Fel 07]) as well as various applications that are difficult to
run on internet protocols (IPs) but work well on NwGNs.
The Virtualization Node Project (VNP) [Nak 10] and its
successive projects aim to develop network-virtualization
technology and virtualization nodes (VNodes). The goal of
these projects are to develop an environment where multiple
slices (or virtual networks) with independently designed
NwGN architectures and functions using arbitrary-format
(non-IP and non-Ethernet) packets run concurrently, but are
logically isolated, on a physical network. The virtualization
platform developed by VNP [Nak 12b][Nak 12a] have been
deployed in the testbed network JGN-X [Pan 11] for design-
ing, deploying, and testing new network services in Japan.

In this study, a method for federating virtualization
platforms is proposed. This method enables both homogene-
ous and heterogeneous federation; that is, creating a slice
across two or more network-virtualization platforms of the
same or different type. Slices contain virtual nodes and
virtual links, so both virtual-node and -link resources should
be managed. Especially, the virtual links between the
platforms, which might not be managed by the platforms,
should be managed.

Two challenges were addressed while this federation

method was developed. The first challenge is to enable
federation among multiple domains that do not support
federation functions without modification of their existing
network-virtualization platform architecture. Instead, a
proxy node, which communicates with a controller compo-
nent as a normal virtualization network node, is added to
mediate between the domains. The slice structure of one
domain is hidden from the slice specification of another
domain. This “federation-less federation” reduces the hurdle
of introducing a federation function into existing virtualiza-
tion platforms; that is, it reduces the development cost and
time and amount of resources required for developing
federation functions as well as the number of bugs, degree
of performance degradation, and number of service interrup-
tions caused by deploying federation functions.

The second challenge is to enable non-IP (arbitrary-
format) data communication on a cross-domain slice. For an
inter-domain communication, underlay VLAN parameters
including VLAN ID and MAC addresses are negotiated in
advance, and data packets on a slice are tunneled between
gateways in these domains. Not only VLAN ID but also
MAC addresses must be negotiated because no address
resolution or correlation mechanism, such as the Address
Resolution Protocol (ARP), is assumed when a non-IP
(clean-slate) protocol is used for data communication.

This federation method has been implemented on the
VNode platform in a post-VNP project, and successful
communication between two homogeneous domains was
demonstrated.

The rest of this paper is organized as follows. Section II
summarizes the virtualization platform, the slice model, and
the slice-creation and management method, which were pre-
viously developed. Section III describes the basic federation
method, Sections IV outlines federating federation-less
platforms, and Section V describes the federation-less-
federation architecture and the method of transforming slice
specifications. Section VI describes the method of creating
inter-domain links, which allows communication using non-
IP protocols, and the data format used for inter-domain data
communication. Sections VII to VIII describe the
implementation and evaluation of the federation method as
well as related work, and Section IX concludes this paper.

II. V IRTUALIZATION PLATFORM AND SLICE MODEL

This section explains network virtualization, the virtualiza-
tion platform, the structure of slices, and the basic slice-
creation and management method developed in VNP.

A. Network Virtualization
When many users and systems share a limited amount of
resources on computers or networks, virtualization technol-

2

ogy creates the illusion that each user or system possesses
their own resources. Concerning networks, wide-area
networks (WANs) are virtualized by using virtual private
networks (VPNs). When VPNs are used, a physical network
can be shared by multiple organizations, and these
organizations can securely and conveniently use VPNs in
the same way as virtual leased lines. Nowadays, networks in
data centers are virtualized by using VLANs, while servers
are virtualized by using VMs.

Many research projects on programmable virtualization
networks have been carried out, and many models, including
PlanetLab [Pet 02][Tur 07], Virtual Network Infrastructure
(VINI) [Bav 06], Global Environment for Network
Infrastructure (GENI) [Due 12], and Genesis [Kou 01], have
been proposed. In VNP, Nakao et al. [Nak 12b][Nak 10]
developed a VNode architecture and platform that make it
possible to build programmable virtual-network environ-
ments in which slices are isolated logically, securely, and in
terms of performance (QoS) from one another [Kan 12a]. In
these environments, new-generation network protocols can
be developed without disrupting the other slices.

B. Structure of VNode Platform
Each VNode platform domain (managed by a platform
operator) is managed by a domain controller (DC), and each
domain has two types of nodes: VNode and gateway (see
Figure 1). VNode forwards packets on the platform. A
domain may contain conventional routers or switches that
do not have virtualization functions. VNodes are connected
by tunnels using a protocol such as Generic Routing
Encapsulation (GRE) [Far 00]. Therefore, a slice is neither
constrained by the topology of the physical network nor by
the specific functions of these nodes. A VNode can operate
as a router or a switch for platform packets, so it can be
deployed in conventional networks.

Each VNode consists of the following three components.
Programmer processes packets like a router or a switch on
each slice. Slice developers (or slice operators) can inject
programs into programmers. Redirector forwards (redirect)
packets from another VNode to a programmer and forward
packets from a programmer to another VNode. VNode
manager manages the VNode according to instructions from
the DC.

C. Structure of Slices
In the virtual-network model developed by VNP, a virtual
network (or a collection of resources in a virtual network) is
called a slice, which consists of the following two types of
components (see Figure 2(a)) [Nak 12b][Nak 10].

• Virtual node (or node sliver) represents a computational
resource in a VNode. It is used for node control or proc-

essing packets with an arbitrary format. It is generated by
slicing and abstracting physical computational resources.

• Virtual link (or link sliver) is a link resource between two
virtual nodes both IP and non-IP protocols can be used on
this link. It is mapped on a physical link between two
VNodes. It is generated by slicing and abstracting
physical network resources such as bandwidth.

A slice developer describes a slice specification in XML.
However, each slice specification is expressed as a diagram
hereafter. A specification of a slice, named S, with three
virtual nodes (VN1, VN2, and VN3) and three virtual links
(VL12, VL13, and VL23) is shown in Figure 2(a). The
virtual nodes are mapped to VNodes (N1, N2, and N3). If
the description of the mapping between virtual and physical
nodes is omitted, the DC determines the mapping instead.
This mapping problem, which is called the virtual-network
embedding problem, has been widely studied (e.g., [Zhu 06]
[Cho 10][Zah 10]). The virtual-node specifications in a slice
specification contains URLs of the VM images, but the slice
developers can load programs into the VMs and run them by
using secure shell (ssh) commands after loading and
starting the VMs.

Virtual links are implemented by using a tunneling
protocol such as GRE. The tunnels may bypass physical
nodes. Slice structures, therefore, do not necessarily depend
on the physical structure of the network. The slice developer
can program virtual nodes by specifying the URL of a VM
image or a fast-path program to be loaded.

D. Basic Slice-Operation-And-Management Method
The DC of a domain receives a slice-operation message with
whole or part of a slice specification from the slice devel-
oper (see Figure 2). The DC distributes the message to each
VNode in the domain. In a VNode, the VNode manager
receives the specification and sends a part of the slice speci-
fication to the programmer and another part to the redirec-
tor: the programmer receives information required for
virtual-node configuration, and the redirector receives the
information required for virtual-link configuration. For ex-
ample, in the case shown in Figure 2, the specification of
VN1 is deployed to the programmer in N1, and the specifi-
cation of VL12 is deployed to the redirectors in N1 and N2.
The detailed information in virtual nodes and links are man-
aged by VNode managers, programmers, and redirectors,
but not by the DC (which is not responsible for the details).

III. BASIC SLICE-FEDERATION METHOD

The federation functions provided by the slice-federation
method connect two or more domains of the same or

Gate-
way

User’s
PC/VM

User’s
PC/VM

DC

VNode

VNode VNode

IP
router VNode

DC: Domain controller
VNode: Virtualization node
VNM: VNode manager
R: Redirector
P: Programmer

VNode
VNM

P R

Gate-
way

Figure 1. Physical structure of virtualization platform

Virtualization
platform

(domain)

Slice S
VN1*

VN2*

VN3*

… N1**

… N2**

… N3**

VL13†

Slice specification Domain
controller

VNode
N4

VNode
N1

VN1

VN2 VN3

VNode
N2

VNode
N3

VL12†

VL23†

VL13VL12

VL23

Operation

(creation,
modification, etc.)

* VN1, VN2, VN3: Virtual nodes.
** N1, N2, N3: VNodes.
† VL12, VL13, VL23: Virtual links.

(a) Slice specification (b) Slice operation (creation, etc.)
Figure 2. Single-domain slice specification and operation

3

different type of virtualization platform, including VNode
platforms, GENI-based platforms [Pat 10], and so on. The
domains are federated by using a set of APIs called
federation APIs (see Figure 3(a) and (b)). The federation
APIs should be standardized interfaces supported by various
types of virtualization platforms. Each API basically
consists of simple pair of a request and a reply. In the post-
VNP project, the place where the federation APIs work is
called the slice exchange point (SEP).

Many types of federation functions, such as listed in
Figure 3(b), are provided. However, the focus in this paper
is not the federation functions themselves, but it is the
transformation of slice specifications, which is common to
all the federation functions. Only creation function is, thus,
used for explanation in this paper.

It is assumed that a slice-operation message with a slice
specification is sent to the DC of a domain (domain A in
Figure 3(a)) at first, and a copy of the specification is for-
warded to the DC of the other domain (domain B) through
the federation API. No clearing house, or hub, is used for
this communication. The slice specification shown in
Figure 3 consists of four virtual nodes and four virtual links.
Two virtual nodes (VN1 and VN2) belong to domain A, and
the other virtual nodes belong to domain B. Two of the four
virtual links (VL14 and VL23) are inter-domain links.
Because inter-domain links exist, these domains cannot be
managed independently; in other words, the inter-domain
links must be managed in relation to both domains.

In a slice creation, VN1 and VN2 are created and man-
aged by the DC in domain A, and VN3 and VN4 are created
and managed by the DC in domain B. Although the virtual
links within a domain are managed solely by the DC in the
domain, the inter-domain links are cooperatively created and
managed by two DCs in both domains. The information
required for this cooperation is exchanged using the federa-

tion API.
The federation of two domains is shown in

Figure 3(a). If three or more domains are
federated, the messaging pattern is more
complicated. A four-domain example is shown
in Figure 3(c). In this figure, domain A sends
federation messages through the API (APIs)
between A and B and between A and C.
Domain C forwards the message to domain D.

IV. CONCEPTUAL OUTLINE OF FEDERATION-
LESS FEDERATION

The federation between two domains without
federation functions is conceptually outlined as
follows (see Figure 4). A virtualization plat-
form without federation functions does not
have a concept of “other domain” because the
“own domain” is the only domain. Therefore,
the other domain part of the cross-domain slice
specification must belong to the own domain.
This means that the other domain is a sub-
domain of the own domain. Because a part of
the slice in the other domain is to be managed
only by the DC in the other domain and
duplicated management of the part must be
avoided, this part must be hidden, i.e.,
encapsulated, from the DC in the own domain.

In a slice specification, the only way to express the set of
virtual nodes and virtual links in a sub-domain is to use a
virtual node. This node belongs to a pseudo VNode, which
does not have network-node functions, such as routing or
switching, because it only represents and delegates the other
domain. The pseudo VNode is, thus, called a domain proxy
node (DPN). Although a DPN is not a real network node, a
DPN mimics a VNode; that is, it provides the same API as a
VNode and the DC can manage it by the same method. The
DC maps a pseudo virtual node (PVN) on a DPN by using
the same way as for a normal virtual node, and the PVN
must contain a part of the slice specification for the other
domain (B) as a substructure. This means that the DPN con-
ceptually contains an image of the other domain.

Similarly, if the other domain does not have federation
functions either, it must have a DPN that contains the image
of the own domain (A) and the PVN in a part of the slice
specification of the other domain is mapped to a DPN that
represents the own domain. Therefore, conceptually, as
shown in Figure 4, the image contained in the DPN
recursively contains the domain images. The slice specifica-
tions exchanged through the federation API reflect the
above conceptual structure. However, this static recursion
may not cause a message loop in federation.

Domain A

VNode
N11

VNode VNode
N12

Domain
Controller

VNode
N21

VNode
N22

VNode

Domain
Controller

Domain BSlice specification

VN1 VN3

VN2 VN4

VL14 VL23

Slice S
VN1

VN2

VN3

VN4

VL14

VL23

… N11

… N12

… N21

… N22

Operation

(creation,
modification, etc.)

Federation API
(Slice Exchange

Point,SEP)

(a) Basic federation method

1. Resource discovery function: Cross-domain discovery of computational resources
available in virtual nodes and link resources available between virtual nodes. The API
finds resources from known domains, i.e., known gatekeepers. No function for
discovering DCs, DPNs, gateways, and gatekeepers is included.

2. Slice handling function: a) Creation of a slice among multiple domains, b) Slice
modification, i.e., addition/removal of virtual nodes or links in a federated domain or
cross-domain virtual links, c) Deletion of a slice among domains.

3. Query on statistics and manifests: a) Query on slice (and platform) statistics such
as number of packets counted in a virtual link, b) Query on manifests, i.e., bottom-up
parameters such as virtual-node host-names or addresses.

(b) Functions of the federation API

Domain A

Domain B

Slice specification

Domain C Domain D

Federation
API

Federation
API Federation

API

(c) More complicated messaging pattern
Figure 3. Federation API and cross-domain slice creation

Federation
Domain proxy node

(Subdomain)
Domain proxy node

(Subdomain)

Image of the other
domain

Image of own
domain

Image of the other
domain

Image of own
domain

Domain A Domain B

Figure 4. Conceptual outline of federation-less federation

4

 It is assumed that the DC is not responsible for detailed
information enclosed in a virtual node in the own domain; in
a similar manner, it is not responsible for (does not manage)
detailed information in PVNs (i.e., in the other domain).

V. FEDERATION ARCHITECTURE AND TRANSFORMATION OF
SLICE SPECIFICATIONS

The proposed federation architecture, the transformation
process of a slice specification, and a method of message
loop avoidance are described in this section.

A. Architecture
The proposed federation architecture is shown in Figure 5.
In this figure, both domains, D1 and D2, are VNode
platforms. However, this architecture can be applied to
heterogeneous federation; that is, even when domain D2 is a
different type of platform, there is no need to modify the left
half of this figure, although the detailed message contents
and federation sequence may have to be changed.

The following three physical components are added to
the domain as federation interfaces (i.e., SEPs).

• Domain proxy node (DPN) is a pseudo VNode that
receives a whole slice specification (or the specification
of the PVN) from the DC of the own domain. The DPN
receives a slice specification containing the PVN, which
is mapped to the DPN. This virtual-node contains part of
the slice in the other domain. Because the slice structure
is symmetric about the domain border, the slice specifica-
tion described by the slice developer should also be
syntactically symmetric. However, the slice specification
acceptable by DPN and DC is syntactically asymmetric
(that is, the virtual nodes in the other domain are enclosed
but those in the own domain are not enclosed) because, in
the PVN, the virtual nodes in the own domain must be
bare (i.e., managed by DC), and those in the other domain
must be enclosed (i.e., not managed by DC).

• Gatekeeper is a server for federation management and

control. A gatekeeper (gatekeeper 1 in Figure 5) receives
the slice specification, transforms it to an API-based
format, and forwards it to the gatekeeper of the other
domain (gatekeeper 2). The API between the gatekeepers
is the federation API. The slice specification sent from
one gatekeeper to the other must be syntactically
symmetric about the domain border because the two
domains are symmetric. A gatekeeper also configures the
gateway for inter-domain links through the gateway-
control interface (i.e., the control interface of a gateway).
The word “gatekeeper” comes from the terminology of
ITU-T H.323, although there are differences in its role.

• Gateway (federation gateway) is a network node that has
a function for data conversion from the internal format in
the own domain to an intermediate format between the
federated domains. A gateway (gateway 1) sends packets
to the other gateway (gateway 2) toward the other
domain, and it receives packets for the own domain from
the other gateway.

In the case of federating two domains, each domain has a
DPN, a gatekeeper, and one or more gateways. In contrast,
in the case of federating N domains, each domain may have
N (or less) DPNs, one to N gatekeepers, and one to N
gateways. These three types of nodes may therefore be
separately deployed because of flexibility of design and
implementation, and performance.

B. Transformation of Slice Specification
The forms of slice specification and the transformation
process are also shown in Figure 5. In a slice specification
given to the DC, the PVN encloses the part of the slice for
the other domain. In slice specification S1, PV1 encloses
this part. This enclosure, i.e., PV1, is the border of
responsibility. Because the DC does not have federation
functions, this domain-dependent form (S1) must be used
for creating a cross-domain slice. However, if an appropriate
preprocessor is supplied, the slice developer can use a
domain-independent form, i.e., the slice Sf; in other words,
the preprocessor can translate the domain-independent form
to the domain-dependent form.

The original slice specification (S1) is sent to the DC
(step 1 in Figure 5) at first, and the DC distributes it to all
the VNodes in the own domain including the DPN, which is
manually registered to the DC (step 2). Although the whole
slice specification is sent to each VNode in the VNode
platform, only the PVN (PV1) may be sent to the DPN
(P11) in general. However, the complete specification
would probably work when an error or exception occurs. If
only partial slice information is available in each domain,
the slice developer must collect and combine pieces of
operation-and-management information to find the actual
problem, such as a bug, by oneself instead of using an
automated information collector.

The DPN sends the specification to the gatekeeper, which
is manually registered to the DPN (step 3), and the
gatekeeper transforms it to the domain-independent form Sf.
This specification is syntactically symmetric about the
domain border. In this specification, the virtual nodes of
each domain are enclosed in an envelope labeled by the
domain name. In this figure, the envelopes are labeled as
domains “D1” and “D2”.

Slice S Slice S

Domain D1

Domain D2

VNode
N11

VNode

Domain
controller

Domain D2

VNode
N21

VNode

Domain
controller

Domain
proxy

node P21

Gate-
way 1

Gate-
way 2

Federation
API

Slice specification S1

VN1*

VN2*

VirtualNode PV1*

VN3*

VN4*

VL14 ††

VL23 ††

… N11**

… N12**

… N21**

… N22**

… P11†

VN3*

VN4*

VN1*

VN2*

Slice S

VN3*

VN4*

VirtualNode PV2*

VN1*

VN2*

VL14††

VL23 ††

… N11**

… N12**

… P21†

… N21**

… N22**

Slice specification Sf Slice specification S2

(1)

(3)

(4) (5)

(6)(7)

(8)××××

… N11**

… N12**

… N21**

… N22**

CommonAPI CommonAPI(2)

Domain D1

VNode
N22

VNode
N12

Gate-
keeper 1

Gate-
keeper 2

Domain
proxy

node P11

GCI‡

Operation
(creation,

modification,
etc.)

*VN1, VN2, VN3,
VN4, PV1, PV2:
Virtual nodes.

** N11, N12, N21,
N22: VNodes.

† P11, P21: DPN
(domain proxy
nodes)

†† VL14, VL23:
Cross-domain
virtual links.

‡ Gateway
Control Interface

GCI‡

Data exchange protocol
(GRE，VLAN-based tunneling, etc.)

Figure 5. Federation architecture and transformation of slice
specification

5

The slice specification is sent to the other domain
(step 4). The federation API (i.e., SEP) may have a discov-
ery function of gatekeepers. However, gatekeepers of other
domains may also be manually registered to a gatekeeper.
Gatekeeper 2 transforms it to a domain-dependent form of
Domain D2, and sends it to the DC (step 5). In this
specification (S2), a PVN called “PV2” encloses the part of
the slice (of D1). This enclosure, i.e., PV2, is the border of
responsibility. PV2 is mapped to the DPN labeled “P21” in
gatekeeper 2. The DC of domain D2 distributes the specifi-
cation to all the VNodes in domain D2 including P21 (step
6). P21 sends the specification to the gatekeeper (step 7) in
the same way that the P11 sends it to gatekeeper 1.

Gatekeeper 2 behaves differently from gatekeeper 1 in
the original domain. If a slice specification is received by
the current domain (D2) at first, the gatekeeper forwards it
to the other domain (D1). However, if it is received by the
other domain, an infinite loop may occur. In spite of this
risk, this slice specification must contain information on the
other domain because this information is required for inter-
facing the domains, i.e., for completing inter-domain links.
To avoid this loop, the gatekeeper must reject sending it to
the original domain (step 8) (or the gatekeeper in the other
domain (D1) must reject the message). The available meth-
ods to avoid this loop are described in the next subsection.

Note that the proposed federation method may have two
problems: one concerning scalability and one concerning
security and privacy. The first problem is that it may take
too much time or resources to parse the XML of the slice
specification because PVN may contain a large and
complicated structure to be parsed and analyzed. However,
because neither the DC nor the DPN have to parse it, this
scalability problem can be avoided. The parsing and
analyzing overhead can thus be avoided, for example, by
encoding the structure by a scheme such as Base64.

The second problem is that the DC or the DPN may leak
domain internal information contained in the other-domain
part of a slice specification. This problem can be solved by
encrypting the information. For example, the content of PV1
in the slice S1, which belongs to domain D2, can be
encrypted before it is given to the DC of domain D1, and
this content can be decrypted by gatekeeper 2. In addition,
the content of PV2 in the slice S2, which belongs to domain
D1, can be encrypted by gatekeeper 1. Alternatively, the
problem can be solved by removing the internal information
of D1 by gatekeeper 1 before sending it to the other domain.
In both cases, PV2 becomes a black box. Both contents of
envelopes labeled D1 and D2 in the slice Sf between two
gatekeepers are encrypted.

C. Message Loop Avoidance
As described in the previous subsection, inter-domain
messaging may cause an infinite loop. Several methods to
avoid this loop are described here.

A message loop is caused by the nature of federation-less
federation, i.e., conceptual recursion, described in
Section IV. The message pattern described in the previous
subsection is the simplest one. However, if there are three or
more domains, various loop patterns may occur.

The basic method for avoiding a loop is to identify a slice
specification and not to forward or to process such a

specification. The slice identifier contained in the message
may be used for this identification. However, this problem
may occur not only in a slice-creation message but also in
modification or query messages. Two or more slice
modification or query messages that specify the same slice
may be designated by a slice developer simultaneously. The
message identity must therefore be recognized by using
more powerful means such as unique request identifiers.

In addition, the following methods may be used in
combination with the above basic method for avoiding
unexpected events caused by errors or bugs. One method is
marking. A gatekeeper can mark messages that come from
other domains. This method is probably useful only in
federation of two domains because three or more types of
messages, which must be distinguished when three or more
domains exist, cannot be distinguished by this method.
Another method uses TTL (time-to-live). The management
system can add a TTL to a message when it first receives the
message from outside of the system. This method is more
powerful than marking. However, it still fails when the
number of domains that are linearly chained is larger than
the initial value of TTL. These two methods are therefore
useful only as a backup of the method based on identity.

VI. MANAGEABLE INTER-DOMAIN LINKS FOR NON-IP
COMMUNICATION

A cross-domain slice specification usually contains inter-
domain virtual links. Several issues on these links and their
solutions are explained. To enable manageable inter-domain
non-IP communication, both issues must be solved.

1. Protocol and data format used for inter-domain data
communication (Data-plane issue)
The protocol and the data format used for platform
(underlay) communication must be selected in considera-
tion of available hardware and software. The function of a
network between two domains may be restricted; only a
limited set of protocols may be available. However, to
exchange virtualized packets, a type of tunneling protocol
is required. If the network is IP-based, GRE is a
candidate, and if the network is Ethernet, VLAN-based
“tunneling” may be used. We assume the latter is used.

2. Method of setting up the underlay link that corresponds
to the virtual link (Control-plane issue)
To set up an underlay inter-domain link, the facing
domains must exchange necessary parameters such as IP
addresses (and GRE keys) in the case of an IP-based
network. These parameters are exchanged between the
domains by the gatekeepers. If the network between the
domains is managed by another operator, a negotiation
with its manager may be required. When IP-over-VLAN
is used (i.e., IP is used on the slice and VLAN is used on
the platform), VLAN ID must be exchanged but MAC
addresses are not necessarily exchanged by the
gatekeepers because they can be obtained by using ARP.
However, if “X over VLAN” is used (i.e., a non-IP
protocol, which might have no “address” concept, is used
on the slice and VLAN is used on the platform), MAC
addresses must be exchanged in addition to VLAN ID
because no address resolution or correlation mechanism
such as ARP is assumed to be available.

6

The method of the link creation, which is the most
important link operation, is outlined below. In slice S1 in
Figure 5, there are two inter-domain virtual links, VL14 and
VL23. A link that corresponds to each inter-domain virtual
link is created by stitching three sections (see Figure 6(a)).
Because two or three different protocols may be used in the
two domains and the network in between, the link is divided
into three sections. In the case of VL14, VL14i1 is the
domain-D1-internal section, VL14e is the inter-domain
section, and VL14i2 is the domain-D2-internal section. Both
end points of each section of the links have their own
addresses; that is, they are independent.

In the control plane, node N12 and the gateway in
domain D1 (gateway 1) negotiate the parameters for VL14i1
when the domain-D1 part of the slice is created [Kan 12b].
The parameters for VL14i2 are negotiated by using the
same method. As described in Figure 5 (step 4 and its
response), however, the gatekeepers negotiate the
parameters for VL14e, including the VLAN ID, the MAC
addresses, and possibly the tunneling method. If the link
resource (such as bandwidth) between two domains is
managed by a network operator other than the operators of
the two domains, the gatekeeper(s) must negotiate the
resource with the operator. The link may even cross
firewalls between the domains.

In the implementation, GRE tunneling is used for VL14i1
and VL14i2, and VLAN is used for VL14e. Available
protocols and formats will be added in future. No
management system in the network between the domains is
assumed. Both end points of VL14i1 and VL14i2 have IP
addresses for the GRE tunnels, and both end points of
VL14e have MAC addresses for the inter-domain VLAN
communication. VL14i1 is generated by an intra-domain
signaling (using GMPLS between VNode Managers), which
is a normal signaling for generating an intra-domain virtual
link, between the VNode Managers of N12 and P11. The
VNode managers negotiate the GRE key and the IP
addresses for both end points of VL14i1. VL14i2 is
generated by the same method. VL14e is generated by
messaging through the federation API. The gatekeepers
negotiate the VLAN ID and the MAC addresses for both
end points of VL14e. The gatekeepers send commands to
the gateways for setting up the link.

In the data plane, the data conversion between VL14i1
and VL14e is performed in gateway 1, and that between
VL14e and VL14i2 is performed in gateway 2. If no data
conversion is required, that is, the same protocol and data
format are used on both sides of a gateway, the gateway can

be bypassed. Figure 6(b) shows the data format when an
arbitrary (non-IP or IP) packet format is used on the slice.
Network processors can be used for high-performance (10-
Gbps) data conversions in gateways.

VII. IMPLEMENTATION AND EVALUATION

The federation functions were partially implemented on the
VNode platform and evaluated by connecting two domains
as described in the following. The functions of DPN, gate-
keeper, and gateway are implemented as a modified version
of a VNode called “network accommodation equipment”
(NACE) [Kan 12c]. NACE was originally designed for
accommodating a non-virtualized network in a slice. This
function is here extended to cross-domain federation.

The slice specification described in Figure 7 and
visualized in Figure 8(a) is used for the evaluation. (Note
that in Figure 7 several parts of the specification are omitted
and several identifiers are renamed for understandability.)
The specification contains inter- and intra-domain virtual
links, a virtual node VN0 that contains a slow-path VM, a
virtual access gateway AG00 for terminal users (which is
created in the gateway explained in Section II B), and a
PVN named PV1 (which contains a virtual node named
VN1 that contains another slow-path VM and is assigned to
a DPN named P11forD2).

The specification of PV1 is sent to P11forD2, and a part
of the specification is converted to the specification for
domain D2 visualized in Figure 8(b). Several virtual nodes,

Virtual node in the other domain (D2)

IntraDomain virtual link

InterDomain virtual link

<?xml version="1.0" encoding="UTF-8"?>
<slice-design>

<slicespec name="federation-h1">
<sliverdef>

<linkSlivers>
<linkSliver name="InterDomainLink" type="link" subtype="GRE">

<vports><vport name="e1" /><vport name="e2" /></vports>
</linkSliver>
<linkSliver name="IntraDomainLink" type="link" subtype="GRE">

<vports><vport name="e1" /><vport name="e2" /></vports>
</linkSliver>

</linkSlivers>
<nodeSlivers>

<nodeSliver name="VN0" type="prog">
<vports><vport name="vp1"/><vport name="vp2"/></vports>
<hierarchy>

<sliverdef>
<nodeSlivers>

<nodeSliver name="SP0">
<vports><vport name="vip1" /><vport name="vip2"/></vports>
<instance type="SlowPath_VM" subtype="KVM">

<resources>…</resources>
<params>
<param key="bootImage" value="http://192.168.50.50/nict-test/sp/KVM_Ubuntu1010Server32.img" />

</params>
</instance>

</nodeSliver>
</nodeSlivers>
<linkSlivers>…</linkSlivers>

</sliverdef>
<structure>…</structure>
<params><param key="authKey" value="ssh-dss … vnode@ubuntu1" /></params>

</hierarchy>
</nodeSliver>
<nodeSliver name="PV1" type="prog">

<vports><vport name="vp1"/></vports>
<hierarchy>

<sliverdef>
<nodeSlivers>

<nodeSliver name="VN1" type="prog">
<vports><vport name="vip1" /></vports>
<hierarchy>

<sliverdef>
<nodeSlivers>

<nodeSliver name="SP1">
<vports><vport name="vip1" /></vports>
<instance type="SlowPath_VM" subtype="KVM">
<resources>…</resources>
<params>

<param key="bootImage" value="http://192.168.50.58/nict-test/sp/KVM_Ubuntu1010Server32.img" />
</params>

</instance>
</nodeSliver>

</nodeSlivers>
<linkSlivers>…</linkSlivers>

</sliverdef>
<structure>…</structure>
<params><param key="authKey" value="ssh-dss … vnode@ubuntu1" /></params>

</hierarchy>
</nodeSliver>

</nodeSlivers>
<linkSlivers>

<linkSliver name="ln01" type="link"><vports><vport name="e1" /><vport name="e2" /></vports></linkSliver>
</linkSlivers>

</sliverdef>
<structure>

<bind name="b1"><vport sliverID=“__TOP__" portname="vp1" /><vport sliverID="ln01" portname="e1" /></bind>
<bind name="b2"><vport sliverID=“VN1" portname="vip1" /><vport sliverID="ln01" portname="e2" /></bind>

</structure>
<params><param key="authKey" value="ssh-dss … vnode@ubuntu1" /></params>

</hierarchy>
</nodeSliver>
<nodeSliver name="AG00" type="agw"><vports><vport name="vp1"/></vports></nodeSliver>

</nodeSlivers>
</sliverdef>
<structure>

<bind name="b11"><vport sliverID="PV1" portname="vp1" /><vport sliverID="InterDomainLink" portname="e1" /></bind>
<bind name="b12"><vport sliverID="NS00" portname="vp1" /><vport sliverID="InterDomainLink" portname="e2" /></bind>
<bind name="b21"><vport sliverID="AG00" portname="vp1" /><vport sliverID="IntraDomainLink" portname="e1" /></bind>
<bind name="b22"><vport sliverID="NS00" portname="vp2" /><vport sliverID="IntraDomainLink" portname="e2" /></bind>

</structure>
</slicespec>
<mapping slice="federation-h1" vnetwork="Slice">

<amap node="PV1" vnode="P11forD2" />
<amap node=“VN0" vnode="Node11" />
<amap node="AG00" vnode="AGW0" />

</mapping>
</slice-design>

A slow-path VM

Other domain (logical domain)

Logical-physical domain mapping
Logical-physical node mapping in own

domain

Virtual access gateway

Virtual node in domain D1

A slow-path VM

Figure 7. Slice specification given to domain 1

Node
N22

Gateway2

Node
N12

Gateway1
VN1 VN4

VL14i1
conv conv

VL14i2VL14eIP MACIP IP IPMAC

Gateway Control Interface (GCI) Gateway Control Interface (GCI)

DPN
P21

Gate-
keeper 1

Gate-
keeper 2

DPN
P11

Federation

API

Domain D1 Cross-domain network Domain D2

(a) Data-link structure

IP GRE MAC VLAN Any frameAny frame IP GRE Any frame
(b) Data communication using arbitrary packet-format

Figure 6. Inter-domain data-link structure and data
communication

7

links, and port names, e.g., TOP, __SP01, and __ln01, are
defined arbitrarily; that is, they are systematically generated.
In contrast to the slice S2 in Figure 5, information concern-
ing VN0 and InterDomainLink in Figures 7 and 8(a) is not
provided by the gatekeepers in this implementation. This
specification therefore does not contain the information.

The sequence of the slice creation, which is extracted
from an execution log, is shown in Figure 9. The slice is
given by a “slice developer” to the DC through the portal of
this domain (D1) on a VNode platform in JGN-X. A part of
the slice is deployed to domain D2 on a VNode platform on
a local site. As shown in the figure, the processing time re-
quired for the source domain (D1) can be divided into three
parts, and that required for the destination domain (D2) can
be divided into four. The total time for a cross-domain slice
creation is estimated as 18.2 s, which consists of waiting
time and estimated downward and upward processing time.
In contrast, a single-domain slice creation was measured as
approximately 6 s. That is, a cross-domain slice creation
takes approximately three times longer than a single-domain
slice creation.

The implementation of the proposed federation method
revealed the following issues.

• Restriction on modification: Slice creation and deletion
functions are performed well by the proposed method.
However, there may be several restrictions on
modification functions (i.e., addition and removal of
virtual nodes and links). If the domain does not have a
command to update a virtual node, there is no way to
update the structure of the other domain, because the
update on multiple nodes and links in the other domain is
mapped to a single-node update in the original domain.

• Difficulty in collecting information: Resource discovery,
statistical query, and asking manifests (such as virtual-
node host-names or addresses) may be difficult to imple-
ment because the DC of a domain does not collect infor-
mation of the other domain. They can be implemented
only when the DC requests information from VNodes and
the DPN and returns the content of the reply from the
VNodes and the DPN as is to the slice developer.

However, these issues will not occur if the virtualization
platform has sufficient (intra-domain) slice-modification
and on-the-fly discovery and statistical query functions.

VIII. RELATED WORK

The GENI Project defines federation architecture with a set
of interfaces and data types for federation [Pat 10]. Based on
this architecture, ProtoGENI [Ric 12] has federation func-
tions for federating multiple GENI-based networks. In
ProtoGENI, all the parameters required for data communica-
tion are specified in the RSpec (resource specifications)
because there is no mechanism for negotiating virtual-link
parameters. In contrast, in the case of the proposed federa-
tion method, the slice designer does not need to specify the
parameters because the protocol to be used and the
parameters such as VLAN or GRE/IP are negotiated by the
gatekeepers. Especially, in ProtoGENI, ARP (and non-
virtualized Ethernet and IP) is required between the domains
because underlay addresses are not negotiated. Therefore,
only IP/Ethernet can be used for communication between
the domains. The method can be applied to other protocol
combinations, including clean-slate protocols, in which no

address resolution mechanism is available.
Several papers describe the relationships between

federation and network virtualization [Kim 09]
[Ser 11]. However, they do not focus on link-layer
functions (i.e., creating and managing virtual links,
etc.), namely, the focus of this study. Wahle et al.
[Wah 08] proposed an architecture for cross-domain
federation. This architecture contains a central
federation controller called “Teagle” and a gateway in
each domain. However, it does not focus on a link
layer either. Zaheer et al. [Zah 10] and Chowdrury et
al. [Cho 10] have studied cross-domain virtual-
network embedding problems. Their focus was on
virtual-to-real node mapping, and they did not
mention management and control problems caused by
cross-domain federation.

IX. CONCLUSION

A method for federating virtualization platforms was
proposed. To enable federation between domains

Slice federation-h

VirtualNode VN0

“VirtualNode” PV1

VirtualNode VN1

Slow-path SP0 Slow-path SP1

vip1e2

b2

e1

vp1
b11

e1

vp1

b12

InterDomain-
Link

ln01

b1

e2

Access
Gateway

AG00

vp2

e2

b22

e1
vp1

b21

Intra-
Domain-
Link … Node11… AGW0 … (physical node

not assigned)

Domain D1 Domain D2

… P11forD2
(a) Slice specification given to domain 1

“VirtualNode” TOP

Slice Federation_VI_Hitachi-federation-h1_PV1_1

VirtualNode __SP01 VirtualNode VN1

Slow-path SP1

vip1e2

b2

e1

vp1__wn100

e1

vip1
__wn001

__ln01 ln01

b1

e2… (physical node
unknown)

… (physical node
not assigned)

Domain D1 Domain D2

… P21forD1
(b) Slice specification generated for domain 2

Figure 8. Visualized slice specifications

Portal DC GK

Domain D1 Domain D2

DC Portal
Slice

developer

reserve
slice

request
reserveSlice

(request) reserveNode
(request)

Time
(s)

reserveSlice
(request)reserveNode

(request)

Time
(s)

reserveNode
(reply)

reserveSlice
(reply)

PN (VNM)

reserveSlice
(request)

GK PN (VNM)

reserveSlice
(request)

reserveSlice
(reply)

bind (request&reply)

reserveSlice (request)

reserveLink
1&3

(request&reply)

reserveLink
1&3

(request&reply)

reserveSlice (reply)

logout (request / reply)

0

0.002

0.025

10.590

0
0.047

4.033

4.044

0.297

8.067

7.960
7.961

reserveSlice
(reply)

reserveSlice
(reply)

reserveNode
(reply)reserveSlice

(reply)

createSlivers
(request)

createSlivers
(reply)

Downward processing: 3.8 s

Preprocessing: 0.3 s

Postprocessing: 2.5 sUpward processing:
4.0 s (estimated)

Waiting time: 10.5 s

10.539

Upward processing: 4.0 s
4.074

bind (request)

bind (reply)

Downward processing:
3.8 s (estimated)

login (request / reply)

Figure 9. Measurement of slice creation

8

without a federation function, first, a cross-domain slice
specification that contains a PVN, which encloses other-
domain part of the slice and which indicates the border of
responsibility, is used. Second, the specification is handled
using a DPN, which mimics a VNode that implements the
PVN, and it is transformed using gatekeepers with the
federation API. To enable non-IP data communication on
the slice, underlay parameters (including MAC addresses)
are negotiated in advance, and data packets on a slice are
tunneled between gateways in these domains. Methods for
avoiding infinite message loops (for specification exchange)
between federated domains are also proposed.

The federation method was implemented on the VNode
platform, federation between two homogeneous domains
was successfully demonstrated, and the federation
performance was measured. Although several issues were
revealed by this implementation, they do not occur in the
case of a platform with sufficient intra-domain functions.

Future work includes implementation of all the federation
functions and heterogeneous federation. This method is now
being applied to heterogeneous federations between a
VNode platform and a platform based on ProtoGENI
[Ric 12]. Future work also includes scalable federation; that
is, reducing degradation in performance of creation and
deletion of a slice caused by a large number of nodes in
other domains or a large number of federated domains.

ACKNOWLEDGMENTS

We thank Kenichi Ogaki, Shuichi Okamoto, and Michiaki
Hayashi from KDDI R&D Laboratories for their collabora-
tion concerning federation architecture and for their useful
comments on this paper. We also thank Associate Professor
Aki Nakao from University of Tokyo, Yasushi Kasugai,
Takeshi Ishikura, and Hidenobu Iwatake from Hitachi, Ltd.,
and other members of the project for their help and com-
ments on the design, implementation, and evaluation of the
federation function. Part of the research results described in
this paper is an outcome of the Advanced Network Virtual-
ization Platform Project B funded by National Institute of
Information and Communications Technology (NICT) and
experiments using JGN-X testbed deployed by NICT.

REFERENCES
[AKA 10] AKARI Architecture Design Project, “New Generation

Network Architecture ― AKARI Conceptual Design (ver2.0)”,
http://akari-project.nict.go.jp/eng/concept-design/-
AKARI_fulltext_e_preliminary_ver2.pdf, May 2010.

[Aoy 09] Aoyama, T., “A New Generation Network: Beyond the
Internet and NGN”, IEEE Communications Magazine, Vol. 47,
Vol. 5, pp. 82–87, May 2009.

[Bav 06] Bavier, A., Feamster, N., Huang, M., Peterson, L., and
Rexford, J., “In VINI Veritas: Realistic and Controlled Network
Experimentation”, 2006 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communica-
tions (SIGCOMM’06), pp. 3–14, September 2006.

[Cho 10] Chowdhury, M., Samuel, F,. Boutaba, R., “PolyViNE:
Policy-based Virtual Network Embedding Across Multiple
Domains”, 2nd ACM SIGCOMM Workshop on Virtualized
Infrastructure Systems and Architecture (VISA), pp. 49–56,
September 2010.

[Due 12] Duerig, J., Ricci, R., Stoller, L., Strum, M., Wong, G.,
Carpenter, C., Fei, Z., Griffioen, J., Nasir, H., Reed, J., and Wu,
X., “Getting Started with GENI: A User Tutorial”, ACM
SIGCOMM Computer Communication Review, Vol. 42, No. 1.,
pp. 72–77, January 2012.

[Far 00] Farinacci, D., Li, T., Hanks, S.,. Meyer, D., and Traina,
P., “Generic Routing Encapsulation (GRE)”, RFC 2784, IETF,
March 2000.

[Fel 07] Feldmann, A., “Internet Clean-Slate Design: What and
Why?”, ACM SIGCOMM Computer Communication Review,
Vol. 37, No. 3, pp. 59–74, July 2007.

[Kan 12a] Kanada, Y., Shiraishi, K., and Nakao, A., “Network-
resource Isolation for Virtualization Nodes”, 17th IEEE
Symposium on Computers and Communications (ISCC 2012),
July 2012.

[Kan 12b] Kanada, Y., Shiraishi, K., and Nakao, A., “Network-
Virtualization Nodes that Support Mutually Independent
Development and Evolution of Components”, 13th IEEE
International Conference on Communication System (ICCS
2012), October 2012.

[Kan 12c] Kanada, Y., Shiraishi, K., and Nakao, A., “High-
performance Network Accommodation into Slices and In-slice
Switching Using A Type of Virtualization Node”, 2nd
International Conference on Advanced Communications and
Computation (Infocomp 2012), IARIA, October 2012.

[Kim 09] Dae Young Kim, Mathy, L., Campanella, M.,
Summerhill, R., Williams, J., Shimojo, S., Kitamura, Y., and
Otsuki, H, “Future Internet: Challenges in Virtualization and
Federation”, 5th Advanced International Conference on
Telecommunications (AICT 2009), pp. 1–8, May 2009.

[Kou 01] Kounavis, M., Campbell, A., Chou, S., Modoux, F.,
Vicente, J., and Zhuang, H., “The Genesis Kernel: A Program-
ming System for Spawning Network Architectures”, IEEE J. on
Selected Areas in Commun., vol. 19, no. 3, pp. 511–526, 2001.

[Nak 10] Nakao, A., “Virtual Node Project ― Virtualization
Technology for Building New-Generation Networks”, NICT
News, No. 393, pp. 1–6, June 2010.

[Nak 12a] Nakao, A., et al., “Advanced Network Virtualization:
Definition, Benefits, Applications, and Technical Challenges,
January 2012”, NVSG White Paper v.1.0, https://nvlab.nakao-
lab.org/nv-study-group-white-paper.v1.0.pdf

[Nak 12b] Nakao, A., “VNode: A Deeply Programmable Network
Testbed Through Network Virtualization”, 3rd IEICE Technical
Committee on Network Virtualization, March 2012,
http://www.ieice.org/~nv/05-nv20120302-nakao.pdf

 [Pan 11] Pan, J., Paul, S., and Jain, R., “A Survey of the Research
on Future Internet Architectures”, IEEE Communications
Magazine, Vol. 49 , No. 7, pp. 26–36, July 2011.

[Pat 10] Peterson. L., Ricci, R., Falk, A., and Chase, J., “Slice-
based Federation Architecture”, http://groups.geni.net/geni/-
wiki/SliceFedArch, July 2010.

[Pet 02] Peterson, L., Anderson, T., Culler, D., and Roscoe, T.,
“A Blueprint for Introducing Disruptive Technology into the
Internet”, ACM SIGCOMM Computer Communication Review,
Vol. 33, No. 1, pp. 59–64, January 2003.

[Ric 12] Ricci, R., Duerig, J., Stoller, L., Wong, G.,
Chikkulapelly, S., and Seok, W., “Designing a Federated
Testbed as a Distributed System”, TridentCom 2012, June 2012.

[Ser 11] Serrano, M., Davy, S.,Johnsson, M., Donnelly, W., and
Galis, A., “Review and Designs of Federated Management in
Future Internet Architectures”, in “Future Internet Assembly
2011: Achievements and Technological Promises”, Lecture
Notes in Computer Science, Vol. 6656, Springer, 2011.

[Tur 07] Turner, J., Crowley, P., Dehart, J., Freestone, A., Heller,
B., Kuhms, F., Kumar, S., Lockwood, J., Lu, J.,Wilson, M.,
Wiseman, C., and Zar, D., “Supercharging PlanetLab ― High
Performance, Multi-Application, Overlay Network Platform”,
ACM SIGCOMM Computer Communication Review, Vol. 37,
No. 4, pp. 85–96, October 2007.

[Wah 08] Wahle, S., Gavras, A., Gouveia, F., Hrasnica, H., and
Magedanz, T., “Network Domain Federation – Infrastructure for
Federated Testbeds”, NEM Summit 2008, October 2008,
http://www.nem-summit.eu/

[Zah 10] Zaheer, F. E., Jin Xiao, and Boutaba, R., “Multi-
provider Service Negotiation and Contracting in Network
Virtualization”, 2010 IEEE Network Operations and
Management Symposium (NOMS), pp. 471–478, April 2010.

[Zhu 06] Zhu, Y. and Ammar, M., “Algorithms for Assigning
Substrate Network Resources to Virtual Network Components”,
25th IEEE Int’l Conference on Computer Communications
(INFOCOM 2006). pp. 1–12, April 2006.

