
1

Controlling Network Processors
by using Packet-processing Cores

Yasusi Kanada
Central Research Laboratory, Hitachi, Ltd.

Totsuka-ku Yoshida-cho 292, Yokohama 244-0817, Japan
Yasusi.Kanada.yq@hitachi.com

Abstract – A network processor (NP) usually contains
multiple packet processing cores (PPCs) and a control
processing core (CPC), and the synchronization and
communication between CPC and PPCs, which is required
for controlling an NP, is very complex. To reduce the
complexity, a method for controlling packet processing in
NPs by using PPCs is proposed. By means of this method,
complex control messages are partially processed and
divided into simplified control packets by a CPU outside the
NP chip, and these packets are sent to a control-processing
PPC. The control-processing PPC controls data-processing
PPCs by using data-exchange mechanisms, such as a shared
memory or an on-chip network, which are more uniform
and simpler than those between a CPC and PPCs. This
control method is applied to a virtual-link control-
processing task and packet-processing tasks in a network
node with a virtualization function. Both tasks are described
by a hardware-independent high-level language called
“Phonepl,” and communication between the PPCs is
programmed following normal and uniform shared-memory
semantics. As a result, programming the control-processing
task and porting the program become much easier.

Keywords – Network processors, Multi core, Control
processing, Packet processing, Network virtualization.

I. INTRODUCTION

A network-processor LSI (Larg-Scale Integration) usually
has many packet-processing cores (PPCs) because today’s
wire rate, namely, 10, 40, or 100 Gbps, is too fast for a
single core; that is, a single core cannot process all the
packets. To reduce overhead, PPCs have a RISC
(Reduced Instruction-Set Computer) core architecture and
are used without running an operating system (OS); that
is, it operates as in “bare metal” (or “bare bone”) mode.
Programs used in PPCs are simplified because they are
not suited for the complicated processing that requires an
OS. In contrast, because control processing such as
routing is complicated, a more complex core, i.e., a
control processing core (CPC), is built on the same chip
and used for controlling PPCs. For example, IXP network
processors [Gog 03] developed by Intel have 16 or more
PPCs and one StrongARM or XScale CPC.

There are three problems concerning synchronization
and communication between PPCs and the CPC that
controls the PPCs: the methods for synchronization and
communication are complicated, hardware- and vendor-
dependent, and not portable. Because a CPC controls
PPCs by sending and receiving messages, synchroniza-
tion and communication between them is required. These
problems occur during this process. In addition, standard-
based methods for synchronization and communication

between a CPC and PPCs are difficult to use.
The above-described problems are caused by the

difference between “slow-path” and “fast-path”
processing, which require different software and
hardware. As for the difference between software, the
existence or non-existence of an OS makes the difference.
A CPC can support abstract and flexible methods for
synchronization and communication, but, usually, PPCs
only support specialized and restricted methods, which do
not easily match standardized methods. In addition,
software libraries for synchronization and communication
between PPCs are usually hardware- and vendor-
dependent. As for the difference between hardware,
hardware design of a CPC and PPCs makes the
difference. That is, PPC hardware is optimized for high
performance and bare-metal usage. This design imposes
restrictions on usage of synchronization and communica-
tion mechanisms. In contrast, CPC hardware is optimized
for OS-based environments.

In the present study, to solve the above-described
problems, a method for controlling packet processing in
network processors by using PPCs is proposed. By means
of this method, PPCs are used for both data processing
and control processing and; that is, one or more PPCs are
allocated to control, instead of a CPC, and other PPCs are
allocated to data processing. Complex control messages
are partially processed and divided into simplified control
packets by a CPU outside the network processor chip, and
they are sent to the control-processing PPC. This PPC
controls data-processing PPCs by using data-exchange
mechanisms, such as a shared memory or an on-chip
network, which are uniform and simpler than data-
exchange mechanisms between a CPC and PPCs.

The rest of this paper is organized as follows.
Section II describes the methodology used for solving the
above-described problems. Section III describes an
application of the proposed control method, and
Section IV describes a prototype implementation and
evaluation of the method. Section V concludes the paper.

II. METHODOLOGY

The methodology used for solving the above-mentioned
problems is described in the following.

A. Outline
A typical design of a network processor is shown in
Figure 1. A network processor, i.e., an LSI chip, contains
a CPC and multiple PPCs. Certain types of network
processors have two or more types of specialized PPCs.
The system (board) has a dynamic random-access low-

2

speed memory (DRAM), which can hold hundreds or
thousands of packets, and high-speed memories such as
static RAM (SRAM), content-addressing memory
(CAM), or ternary CAM (TCAM), which can hold a
limited number of packets. The design shown in the
figure is not the only possible one. For example, in other
types of network processors, the architecture of the
network that connects the PPCs and the CPC may be
different from that shown in the figure.

A method for controlling packet processing in network
processors by using PPCs (mainly by software), which is
proposed in this paper, is compared with a conventional
method using Figure 2. The same NP hardware as
conventional methods is used in the proposed method.
However, it can be used in a different way; that is, PPCs
are used for both data processing and control processing.
In a conventional control method (Figure 2(a)), the CPC
controls the PPCs. However, by means of the proposed
method (Figure 2(b)), one or more PPCs are used for
control processing instead of the CPC. The control-
processing PPC receives packets that contain control
information. It receives the control packets as data-plane
packets; that is, it receives them by the same method as
that by which data-processing PPCs receive data packets.
The control-processing PPC receives control packets from

a CPU outside the network processor chip. Complex
control messages received by the CPU are partially
processed and divided into simplified control packets by
the CPU, and they are sent to the control-processing PPC.
No third type of methods is known to the authors.

Figure 3 diagrams the control schema of this method
and compares it to the conventional schema. In the
conventional schema, control-processing software works
on control-processing hardware, and data (packet)
processing software works on data processing hardware.
However, the proposed method can change the border;
that is, part of control processing works on data
processing hardware. This method enables a more flexible
task division and more effective hardware use.

B. Problems to be solved
The proposed method solves the problems between a CPC
and PPCs, i.e., complexity of interaction, hardware- and
vendor-dependence, non-portability, and non-applicabil-
ity of standards. The first and most important problem is
interaction, i.e., synchronization and communication,
between the control-processing and data-processing tasks.
A program on the controlling PPC can control data-
processing PPCs using data-exchange mechanisms, which
are uniform and simpler than those between a CPC and
PPCs because the communicating cores are uniform. This
issue will be explained more in Section II.C.

The second problem is control-message simplification.
Because control messages to be received by the network
processor are complex, it is difficult to handle messages
by a bare-metal controlling PPC. The messages are thus
divided into simpler control packets before sending them
to the control-processing PPC. However, they can usually
be translated into a collection of simpler messages by a
CPU outside the network processor chip. This issue will
be explained more in Section II.D.

The third problem is core allocation. The control task
may be statically allocated to one or more PPCs or it may
be dynamically allocated to one or more PPCs. This issue
is briefly explained below.

In static allocation, instead of the CPC, one or more
PPCs are used only for control processing, and other
PPCs are used only for packet processing. The control-
processing PPC receives packets that contain control
information. Static allocation requires that the data-packet

Memory
controller

Shared SRAM
/ CAM / TCAM

NPU

…

Input
processor

Output
processor

DRAM: Dynamic Random Access Memory, CPC: Control Processing Core,
SRAM: Static Random Access Memory, CAM: Content Addressable Memory,
TCAM: Ternary Content Addressable Memory, PPC: Packet Processing Core

CPC

PPCPPCPPC

DRAM

Network

L1 Cache

L2 Cache

SRAM /
CAM /
TCAM

SRAM /
CAM /
TCAM

SRAM /
CAM /
TCAM

Bus / Network-on-chip

Figure 1. Typical structure of network processor

(b) Proposed method

PPC

(a) Conventional method

PPC

Network
processor

PPCPPC PPC …data
packet

Network processor

CPU

PPCPPC PPC …

control

control

data
packet

data
packet

data
packet

control
packet

control
CPC

control

Figure 2. Conventional and proposed methods for

controlling a network processor

HardwareSoftware

Control-processing
software

Data (packet)-
processing software

Control-processing
hardware

Data (packet)-
processing hardware

(a) Conventional control schema

HardwareSoftware

Control-processing
software

Data (packet)-
processing software

Control-processing
hardware

Data (packet)
processing hardware
Data (packet)-

(b) Proposed control schema

Figure 3. Comparison of conventional and
proposed control schema

3

scheduler, which is implemented by hardware in bare-
metal processors, distinguishes data and control packets.

In the case of dynamic allocation, if the controlling
task can be allocated to PPCs that may process data
packets, the PPCs must distinguish data and control
packets, usually by software, when they arrive. Dynamic
allocation is focused on hereafter.

Both in static and dynamic allocations, control and
data-processing loads on processor cores can be balanced.
Although network processors usually have a load-
balancing function for packet processing, they usually do
not have one between data and control processing. The
proposed method can provide this function. The ratio of
data processing to control processing may be changed. If
the load can be estimated statically, it can be balanced
statically by static allocation. If it can be estimated
dynamically, it can be balanced by dynamic allocation.

C. Control-processing and data-processing tasks and
interaction between them

To solve the first problem, i.e., interaction complexity
between control and data processing, in the proposed
method, a program on the controlling PPC controls data-
processing PPCs using data-exchange mechanisms, such
as a shared memory or an on-chip network. These data-
exchange mechanisms are more uniform and simpler than
those between a CPC and PPCs.

In addition, in the method described here, PPCs are
allocated dynamically; that is, each PPC is used for both
control and data processing. A control-processing PPC
controls data-processing PPCs, including itself.

The flow chart of the controlling and data-processing
in each PPC is shown in Figure 4. When a packet arrives
at the internal network interface, which is connected to
the control CPU, the PPC first distinguishes control and
data packets by testing the tag that the packet contains. If
the packet is a data packet, it is processed by the packet-
processing procedure for internal-to-external packets. If it
is a control packet, it is processed by the control-
processing procedure. Although this test causes an
increase in processing time, it is negligibly small. When a
packet arrives the external-network interface, which is
connected to the external network (i.e., a network
between network nodes), the packet is assumed to be a
data packet (i.e., no control CPU exists in the external
network) and processed by the packet-processing
procedure for external-to-internal packets.

The control-processing and data-processing programs
can be written following the same semantics, thereby
making description of interactions easier. That is, they
can be written using the same language or different
languages can be used for writing these program modules.

However, if the same language or languages with
common semantics are used, the interactions between the
control-processing and data-processing PPCs follow the
same semantics. Description of synchronization and
communication thus becomes easier. In addition, if the
language is portable, both control-processing and data-
processing programs can be ported to another network
processor at once because they can be written in the same
language and in the same program.

D. Division and simplification of control messages
To solve the second problem, i.e., that control messages
are too complex to be process in PPCs, the messages are
divided into simpler control packets by a CPU outside the
network processor chip in the proposed method. The
control messages may be written in a complex form such
as SOAP [Mit 03] or XML-RPC [XML], and the
messages may be iteratively or recursively structured.
However, if the command language is properly defined,
the complex messages can usually be translated to simpler
messages. As for the proposed method, therefore, they are
partially evaluated by the external CPU and divided into
simplified control packets. The control packets do not
have complex structures such as iteration or recursion,
and they consist of fixed-length fields that can be
processed by simple methods.

This message conversion conceptually consists of two
functions, shown in Figure 5. The first function is
message division, and the second function is translation
into control packets.

The message-division function divides a complex
message into a sequence of unit operations. The
operations are still abstract, and the length of each
operation may be variable. If these operations are used in
a PPC, the PPC requires a parser that analyzes the
operation, and the parsing requires computational
resources; therefore, the second function is required. It
translates each operation into fixed-format control
packets. The control packets, which do not have complex
structures such as iteration or recursion and consist of
fixed-length fields that can be processed by simple
methods, are sent to the control-processing PPC.

When a complex message is divided, a structured
message is basically formed by using the following three
types of structures:
• Concatenation: Multiple operations are executed

sequentially or in parallel.
• Selection: An operation is selected from multiple

operations by a conditional expression (a Boolean
expression) and executed.

• Repetition: An operation is repeatedly executed while
the value of a conditional expression is true.

To unroll a complex message, the conditional expression
must be evaluated by the CPU. If it cannot always be
evaluated before the operations are executed in the PPC,
the message cannot be divided.

III. APPLICATION

The proposed control method can be applied to a virtual-
link management function. This function is implemented
in a virtualization node (VNode) [Nak 12][Kan 12] for

Program

Control
processing

Testing
the tag

Packet processing
(internal to external)

Packet processing
(external to internal)

Internal network interface
(IStream)

External network interface
(EStream)

packet

packet

packet

packet

Figure 4. Outline of control- and data-processing by using
PPCs

4

network-virtualization platforms.

A. Introduction to VNode platform
Nakao et al. [Nak 10][Nak 12] have developed a VNode
architecture and VNode platform, which consists of
VNodes and management servers, and a high-perfor-
mance fully functional virtualization testbed. The goal of
these works is to develop an environment in which
multiple slices (virtual networks) with independently and
arbitrarily designed and programmed new-generation-
network functions run concurrently, but are logically
isolated, on a physical network.

The VNode can be extended to add a new type of
virtual link, i.e., a “VLAN link sliver,” to a slice. The
original VNode only had generic routing encapsulation
(GRE) [Far 00]-based virtual links (called “GRE link
slivers”). A VLAN-based virtual link can be added by
using the proposed control method.

B. Virtual-link management for a VNode platform
On a VNode platform, a virtual link between VNodes is
created by negotiating link parameters, i.e., a link
identifier, such as GRE key or VLAN identifier (ID), and

end-point addresses, such as IP addresses or
MAC addresses (see Figure 6). A substrate link
such as a GRE tunnel or a VLAN path is
configured using these parameters.

To satisfy the “clean virtualization” criteria
[Kan 12], which include requirements for
avoiding interference between the external
networks between VNodes and the internal
network of a VNode, the protocols and
addressees of these networks are independently
defined. A VLAN is therefore used for the
internal network in the current version of a
VNode, but outside the VNode, a VLAN or any
other type of network can be used. Currently, a
VNode platform supports only GRE-based
representation in the external network.

This network-separation design requires ad-
dress and property translation on the border of a
VNode (see Figure 7) [Kan 12]. If the external
representation is GRE/IP and the internal
representation is VLAN, the IP addresses in the
incoming packets is converted to corresponding
MAC addresses, and the link properties (i.e.,
GRE keys) in the incoming packets must be
converted to the corresponding properties (i.e.,
VLAN IDs) if necessary. The reverse
conversion is required for outgoing packets.
Even if both the external and the internal
representations are VLANs, this translation is

still required for the separation; the MAC addresses and
the VLAN ID in packets must be translated.

C. Virtual-link creation using plug-ins
In addition to built-in GRE link slivers, a new type of
virtual link can be added to VNodes by using the
proposed control method. For example, a type of VLAN-
based virtual link can be implemented. As shown in
Figure 7, a network processor (in the networking
component called a “redirector”) and a control CPU (in
the controlling components) are plugged into each VNode
by using the plug-in architecture for a VNode [Kan 13b].
The control CPU translates a link addition, a link
deletion, or another type of message into a control packet
and sends it to a control PPC in the network processor.

When a virtual link is created, the creation message
contains the following three virtual-link parameters.

• Internal address is the internal MAC address of the
local end-point of the virtual link. It is used for the
destination MAC address used for converting and

if (link_type_is VLAN) {
vlink_add 0003b0000011 0004b0000001 <CNPUMAC> <NeMIF>

} else if (link_type_is GRE) {
qlink_add 10.1.1.20 5555 <InternalMAC2> <CNPUMAC> <NeMIF>

} else {
error “No such link type”

}
for (i = 1 .. 3) {
link_add 0003b0000020+i 0004b0000020+i <CNPUMAC> <NeMIF>

}

vlink_add 0003b0000011 0004b0000001 <CNPUMAC> <NeMIF>

link_add 0003b0000023 0004b0000023 <CNPUMAC> <NeMIF>

qlink_add 10.1.1.20 5555 <InternalMAC2> <CNPUMAC> <NeMIF>

link_add 0003b0000021 0004b0000021 <CNPUMAC> <NeMIF>

link_add 0003b0000022 0004b0000022 <CNPUMAC> <NeMIF>

CNPUMAC1 NeMMAC type vlink_add 0003b0000011 0004b0000001

CNPUMAC2 NeMMAC type glink_add 10.1.1.20 5555 0004b0000001

CNPUMAC1 NeMMAC type vlink_add 0003b0000021 0004b0000021

CNPUMAC2 NeMMAC type vlink_add 0003b0000022 0004b0000022

CNPUMAC3 NeMMAC type vlink_add 0003b0000023 0004b0000023

Division of a control message

Translation of control packets

A variable-
length and
complex
control
message

Variable-
length and
unit-
operation
control
messages

Fixed-
length and
unit-
operation
control
packets

Figure 5. Division and simplification of a control message

External network

Internal networkInternal network

Key12
(GRE key)

IP2
(IP address)

IP1
(IP address)

Data-processing
component

(Programmer &
Redirector)

Control
component

(VNode Manager)

Data-processing
component

(Programmer &
Redirector)

Control
component

(VNode Manager)

IP1

IP2

Key12

Negotiation
VNode 1 VNode 2

Figure 6. Negotiation for creating a virtual link

Computational component (Programmer)

Control components

VNode 1 (Local VNode) VNode 2

Data-processing
components

Link property
(GRE key /
VLAN ID)

Remote
external address (IP/MAC)

Networking
component
(Redirector)

Data-processing
PPCs

control

Local
external address (IP/MAC)

Shared
memory Tables

Internal address
(MAC)

Control
CPU

Control
processing

PPC

Network processor

Figure 7. External/internal addresses and translation
mechanism for data packets

5

sending incoming packets by the network processor. It
is also used for the source MAC address when outgoing
packets are received and converted.

• Local external address is the external MAC address of
the local end-point of the virtual link. It is used for the
destination MAC address when a packet is sent from the
remote VNode. It is also used for the source MAC
address when a packet is sent from the local VNode.

• Remote external address is the external MAC address of
the remote end-point of the virtual link. It is used for the
destination MAC address when a packet is sent from the
local VNode. It is also used for the source MAC address
when a packet is sent from the remote VNode.

If multiple VLAN IDs are used for virtual links, there
must be a fourth parameter: VLAN ID (a link property).

These parameters are stored in two tables in a memory
block shared among the PPCs (see Figure 7). Two tables
are required because there are two types of keys: the local
(or remote) external MAC address for incoming packets
and the internal MAC address for outgoing packets.

The data-processing PPC replaces the MAC addresses.
When the PPC receives an external packet, it matches the
destination (or source) MAC addresses with the external
MAC addresses stored in the first table. If entries that
match the MAC addresses are found, the destination
MAC address is replaced by the corresponding internal
MAC addresses and processed in the VNode. (A constant
source-address is used in the current implementation.) If
no entries match, the packet is routed to another node on
the platform. When the PPC receives an internal packet, it
matches the source and destination MAC addresses with
the internal MAC addresses stored in the second table. If
entries that match the MAC addresses are found, the
MAC addresses are replaced by the corresponding
external MAC addresses and sent to the external network,
i.e., another node on the platform.

A virtual link can be deleted by another type of
message, i.e., a deletion message. When the control PPC
receives a deletion message, it removes an entry from
each table. Because this sequence is similar to a creation
sequence, the detail is omitted here. Although the control
plug-in should support other types of virtual-link control
messages, they are out of scope of this paper.

IV. IMPLEMENTATION AND EVALUATION

A type of VLAN-based virtual link was implemented by
using the proposed control method. Two sets of VNodes
are used for this implementation. A control CPU and a
network processor are plugged into each VNode by using
the plug-in interface [Kan 13b]. A PC with a control CPU
and a Cavium Octeon® network processor [Cav 10]
board, called WANic-56512 (developed by General
Electric Company), is used. The data (processing) plug-in
was developed by using an open, hardware-independent,
and high-level portable programming language for
network processors, called “Phonepl” (which means
“portable high-level and high-performance open network
processing language” and was previously called CSP)
[Kan 13a]. The control CPU receives input messages
through a command-line interface (CLI). The syntax of a
creation message is given as follows.

link add LMAC RMAC IMAC Additional_Parameters

LMAC is the local external MAC address, RMAC is the
remote external MAC address, and IMAC is the internal
MAC address. Several additional parameters are required
for minor controls. The syntax of a deletion message is
similar to that of a creation message.

The control CPU translates messages to a control
packet (without message division). A bare Ethernet
packet is used for control packets because a complex
packet-processing library, such as IP, UDP, or TCP, is not
available on the network processor. Because no specific
mechanism for improving reliability is used, the same
control packets are sent repeatedly.

Both control-processing and data-processing tasks
processed by PPCs are described by Phonepl, and the
communication between them is programmed following
normal and uniform shared-memory semantics. This
makes programming the control-processing task and
porting a program much easier.

The outline of a program for control processing and
data processing by using PPCs is described in Figure 8.
This program defines class ControlAndDataPro-
cessing. It contains two bidirectional packet streams:
IStream and EStream (lines 001-002). IStream is a
stream for the VNode-internal network, and EStream is a
stream for the external network. When ControlAnd-
DataProcessing is initialized, function main() (line
021) is executed. This function generates an instance (a
singleton) of ControlAndDataProcessing. Two
packet streams are generated and passed as arguments of
ControlAndDataProcessing. They are assigned to
physical interfaces outside of this program.

In the constructor of ControlAndDataProcessing
(lines 003-006), the parameter declarations specify that
input packets to the first parameter, iport, are sent to

000 import IStream; // Internal stream
001 import EStream; // External stream

002 class ControlAndDataProcessing {
 …

003 public ControlAndDataProcessing(
 NetStream iport > itoe,
004 NetStream eport > etoi) {
005 // Initialization
006 }

007 void processControl(Packet i) {
 // Process a control packet
008 // Control-packet processing
009 }

010 void itoe(Packet i) { // Process an i-to-e data packet
011 int tag = i.…;
012 if (tag == ControlPacketTagValue) {
013 processControl(i);
014 } else {
015 // Data-packet processing (internal to external)
016 }
017 }

018 void etoi(Packet i) { // Process an e-to-i data packet
019 // Data-packet processing (external to internal)
020 }

021 void main() {
022 new ControlAndDataProcessing(new IStream(),
 new EStream());
023 }
024 }

Figure 8. Phonepl program structure for control- and data-
processing by using PPCs

6

method itoe, and input packets to the second parameter,
eport, are sent to method etoi. These methods receive
one packet at a time and process packets in parallel using
multiple PPCs (multiple threads). Method itoe (line 010)
handles an outgoing data/control packet that comes from
IStream. If the packet is a control packet, it is processed
by another method called processControl (line 007)
by using the same PPC as itoe uses. Method etoi (line
018) handles a packet that comes from EStream.

The control packets are processed by a PPC in the
Octeon, and the parameters stored in control packets are
stored in shared variables to control data-processing
PPCs. Shared variables are supported by Phonepl and
implemented using a shared memory block that is
supported by the software of Octeon. The programmer,
therefore, does not need to pay special attention to
communication between the control-processing and data-
processing PPCs. In this program, these PPCs do not need
to be synchronized.

Table 1 compares the implementations of the proposed
method and a conventional method; it compares the
program lengths (in lines) used for the virtual-link
implementation (including a program for the control
CPU) and an estimated set of programs described by
Octeon C program. Because no complete implementation
for the latter exists, an estimated set is used. Although the
total number of lines for the control processing is longer
for the proposed method, the programming is easier
because it uses normal packet-processing mechanism
instead of using proprietary hardware and software.

Performance of both control processing and data
processing should be evaluated. However, a unit
operation, i.e., a link creation or deletion, is estimated to
be 3 μs or less. It is thus difficult to be measured. In
contrast, data processing can be measured. Successful IP
communication between the virtual nodes connected by
the VLAN virtual-link was confirmed by a ping
command; although virtual links in VNodes can transmit
arbitrary format packets, IP was used because it requires
only two commands (i.e., ifconfig and ping) built into
the virtual node. The performance of the whole prototype
implementation was not measured, but the throughput of
the data plug-in was measured to be 9 Gbps or more when
the packet size was 900 bytes or larger.

V. CONCLUDING REMARKS

A method for controlling packet processing in network
processors by using packet-processing cores (PPCs) is
proposed. By means of this method, complex control
messages are divided into simplified control packets by a
CPU outside the network processor chip, and the control
packets are sent to a control-processing PPC. The control-
processing PPC controls data-processing PPCs by using

interaction mechanisms, such as a shared
memory or an on-chip network, which are
more uniform and simpler than similar
mechanisms between a CPC and PPCs.

This method was applied to a virtual-link
control-processing task and packet-
processing tasks in a network node with a
virtualization function. Both tasks are
described by a hardware-independent high-
level language called “Phonepl,” which was

implemented for Octeon, and the communication between
them is programmed following normal and uniform
shared-memory semantics. As a result, programming the
control-processing and high-performance data-processing
tasks and program porting between different types of
network processors become much easier.

Future work includes application of the proposed
method to other types of network processors.

ACKNOWLEDGMENTS

The author thanks Michitaka Okuno from Hitachi for his
useful comments on the method for controlling network
processors by using PPCs. The author also thanks
Yasushi Kasugai, Kei Shiraishi, Takanori Ariyoshi, and
Takeshi Ishikura from Hitachi for implementing the plug-
in interfaces in the redirector. Part of the research results
described in this paper is an outcome of the Advanced
Network Virtualization Platform (Project A) funded by
the National Institute of Information and Communications
Technology (NICT).

REFERENCES
[Cav 10] “OCTEON Programmer’s Guide, The

Fundamentals”, Cavium Networks, 2010,
http://university.caviumnetworks.com/downloads/-
Mini_version_of_Prog_Guide_EDU_July_2010.pdf

[Far 00] Farinacci, D., Li, T., Hanks, S., Meyer, D., and
Traina, P., “Generic Routing Encapsulation (GRE)”, RFC
2784, IETF, March 2000.

[Gog 03] Goglin, S. D., Hooper, D., Kumar, A, and Yavatkar,
R., “Advanced Software Framework, Tools, and Languages
for the IXP Family”, Intel Technology Journal, Vol. 7, No. 4,
pp. 64–76, 2003.

[Kan 12] Kanada, Y., Shiraishi, K., and Nakao, A., “Network-
Virtualization Nodes that Support Mutually Independent
Development and Evolution of Components”, IEEE
International Conference on Communication Systems (ICCS
2012), November 2012.

[Kan 13a] Kanada, Y., “Open, High-level, and Portable
Programming Environment for Network Processors”, IEICE
7th Meeting of Network Virtualization SIG, July 2013 (in
Japanese).

[Kan 13b] Kanada, Y., “A Node Plug-in Architecture for
Evolving Network Virtualization Nodes”, IEEE Workshop on
Software Defined Networks for Future Networks and Services
(SDN4FNS), November 2013.

[Mit 03] Mitra, N., and Lafon, Y., “SOAP version 1.2 part 0:
Primer”, W3C Recommendation 24 (2003): 12.

[Nak 10] Nakao, A., “Virtual Node Project ― Virtualization
Technology for Building New-Generation Networks”, NICT
News, No. 393, pp. 1–6, Jun 2010.

[Nak 12] Nakao, A., “VNode: A Deeply Programmable
Network Testbed Through Network Virtualization”, 3rd
IEICE Technical Committee on Network Virtualization,
March 2012, http://www.ieice.org/~nv/05-nv20120302-
nakao.pdf

[XML] XML-RPC Home Page, http://www.xmlrpc.com/

Table 1. Comparison of packet-header handling implementations
 Data (packet)

processing Control processing Interface (memory
set-up) between D/C

Program
Length

Description
Language

Program
Length

Description
Language

Program
Length

Description
Language

Control by PPC
(proposed method) 26 Phonepl 21 Phonepl 30 Phonepl

230 C (Linux)
Conventional

method 160 C (bare
metal) 200 C (Linux) 80 C (bare

metal)

