Controlling Network Processors by using
Packet-processing Cores

Yasusi Kanada
Hitachi, Ltd., Japan

Introduction

» Network processors (NPs) are used forcustomlzable
and high-performance NS)
networking.

» NPs usually contains two dlfferent‘types of cores.
m Packet processing core (PPC)
m Control processing core (CPC)

» Problems of NP programming
m Synchronization and communication of PPCs and CPC
m Hardware- and vendor-dependence of NP software
m Lack of portability of NP software

» A method for solving these problems are proposed in
this study.

NetMM 2014 2014-5-16 Yasusi Kanada, Hitachi, CRL

NP Architecture

» There are various (proprietary) NP architectures.
m NDA s required to develop NP programs.

» They may be summarized to ...

PPC||PPC| ..|PPC
Shared
SRAM / SCRAM// SCRAM// SCI'\:&AI\I/\III//
AM AM
CAM/TCAM TCAM TCAM TCAM

External
, hetwork

DRAM
NPU
CPC
Memory
controller L1 Cache
L2 Cache
| Input
processor
Internal bus/network-on-chip
Output
processor

NetMM 2014 2014-5-16 Yasusi Kanada, Hitachi, CRL

Proposal: to control PPCs by a PPC

» PPCs are conventionally controlled by a CPC.

m This control method causes complexity and the problems because
of proprietary hardware and software between CPC and PPCs.

m The complexity comes from the architectural differences between
CPC and PPCs.

* E.g., CPC has virtual memory, but PPCs does not.
* E.g., CPC runs OS, but PPCs are bare-bone (i.e., OS-less).
» To simplify the control, a method for controlling PPCs
by using a PPC is proposed.

NetMM 2014 2014-5-16 Yasusi Kanada, Hitachi, CRL

Comparison of Conventional and Proposed Methods

Conventional methods

Control (by —% Network
a proprietary CPC processor
method).”” / |1 "

. |

’
| .
+

Ly v A s
data sInTaltdin]nYal = Tm) data
sEr PG PPC | PPC TP TCTTS | packet
Proposed method iCO”tlfO'
\'4
""""""""""" 1 CPU Trlanslation
control Network processor
pa(‘ks\:r B
L Control (by a widely-used method)
>~ L;ﬁi"i“;ﬂ T T
data D (mInTa = YmYa data
el PG PPC > PPC —SJErS % sl

NetMM 2014 2014-5-16 Yasusi Kanada, Hitachi, CRL 5

How to Solve Problems by Proposed Method

» 1. Communication and synchronization in PPC
» 2. Control message simplification in CPU
» 3. Core allocation of PPCs

NetMM 2014 2014-5-16 Yasusi Kanada, Hitachi, CRL

Issue 1: Communication and Synchronization in PPC

» Uniform and simpler communication and
synchronization (C&S) hardware can be used.

m C&S hardware between PPCs, such as shared memory, are simpler
than that between PPC and CPC.

» C&S can be programmed in a simpler and hardware-

and vendor-independent method.
m A high-level language “Phonepl” is being developed for this purpose.

—————————— ~=1 CPU | Translation
"""" |
/,’

control Network processor Packet-processing

packet |
' - |\ - le==T

----F-=-}:-:1 program (source)

S

- -""'g_pl-- <o - s &5 °
dat S (Y dat
packet PrCT PRCP —IPPES [28, L Hardware/vendor-)
i e

S A— — independent softwar
%heﬁ%d NRR Tables
ry \Commonly-used hardware>

NetMM 2014 2014-5-16 Yasusi Kanada, Hitachi, CRL 7

Issue 2: Control Message Simplification in CPU

Control
message

Control
packets
(for PPCs)

NetMM 2(

if
}
}

}
fo

}

(link type is VLAN) {
vlink add 0003b0000011 0004b0000001 <CNPUMAC> <NeMIF>
else if (link type is GRE) {
glink add 10.1.1.20 5555 <InternalMAC2> <CNPUMAC> <NeMIF>
else {
error “No such link type”

_ variable-length,
complex

r (1 =1 .. 3) {
link add 0003b0000020+i 0004b0000020+i <CNPUMAC> <NeMIF>

\.-----'———————— o

@ Division of a control message

|vl

ink add 0003b0000011 0004b0000001 <CNPUMAC> <NeMIF> |

[

ink add 10.1.1.20 5555 <InternalMAC2> <CNPUMAC> <NeMIF>

variable-length,

E

nk _add 0003b0000021 0004b0000021 <CNPUMAC> <NeMIF>

unit-operation

=

nk add 0003b0000022 0004b0000022 <CNPUMAC> <NeMIF>

=

__________!__________.r

nk _add 00030000023 0004b0000023 <CNPUMAC> <NeMIF>

@ Translation into control packets

| CNPUMAC1 | NeMMAC | type |v|ink_add| 0003b0000011 |ooo4boooooo1 | ":
1

[CNPUMAC2] NeMMAC [type[glink_add[10.1.1.20 | 5555 |0004b000000|0:bO4b

i fixed-length,

| CNPUMACT1 | NeMMAC | type |v|ink_add | 0003b0000021 |0004b0000021 | -

unit-operation

| CNPUMAC?2 | NeMMAC | type |v|ink_add | 0003b0000022 |0004b0000022|

| CNPUMAC3 | NeMMAC | type |v|ink_add | 0003b0000023 |0004b0000023|

-

Issue 3: Core Allocation of PPCs

» Cores may be allocated statically or dynamically.

» Proposed method is advantageous in both.
» In static allocation, load-balancing is enabled.

m Conventional method: no load balancing

Control tasks:
Data processing tasks:

t1,12, .., tm)

c1,¢2, ..., cn m)

CPC

PPC

PPC]| ...

® Proposed method: static load balancing

Control tasks:
Data processing tasks:

t1,t2, ..., tm %)

c1, c2, ..., cn Em)

» Dynamic allocation is enabled.

m Proposed method: dynamic load balancing

Control tasks: c1, c2,
Data processing tasks:
t1, 12, .

..., CN %
., tm &

PPC

PPC

PPC

PPC

PPC]| ...

PPC

PPC

PPC]| ...

PPC

NetMM 2014 2014-5-16 Yasusi Kanada, Hitachi, CRL

Application: Creating a New Type of Virtual Links

» A network node with network virtualization function,

which is called VNode, ~ic/sm. (p#sxz (O NTT MDD
has been developed. HITACHI NEC FUﬁTSU

» NPs are used for adding new functions to a VNode.

» By using NP-based plug-ins and the proposed method,

a new type of virtual link is created and managed.
m Built-in virtual-link creation/management mechanism is extended.

VNode 1 (Local VNode)

Control components

Control control

:Data-processing

Ilnternal address

U
U
U
U
1
I
U
U
U
U
1
I
U
U
U
U
I
U
U
U
1
I
U
U
U
U
1
I
U
U
U
U
U
-
-

VNode 2

[]

. i

icomponents (MAC) i

| I

Networking Network processor Control /','" Neagotiation
|component |Dataiprocessing processing’ / 9

| (Redirector) PPCs o PPCL7| / < >

: Shared H" £ C
L lmemon LTables JOP 2 TiKID Remote 1

Address

Address

NetMM 2014 2014-5-16

Yasusi Kanada, Hitachi, CRL

10

Implementation and Evaluation

» Implementation

m Cavium Octeon NPs were used for data processing (packet header
conversions).

m Data and control processing tasks were programmed for the PPCs
by Phonepl (a high-level languge).

» Comparison of proposed and conventional methods

Data (packet) Interface (memory

Control processing

processing set-up) between D/C
Program | Description | Program | Description | Program | Description
Length | Language | Length | Language | Length | Language
Control by 21| Phonepl
PPC (proposed 26| Phonepl _ 30| Phonepl
method) 230| C (Linux)
Conventional C (bare : C (bare
method 160 metal) e &l metal)

NetMM 2014 2014-5-16 Yasusi Kanada, Hitachi, CRL 11

Conclusion

» A method for controlling packet processing in NPs by
using PPCs was proposed.

» This method makes

m synchronization and communication tasks and
programming control/data-processing tasks
easier and hardware/vendor-independent.

m porting between different types of NPs much easier.

» Future work includes application of the proposed
method to other types of NPs.

NetMM 2014 2014-5-16 Yasusi Kanada, Hitachi, CRL

12

Appendix: Comparison

» Conventional control schema

Control-processing

Software Hardware
Control-processing

software = hardware

Data (packet)-

Data (packet)-

processing software = processing hardware

» Proposed control schema

Software Hardware
Control-processing Control-processing
software = hardware

Data (packet)-

®

Data (packet)-

processing software = processing hardware

NetMM 2014 2014-5-16

Yasusi Kanada, Hitachi, CRL

13

Appendix: Packet & Control Processing in the Application

» PPCs are dynamically allocated.
» Data/control packets are processed in the following.

Internal
network Program for PPC | Packet processing » [packet
interface (internal to external)
. External
packet]— Tetsétlng Contrc_)l network
g processing interface
) Packet processing |
paciely < (external to internal) | 2EEC

NetMM 2014 2014-5-16 Yasusi Kanada, Hitachi, CRL 14

Appendix: Packet & Control Processing in the Application

» “Phonepl” language is used for high-level NP programming.
m Packet and control processing are not separated, but they can be separated.

000
001
002

003

004
005
006
007
008
009
010
011
012
013
014

015
016

017
018
019
020
021
022
023
024

import IStream; // Internal stream
import EStream; // External stream
class ControlAndDataProcessing ({

public ControlAndDataProcessing(
NetStream iport > itoe,

NetStream eport > etoi) {
// Initialization
}
void processControl (Packet i) { // Process a control packet
// Control-packet processing
}
void itoe (Packet i) { // Process an i-to-e data packet
int tag = i....;
if (tag == ControlPacketTagValue) {
processControl (i) ;
} else {
// Data-packet processing (internal to external)

}

void etoi (Packet i) { // Process an e-to-i data packet
// Data-packet processing (external to internal)
}
void main() {
new ControlAndDataProcessing(new IStream(), new EStream()) ;

}
}

NetMM 2014 2014-5-16 Yasusi Kanada, Hitachi, CRL 15

