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Abstract – A method for federating multiple network-
virtualization platforms by creating and managing slices 
(virtual networks) is proposed. A cross-domain slice can be 
created, deleted, or modified by sending a slice specification to 
the domain controller (network manager) of one domain. The 
specification is then propagated to other domains. Two chal-
lenges were addressed while this method was developed. The 
first challenge is to enable federation among multiple domains 
that do not support federation functions by only adding a few 
components without modification of the existing network-
virtualization-platform architecture. A domain-dependent 
specification of a slice, containing a pseudo virtual node that 
encloses a part of the slice specification in the other domains, is 
used, and this part is handled by a proxy node that represents 
another domain and a control component that implements a 
federation API to create a cross-domain slice. The second 
challenge is to enable manageable non-IP (arbitrary-format) 
data communication on a cross-domain slice. For an inter-
domain communication, underlay VLAN parameters including 
MAC addresses are negotiated in advance and data packets on 
a slice are tunneled between gateways in these domains. The 
proposed federation method was implemented on two network-
virtualization platforms, federation between two homogeneous 
domains was successfully demonstrated, federation perfor-
mance was measured, and several issues on functional 
restrictions and implementation difficulty were found.  

I. INTRODUCTION 

In Japan, several projects targeting “new-generation 
networks” (NwGN) have been conducted [Aoy 09] 
[AKA 10]. These projects aim to develop new network 
protocols and architectures (i.e., the “clean slate” approach 
[Fel 07]) as well as various applications that are difficult to 
run on internet protocols (IPs) but work well on NwGNs. 
The Virtualization Node Project (VNP) [Nak 10] and its 
successive projects aim to develop network-virtualization 
technology and virtualization nodes (VNodes). The goal of 
these projects are to develop an environment where multiple 
slices (or virtual networks) with independently designed 
NwGN architectures and functions using arbitrary-format 
(non-IP and non-Ethernet) packets run concurrently, but are 
logically isolated, on a physical network. The virtualization 
platform developed by VNP [Nak 12b][Nak 12a] have been 
deployed in the testbed network JGN-X [Pan 11] for design-
ing, deploying, and testing new network services in Japan.  

In this study, a method for federating virtualization 
platforms is proposed. This method enables both homogene-
ous and heterogeneous federation; that is, creating a slice 
across two or more network-virtualization platforms of the 
same or different type. Slices contain virtual nodes and 
virtual links, so both virtual-node and -link resources should 
be managed. Especially, the virtual links between the 
platforms, which might not be managed by the platforms, 
should be managed.  

Two challenges were addressed while this federation 

method was developed. The first challenge is to enable 
federation among multiple domains that do not support 
federation functions without modification of their existing 
network-virtualization platform architecture. Instead, a 
proxy node, which communicates with a controller compo-
nent as a normal virtualization network node, is added to 
mediate between the domains. The slice structure of one 
domain is hidden from the slice specification of another 
domain. This “federation-less federation” reduces the hurdle 
of introducing a federation function into existing virtualiza-
tion platforms; that is, it reduces the development cost and 
time and amount of resources required for developing 
federation functions as well as the number of bugs, degree 
of performance degradation, and number of service interrup-
tions caused by deploying federation functions.  

The second challenge is to enable non-IP (arbitrary-
format) data communication on a cross-domain slice. For an 
inter-domain communication, underlay VLAN parameters 
including VLAN ID and MAC addresses are negotiated in 
advance, and data packets on a slice are tunneled between 
gateways in these domains. Not only VLAN ID but also 
MAC addresses must be negotiated because no address 
resolution or correlation mechanism, such as the Address 
Resolution Protocol (ARP), is assumed when a non-IP 
(clean-slate) protocol is used for data communication. 

This federation method has been implemented on the 
VNode platform in a post-VNP project, and successful 
communication between two homogeneous domains was 
demonstrated.  

The rest of this paper is organized as follows. Section II 
summarizes the virtualization platform, the slice model, and 
the slice-creation and management method, which were pre-
viously developed. Section III describes the basic federation 
method, Sections IV outlines federating federation-less 
platforms, and Section V describes the federation-less-
federation architecture and the method of transforming slice 
specifications. Section VI describes the method of creating 
inter-domain links, which allows communication using non-
IP protocols, and the data format used for inter-domain data 
communication. Sections VII to VIII describe the 
implementation and evaluation of the federation method as 
well as related work, and Section IX concludes this paper. 

II. V IRTUALIZATION PLATFORM AND SLICE MODEL 

This section explains network virtualization, the virtualiza-
tion platform, the structure of slices, and the basic slice-
creation and management method developed in VNP. 

A. Network Virtualization 
When many users and systems share a limited amount of 
resources on computers or networks, virtualization technol-



 
 

2 
 

ogy creates the illusion that each user or system possesses 
their own resources. Concerning networks, wide-area 
networks (WANs) are virtualized by using virtual private 
networks (VPNs). When VPNs are used, a physical network 
can be shared by multiple organizations, and these 
organizations can securely and conveniently use VPNs in 
the same way as virtual leased lines. Nowadays, networks in 
data centers are virtualized by using VLANs, while servers 
are virtualized by using VMs. 

Many research projects on programmable virtualization 
networks have been carried out, and many models, including 
PlanetLab [Pet 02][Tur 07], Virtual Network Infrastructure 
(VINI) [Bav 06], Global Environment for Network 
Infrastructure (GENI) [Due 12], and Genesis [Kou 01], have 
been proposed. In VNP, Nakao et al. [Nak 12b][Nak 10] 
developed a VNode architecture and platform that make it 
possible to build programmable virtual-network environ-
ments in which slices are isolated logically, securely, and in 
terms of performance (QoS) from one another [Kan 12a]. In 
these environments, new-generation network protocols can 
be developed without disrupting the other slices.  

B. Structure of VNode Platform 
Each VNode platform domain (managed by a platform 
operator) is managed by a domain controller (DC), and each 
domain has two types of nodes: VNode and gateway (see 
Figure 1). VNode forwards packets on the platform. A 
domain may contain conventional routers or switches that 
do not have virtualization functions. VNodes are connected 
by tunnels using a protocol such as Generic Routing 
Encapsulation (GRE) [Far 00]. Therefore, a slice is neither 
constrained by the topology of the physical network nor by 
the specific functions of these nodes. A VNode can operate 
as a router or a switch for platform packets, so it can be 
deployed in conventional networks.  

Each VNode consists of the following three components. 
Programmer processes packets like a router or a switch on 
each slice. Slice developers (or slice operators) can inject 
programs into programmers. Redirector forwards (redirect) 
packets from another VNode to a programmer and forward 
packets from a programmer to another VNode. VNode 
manager manages the VNode according to instructions from 
the DC. 

C. Structure of Slices 
In the virtual-network model developed by VNP, a virtual 
network (or a collection of resources in a virtual network) is 
called a slice, which consists of the following two types of 
components (see Figure 2(a)) [Nak 12b][Nak 10].  

• Virtual node (or node sliver) represents a computational 
resource in a VNode. It is used for node control or proc-

essing packets with an arbitrary format. It is generated by 
slicing and abstracting physical computational resources. 

• Virtual link (or link sliver) is a link resource between two 
virtual nodes both IP and non-IP protocols can be used on 
this link. It is mapped on a physical link between two 
VNodes. It is generated by slicing and abstracting 
physical network resources such as bandwidth. 

A slice developer describes a slice specification in XML. 
However, each slice specification is expressed as a diagram 
hereafter. A specification of a slice, named S, with three 
virtual nodes (VN1, VN2, and VN3) and three virtual links 
(VL12, VL13, and VL23) is shown in Figure 2(a). The 
virtual nodes are mapped to VNodes (N1, N2, and N3). If 
the description of the mapping between virtual and physical 
nodes is omitted, the DC determines the mapping instead. 
This mapping problem, which is called the virtual-network 
embedding problem, has been widely studied (e.g., [Zhu 06] 
[Cho 10][Zah 10]). The virtual-node specifications in a slice 
specification contains URLs of the VM images, but the slice 
developers can load programs into the VMs and run them by 
using secure shell (ssh) commands after loading and 
starting the VMs.  

Virtual links are implemented by using a tunneling 
protocol such as GRE. The tunnels may bypass physical 
nodes. Slice structures, therefore, do not necessarily depend 
on the physical structure of the network. The slice developer 
can program virtual nodes by specifying the URL of a VM 
image or a fast-path program to be loaded.  

D. Basic Slice-Operation-And-Management Method 
The DC of a domain receives a slice-operation message with 
whole or part of a slice specification from the slice devel-
oper (see Figure 2). The DC distributes the message to each 
VNode in the domain. In a VNode, the VNode manager 
receives the specification and sends a part of the slice speci-
fication to the programmer and another part to the redirec-
tor: the programmer receives information required for 
virtual-node configuration, and the redirector receives the 
information required for virtual-link configuration. For ex-
ample, in the case shown in Figure 2, the specification of 
VN1 is deployed to the programmer in N1, and the specifi-
cation of VL12 is deployed to the redirectors in N1 and N2. 
The detailed information in virtual nodes and links are man-
aged by VNode managers, programmers, and redirectors, 
but not by the DC (which is not responsible for the details). 

III.  BASIC SLICE-FEDERATION METHOD 

The federation functions provided by the slice-federation 
method connect two or more domains of the same or 
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Figure 1. Physical structure of virtualization platform 
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different type of virtualization platform, including VNode 
platforms, GENI-based platforms [Pat 10], and so on. The 
domains are federated by using a set of APIs called 
federation APIs (see Figure 3(a) and (b)). The federation 
APIs should be standardized interfaces supported by various 
types of virtualization platforms. Each API basically 
consists of simple pair of a request and a reply. In the post-
VNP project, the place where the federation APIs work is 
called the slice exchange point (SEP). 

Many types of federation functions, such as listed in 
Figure 3(b), are provided. However, the focus in this paper 
is not the federation functions themselves, but it is the 
transformation of slice specifications, which is common to 
all the federation functions. Only creation function is, thus, 
used for explanation in this paper.  

It is assumed that a slice-operation message with a slice 
specification is sent to the DC of a domain (domain A in 
Figure 3(a)) at first, and a copy of the specification is for-
warded to the DC of the other domain (domain B) through 
the federation API. No clearing house, or hub, is used for 
this communication. The slice specification shown in 
Figure 3 consists of four virtual nodes and four virtual links. 
Two virtual nodes (VN1 and VN2) belong to domain A, and 
the other virtual nodes belong to domain B. Two of the four 
virtual links (VL14 and VL23) are inter-domain links. 
Because inter-domain links exist, these domains cannot be 
managed independently; in other words, the inter-domain 
links must be managed in relation to both domains. 

In a slice creation, VN1 and VN2 are created and man-
aged by the DC in domain A, and VN3 and VN4 are created 
and managed by the DC in domain B. Although the virtual 
links within a domain are managed solely by the DC in the 
domain, the inter-domain links are cooperatively created and 
managed by two DCs in both domains. The information 
required for this cooperation is exchanged using the federa-

tion API. 
The federation of two domains is shown in 

Figure 3(a). If three or more domains are 
federated, the messaging pattern is more 
complicated. A four-domain example is shown 
in Figure 3(c). In this figure, domain A sends 
federation messages through the API (APIs) 
between A and B and between A and C. 
Domain C forwards the message to domain D. 

IV.  CONCEPTUAL OUTLINE OF FEDERATION-
LESS FEDERATION 

The federation between two domains without 
federation functions is conceptually outlined as 
follows (see Figure 4). A virtualization plat-
form without federation functions does not 
have a concept of “other domain” because the 
“own domain” is the only domain. Therefore, 
the other domain part of the cross-domain slice 
specification must belong to the own domain. 
This means that the other domain is a sub-
domain of the own domain. Because a part of 
the slice in the other domain is to be managed 
only by the DC in the other domain and 
duplicated management of the part must be 
avoided, this part must be hidden, i.e., 
encapsulated, from the DC in the own domain. 

In a slice specification, the only way to express the set of 
virtual nodes and virtual links in a sub-domain is to use a 
virtual node. This node belongs to a pseudo VNode, which 
does not have network-node functions, such as routing or 
switching, because it only represents and delegates the other 
domain. The pseudo VNode is, thus, called a domain proxy 
node (DPN). Although a DPN is not a real network node, a 
DPN mimics a VNode; that is, it provides the same API as a 
VNode and the DC can manage it by the same method. The 
DC maps a pseudo virtual node (PVN) on a DPN by using 
the same way as for a normal virtual node, and the PVN 
must contain a part of the slice specification for the other 
domain (B) as a substructure. This means that the DPN con-
ceptually contains an image of the other domain.  

Similarly, if the other domain does not have federation 
functions either, it must have a DPN that contains the image 
of the own domain (A) and the PVN in a part of the slice 
specification of the other domain is mapped to a DPN that 
represents the own domain. Therefore, conceptually, as 
shown in Figure 4, the image contained in the DPN 
recursively contains the domain images. The slice specifica-
tions exchanged through the federation API reflect the 
above conceptual structure. However, this static recursion 
may not cause a message loop in federation. 
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(a) Basic federation method 

1. Resource discovery function: Cross-domain discovery of computational resources 
available in virtual nodes and link resources available between virtual nodes. The API 
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3. Query on statistics and manifests: a) Query on slice (and platform) statistics such 
as number of packets counted in a virtual link, b) Query on manifests, i.e., bottom-up 
parameters such as virtual-node host-names or addresses. 

(b) Functions of the federation API 

Domain A

Domain B

Slice specification

Domain C Domain D

Federation 
API

Federation 
API Federation 

API
 

(c) More complicated messaging pattern 
Figure 3. Federation API and cross-domain slice creation 
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 It is assumed that the DC is not responsible for detailed 
information enclosed in a virtual node in the own domain; in 
a similar manner, it is not responsible for (does not manage) 
detailed information in PVNs (i.e., in the other domain). 

V. FEDERATION ARCHITECTURE AND TRANSFORMATION OF 
SLICE SPECIFICATIONS 

The proposed federation architecture, the transformation 
process of a slice specification, and a method of message 
loop avoidance are described in this section. 

A. Architecture 
The proposed federation architecture is shown in Figure 5. 
In this figure, both domains, D1 and D2, are VNode 
platforms. However, this architecture can be applied to 
heterogeneous federation; that is, even when domain D2 is a 
different type of platform, there is no need to modify the left 
half of this figure, although the detailed message contents 
and federation sequence may have to be changed.  

The following three physical components are added to 
the domain as federation interfaces (i.e., SEPs). 

• Domain proxy node (DPN) is a pseudo VNode that 
receives a whole slice specification (or the specification 
of the PVN) from the DC of the own domain. The DPN 
receives a slice specification containing the PVN, which 
is mapped to the DPN. This virtual-node contains part of 
the slice in the other domain. Because the slice structure 
is symmetric about the domain border, the slice specifica-
tion described by the slice developer should also be 
syntactically symmetric. However, the slice specification 
acceptable by DPN and DC is syntactically asymmetric 
(that is, the virtual nodes in the other domain are enclosed 
but those in the own domain are not enclosed) because, in 
the PVN, the virtual nodes in the own domain must be 
bare (i.e., managed by DC), and those in the other domain 
must be enclosed (i.e., not managed by DC).  

• Gatekeeper is a server for federation management and 

control. A gatekeeper (gatekeeper 1 in Figure 5) receives 
the slice specification, transforms it to an API-based 
format, and forwards it to the gatekeeper of the other 
domain (gatekeeper 2). The API between the gatekeepers 
is the federation API. The slice specification sent from 
one gatekeeper to the other must be syntactically 
symmetric about the domain border because the two 
domains are symmetric. A gatekeeper also configures the 
gateway for inter-domain links through the gateway-
control interface (i.e., the control interface of a gateway). 
The word “gatekeeper” comes from the terminology of 
ITU-T H.323, although there are differences in its role. 

• Gateway (federation gateway) is a network node that has 
a function for data conversion from the internal format in 
the own domain to an intermediate format between the 
federated domains. A gateway (gateway 1) sends packets 
to the other gateway (gateway 2) toward the other 
domain, and it receives packets for the own domain from 
the other gateway. 

In the case of federating two domains, each domain has a 
DPN, a gatekeeper, and one or more gateways. In contrast, 
in the case of federating N domains, each domain may have 
N (or less) DPNs, one to N gatekeepers, and one to N 
gateways. These three types of nodes may therefore be 
separately deployed because of flexibility of design and 
implementation, and performance. 

B. Transformation of Slice Specification 
The forms of slice specification and the transformation 
process are also shown in Figure 5. In a slice specification 
given to the DC, the PVN encloses the part of the slice for 
the other domain. In slice specification S1, PV1 encloses 
this part. This enclosure, i.e., PV1, is the border of 
responsibility. Because the DC does not have federation 
functions, this domain-dependent form (S1) must be used 
for creating a cross-domain slice. However, if an appropriate 
preprocessor is supplied, the slice developer can use a 
domain-independent form, i.e., the slice Sf; in other words, 
the preprocessor can translate the domain-independent form 
to the domain-dependent form. 

The original slice specification (S1) is sent to the DC 
(step 1 in Figure 5) at first, and the DC distributes it to all 
the VNodes in the own domain including the DPN, which is 
manually registered to the DC (step 2). Although the whole 
slice specification is sent to each VNode in the VNode 
platform, only the PVN (PV1) may be sent to the DPN 
(P11) in general. However, the complete specification 
would probably work when an error or exception occurs. If 
only partial slice information is available in each domain, 
the slice developer must collect and combine pieces of 
operation-and-management information to find the actual 
problem, such as a bug, by oneself instead of using an 
automated information collector. 

The DPN sends the specification to the gatekeeper, which 
is manually registered to the DPN (step 3), and the 
gatekeeper transforms it to the domain-independent form Sf. 
This specification is syntactically symmetric about the 
domain border. In this specification, the virtual nodes of 
each domain are enclosed in an envelope labeled by the 
domain name. In this figure, the envelopes are labeled as 
domains “D1” and “D2”.  
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The slice specification is sent to the other domain 
(step 4). The federation API (i.e., SEP) may have a discov-
ery function of gatekeepers. However, gatekeepers of other 
domains may also be manually registered to a gatekeeper. 
Gatekeeper 2 transforms it to a domain-dependent form of 
Domain D2, and sends it to the DC (step 5). In this 
specification (S2), a PVN called “PV2” encloses the part of 
the slice (of D1). This enclosure, i.e., PV2, is the border of 
responsibility. PV2 is mapped to the DPN labeled “P21” in 
gatekeeper 2. The DC of domain D2 distributes the specifi-
cation to all the VNodes in domain D2 including P21 (step 
6). P21 sends the specification to the gatekeeper (step 7) in 
the same way that the P11 sends it to gatekeeper 1.  

Gatekeeper 2 behaves differently from gatekeeper 1 in 
the original domain. If a slice specification is received by 
the current domain (D2) at first, the gatekeeper forwards it 
to the other domain (D1). However, if it is received by the 
other domain, an infinite loop may occur. In spite of this 
risk, this slice specification must contain information on the 
other domain because this information is required for inter-
facing the domains, i.e., for completing inter-domain links. 
To avoid this loop, the gatekeeper must reject sending it to 
the original domain (step 8) (or the gatekeeper in the other 
domain (D1) must reject the message). The available meth-
ods to avoid this loop are described in the next subsection.  

Note that the proposed federation method may have two 
problems: one concerning scalability and one concerning 
security and privacy. The first problem is that it may take 
too much time or resources to parse the XML of the slice 
specification because PVN may contain a large and 
complicated structure to be parsed and analyzed. However, 
because neither the DC nor the DPN have to parse it, this 
scalability problem can be avoided. The parsing and 
analyzing overhead can thus be avoided, for example, by 
encoding the structure by a scheme such as Base64.  

The second problem is that the DC or the DPN may leak 
domain internal information contained in the other-domain 
part of a slice specification. This problem can be solved by 
encrypting the information. For example, the content of PV1 
in the slice S1, which belongs to domain D2, can be 
encrypted before it is given to the DC of domain D1, and 
this content can be decrypted by gatekeeper 2. In addition, 
the content of PV2 in the slice S2, which belongs to domain 
D1, can be encrypted by gatekeeper 1. Alternatively, the 
problem can be solved by removing the internal information 
of D1 by gatekeeper 1 before sending it to the other domain. 
In both cases, PV2 becomes a black box. Both contents of 
envelopes labeled D1 and D2 in the slice Sf between two 
gatekeepers are encrypted.  

C. Message Loop Avoidance 
As described in the previous subsection, inter-domain 
messaging may cause an infinite loop. Several methods to 
avoid this loop are described here. 

A message loop is caused by the nature of federation-less 
federation, i.e., conceptual recursion, described in 
Section IV. The message pattern described in the previous 
subsection is the simplest one. However, if there are three or 
more domains, various loop patterns may occur. 

The basic method for avoiding a loop is to identify a slice 
specification and not to forward or to process such a 

specification. The slice identifier contained in the message 
may be used for this identification. However, this problem 
may occur not only in a slice-creation message but also in 
modification or query messages. Two or more slice 
modification or query messages that specify the same slice 
may be designated by a slice developer simultaneously. The 
message identity must therefore be recognized by using 
more powerful means such as unique request identifiers.  

In addition, the following methods may be used in 
combination with the above basic method for avoiding 
unexpected events caused by errors or bugs. One method is 
marking. A gatekeeper can mark messages that come from 
other domains. This method is probably useful only in 
federation of two domains because three or more types of 
messages, which must be distinguished when three or more 
domains exist, cannot be distinguished by this method. 
Another method uses TTL (time-to-live). The management 
system can add a TTL to a message when it first receives the 
message from outside of the system. This method is more 
powerful than marking. However, it still fails when the 
number of domains that are linearly chained is larger than 
the initial value of TTL. These two methods are therefore 
useful only as a backup of the method based on identity. 

VI.  MANAGEABLE INTER-DOMAIN LINKS FOR NON-IP 
COMMUNICATION  

A cross-domain slice specification usually contains inter-
domain virtual links. Several issues on these links and their 
solutions are explained. To enable manageable inter-domain 
non-IP communication, both issues must be solved. 

1. Protocol and data format used for inter-domain data 
communication (Data-plane issue) 
The protocol and the data format used for platform 
(underlay) communication must be selected in considera-
tion of available hardware and software. The function of a 
network between two domains may be restricted; only a 
limited set of protocols may be available. However, to 
exchange virtualized packets, a type of tunneling protocol 
is required. If the network is IP-based, GRE is a 
candidate, and if the network is Ethernet, VLAN-based 
“tunneling” may be used. We assume the latter is used. 

2. Method of setting up the underlay link that corresponds 
to the virtual link (Control-plane issue) 
To set up an underlay inter-domain link, the facing 
domains must exchange necessary parameters such as IP 
addresses (and GRE keys) in the case of an IP-based 
network. These parameters are exchanged between the 
domains by the gatekeepers. If the network between the 
domains is managed by another operator, a negotiation 
with its manager may be required. When IP-over-VLAN 
is used (i.e., IP is used on the slice and VLAN is used on 
the platform), VLAN ID must be exchanged but MAC 
addresses are not necessarily exchanged by the 
gatekeepers because they can be obtained by using ARP. 
However, if “X over VLAN” is used (i.e., a non-IP 
protocol, which might have no “address” concept, is used 
on the slice and VLAN is used on the platform), MAC 
addresses must be exchanged in addition to VLAN ID 
because no address resolution or correlation mechanism 
such as ARP is assumed to be available. 
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The method of the link creation, which is the most 
important link operation, is outlined below. In slice S1 in 
Figure 5, there are two inter-domain virtual links, VL14 and 
VL23. A link that corresponds to each inter-domain virtual 
link is created by stitching three sections (see Figure 6(a)). 
Because two or three different protocols may be used in the 
two domains and the network in between, the link is divided 
into three sections. In the case of VL14, VL14i1 is the 
domain-D1-internal section, VL14e is the inter-domain 
section, and VL14i2 is the domain-D2-internal section. Both 
end points of each section of the links have their own 
addresses; that is, they are independent.  

In the control plane, node N12 and the gateway in 
domain D1 (gateway 1) negotiate the parameters for VL14i1 
when the domain-D1 part of the slice is created [Kan 12b]. 
The parameters for VL14i2 are negotiated by using the 
same method. As described in Figure 5 (step 4 and its 
response), however, the gatekeepers negotiate the 
parameters for VL14e, including the VLAN ID, the MAC 
addresses, and possibly the tunneling method. If the link 
resource (such as bandwidth) between two domains is 
managed by a network operator other than the operators of 
the two domains, the gatekeeper(s) must negotiate the 
resource with the operator. The link may even cross 
firewalls between the domains. 

In the implementation, GRE tunneling is used for VL14i1 
and VL14i2, and VLAN is used for VL14e. Available 
protocols and formats will be added in future. No 
management system in the network between the domains is 
assumed. Both end points of VL14i1 and VL14i2 have IP 
addresses for the GRE tunnels, and both end points of 
VL14e have MAC addresses for the inter-domain VLAN 
communication. VL14i1 is generated by an intra-domain 
signaling (using GMPLS between VNode Managers), which 
is a normal signaling for generating an intra-domain virtual 
link, between the VNode Managers of N12 and P11. The 
VNode managers negotiate the GRE key and the IP 
addresses for both end points of VL14i1. VL14i2 is 
generated by the same method. VL14e is generated by 
messaging through the federation API. The gatekeepers 
negotiate the VLAN ID and the MAC addresses for both 
end points of VL14e. The gatekeepers send commands to 
the gateways for setting up the link.  

In the data plane, the data conversion between VL14i1 
and VL14e is performed in gateway 1, and that between 
VL14e and VL14i2 is performed in gateway 2. If no data 
conversion is required, that is, the same protocol and data 
format are used on both sides of a gateway, the gateway can 

be bypassed. Figure 6(b) shows the data format when an 
arbitrary (non-IP or IP) packet format is used on the slice. 
Network processors can be used for high-performance (10-
Gbps) data conversions in gateways. 

VII.  IMPLEMENTATION AND EVALUATION  

The federation functions were partially implemented on the 
VNode platform and evaluated by connecting two domains 
as described in the following. The functions of DPN, gate-
keeper, and gateway are implemented as a modified version 
of a VNode called “network accommodation equipment” 
(NACE) [Kan 12c]. NACE was originally designed for 
accommodating a non-virtualized network in a slice. This 
function is here extended to cross-domain federation.  

The slice specification described in Figure 7 and 
visualized in Figure 8(a) is used for the evaluation. (Note 
that in Figure 7 several parts of the specification are omitted 
and several identifiers are renamed for understandability.) 
The specification contains inter- and intra-domain virtual 
links, a virtual node VN0 that contains a slow-path VM, a 
virtual access gateway AG00 for terminal users (which is 
created in the gateway explained in Section II  B), and a 
PVN named PV1 (which contains a virtual node named 
VN1 that contains another slow-path VM and is assigned to 
a DPN named P11forD2).  

The specification of PV1 is sent to P11forD2, and a part 
of the specification is converted to the specification for 
domain D2 visualized in Figure 8(b). Several virtual nodes, 

Virtual node in the other domain (D2)

IntraDomain virtual link

InterDomain virtual link

<?xml version="1.0" encoding="UTF-8"?>
<slice-design>

<slicespec name="federation-h1">
<sliverdef>

<linkSlivers>
<linkSliver name="InterDomainLink" type="link" subtype="GRE">

<vports><vport name="e1" /><vport name="e2" /></vports>
</linkSliver>
<linkSliver name="IntraDomainLink" type="link" subtype="GRE">

<vports><vport name="e1" /><vport name="e2" /></vports>
</linkSliver>

</linkSlivers>
<nodeSlivers>

<nodeSliver name="VN0" type="prog">
<vports><vport name="vp1"/><vport name="vp2"/></vports>
<hierarchy>

<sliverdef>
<nodeSlivers>

<nodeSliver name="SP0">
<vports><vport name="vip1" /><vport name="vip2"/></vports>
<instance type="SlowPath_VM" subtype="KVM">

<resources>…</resources>
<params>
<param key="bootImage" value="http://192.168.50.50/nict-test/sp/KVM_Ubuntu1010Server32.img" />

</params>
</instance>

</nodeSliver>
</nodeSlivers>
<linkSlivers>…</linkSlivers>

</sliverdef>
<structure>…</structure>
<params><param key="authKey" value="ssh-dss … vnode@ubuntu1" /></params>

</hierarchy>
</nodeSliver>
<nodeSliver name="PV1" type="prog">

<vports><vport name="vp1"/></vports>
<hierarchy>

<sliverdef>
<nodeSlivers>

<nodeSliver name="VN1" type="prog">
<vports><vport name="vip1" /></vports>
<hierarchy>

<sliverdef>
<nodeSlivers>

<nodeSliver name="SP1">
<vports><vport name="vip1" /></vports>
<instance type="SlowPath_VM" subtype="KVM">
<resources>…</resources>
<params>

<param key="bootImage" value="http://192.168.50.58/nict-test/sp/KVM_Ubuntu1010Server32.img" />
</params>

</instance>
</nodeSliver>

</nodeSlivers>
<linkSlivers>…</linkSlivers>

</sliverdef>
<structure>…</structure>
<params><param key="authKey" value="ssh-dss … vnode@ubuntu1" /></params>

</hierarchy>
</nodeSliver>

</nodeSlivers>
<linkSlivers>

<linkSliver name="ln01" type="link"><vports><vport name="e1" /><vport name="e2" /></vports></linkSliver>
</linkSlivers>

</sliverdef>
<structure>

<bind name="b1"><vport sliverID=“__TOP__" portname="vp1" /><vport sliverID="ln01" portname="e1" /></bind>
<bind name="b2"><vport sliverID=“VN1" portname="vip1" /><vport sliverID="ln01" portname="e2" /></bind>

</structure>
<params><param key="authKey" value="ssh-dss … vnode@ubuntu1" /></params>

</hierarchy>
</nodeSliver>
<nodeSliver name="AG00" type="agw"><vports><vport name="vp1"/></vports></nodeSliver>

</nodeSlivers>
</sliverdef>
<structure>

<bind name="b11"><vport sliverID="PV1" portname="vp1" /><vport sliverID="InterDomainLink" portname="e1" /></bind>
<bind name="b12"><vport sliverID="NS00" portname="vp1" /><vport sliverID="InterDomainLink" portname="e2" /></bind>
<bind name="b21"><vport sliverID="AG00" portname="vp1" /><vport sliverID="IntraDomainLink" portname="e1" /></bind>
<bind name="b22"><vport sliverID="NS00" portname="vp2" /><vport sliverID="IntraDomainLink" portname="e2" /></bind>

</structure>
</slicespec>
<mapping slice="federation-h1" vnetwork="Slice">

<amap node="PV1" vnode="P11forD2" />
<amap node=“VN0" vnode="Node11" />
<amap node="AG00" vnode="AGW0" />

</mapping>
</slice-design>

A slow-path VM

Other domain (logical domain)

Logical-physical domain mapping
Logical-physical node mapping in own 

domain

Virtual access gateway

Virtual node in domain D1

A slow-path VM

 
Figure 7. Slice specification given to domain 1 
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links, and port names, e.g., TOP, __SP01, and __ln01, are 
defined arbitrarily; that is, they are systematically generated. 
In contrast to the slice S2 in Figure 5, information concern-
ing VN0 and InterDomainLink in Figures 7 and 8(a) is not 
provided by the gatekeepers in this implementation. This 
specification therefore does not contain the information.  

The sequence of the slice creation, which is extracted 
from an execution log, is shown in Figure 9. The slice is 
given by a “slice developer” to the DC through the portal of 
this domain (D1) on a VNode platform in JGN-X. A part of 
the slice is deployed to domain D2 on a VNode platform on 
a local site. As shown in the figure, the processing time re-
quired for the source domain (D1) can be divided into three 
parts, and that required for the destination domain (D2) can 
be divided into four. The total time for a cross-domain slice 
creation is estimated as 18.2 s, which consists of waiting 
time and estimated downward and upward processing time. 
In contrast, a single-domain slice creation was measured as 
approximately 6 s. That is, a cross-domain slice creation 
takes approximately three times longer than a single-domain 
slice creation. 

The implementation of the proposed federation method 
revealed the following issues. 

• Restriction on modification: Slice creation and deletion 
functions are performed well by the proposed method. 
However, there may be several restrictions on 
modification functions (i.e., addition and removal of 
virtual nodes and links). If the domain does not have a 
command to update a virtual node, there is no way to 
update the structure of the other domain, because the 
update on multiple nodes and links in the other domain is 
mapped to a single-node update in the original domain.  

• Difficulty in collecting information: Resource discovery, 
statistical query, and asking manifests (such as virtual-
node host-names or addresses) may be difficult to imple-
ment because the DC of a domain does not collect infor-
mation of the other domain. They can be implemented 
only when the DC requests information from VNodes and 
the DPN and returns the content of the reply from the 
VNodes and the DPN as is to the slice developer.  

However, these issues will not occur if the virtualization 
platform has sufficient (intra-domain) slice-modification 
and on-the-fly discovery and statistical query functions.  

VIII.  RELATED WORK 

The GENI Project defines federation architecture with a set 
of interfaces and data types for federation [Pat 10]. Based on 
this architecture, ProtoGENI [Ric 12] has federation func-
tions for federating multiple GENI-based networks. In 
ProtoGENI, all the parameters required for data communica-
tion are specified in the RSpec (resource specifications) 
because there is no mechanism for negotiating virtual-link 
parameters. In contrast, in the case of the proposed federa-
tion method, the slice designer does not need to specify the 
parameters because the protocol to be used and the 
parameters such as VLAN or GRE/IP are negotiated by the 
gatekeepers. Especially, in ProtoGENI, ARP (and non-
virtualized Ethernet and IP) is required between the domains 
because underlay addresses are not negotiated. Therefore, 
only IP/Ethernet can be used for communication between 
the domains. The method can be applied to other protocol 
combinations, including clean-slate protocols, in which no 

address resolution mechanism is available.  
Several papers describe the relationships between 

federation and network virtualization [Kim 09] 
[Ser 11]. However, they do not focus on link-layer 
functions (i.e., creating and managing virtual links, 
etc.), namely, the focus of this study. Wahle et al. 
[Wah 08] proposed an architecture for cross-domain 
federation. This architecture contains a central 
federation controller called “Teagle” and a gateway in 
each domain. However, it does not focus on a link 
layer either. Zaheer et al. [Zah 10] and Chowdrury et 
al. [Cho 10] have studied cross-domain virtual-
network embedding problems. Their focus was on 
virtual-to-real node mapping, and they did not 
mention management and control problems caused by 
cross-domain federation. 

IX.  CONCLUSION 

A method for federating virtualization platforms was 
proposed. To enable federation between domains 
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without a federation function, first, a cross-domain slice 
specification that contains a PVN, which encloses other-
domain part of the slice and which indicates the border of 
responsibility, is used. Second, the specification is handled 
using a DPN, which mimics a VNode that implements the 
PVN, and it is transformed using gatekeepers with the 
federation API. To enable non-IP data communication on 
the slice, underlay parameters (including MAC addresses) 
are negotiated in advance, and data packets on a slice are 
tunneled between gateways in these domains. Methods for 
avoiding infinite message loops (for specification exchange) 
between federated domains are also proposed.  

The federation method was implemented on the VNode 
platform, federation between two homogeneous domains 
was successfully demonstrated, and the federation 
performance was measured. Although several issues were 
revealed by this implementation, they do not occur in the 
case of a platform with sufficient intra-domain functions. 

Future work includes implementation of all the federation 
functions and heterogeneous federation. This method is now 
being applied to heterogeneous federations between a 
VNode platform and a platform based on ProtoGENI 
[Ric 12]. Future work also includes scalable federation; that 
is, reducing degradation in performance of creation and 
deletion of a slice caused by a large number of nodes in 
other domains or a large number of federated domains. 
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