
1 

Controlling Network Processors  
by using Packet-processing Cores 

Yasusi Kanada 
Central Research Laboratory, Hitachi, Ltd. 

Totsuka-ku Yoshida-cho 292, Yokohama 244-0817, Japan 
Yasusi.Kanada.yq@hitachi.com 

 
Abstract – A network processor (NP) usually contains 
multiple packet processing cores (PPCs) and a control 
processing core (CPC), and the synchronization and 
communication between CPC and PPCs, which is required 
for controlling an NP, is very complex. To reduce the 
complexity, a method for controlling packet processing in 
NPs by using PPCs is proposed. By means of this method, 
complex control messages are partially processed and 
divided into simplified control packets by a CPU outside the 
NP chip, and these packets are sent to a control-processing 
PPC. The control-processing PPC controls data-processing 
PPCs by using data-exchange mechanisms, such as a shared 
memory or an on-chip network, which are more uniform 
and simpler than those between a CPC and PPCs. This 
control method is applied to a virtual-link control-
processing task and packet-processing tasks in a network 
node with a virtualization function. Both tasks are described 
by a hardware-independent high-level language called 
“Phonepl,” and communication between the PPCs is 
programmed following normal and uniform shared-memory 
semantics. As a result, programming the control-processing 
task and porting the program become much easier. 
  
Keywords – Network processors, Multi core, Control 
processing, Packet processing, Network virtualization.  

I. INTRODUCTION 

A network-processor LSI (Larg-Scale Integration) usually 
has many packet-processing cores (PPCs) because today’s 
wire rate, namely, 10, 40, or 100 Gbps, is too fast for a 
single core; that is, a single core cannot process all the 
packets. To reduce overhead, PPCs have a RISC 
(Reduced Instruction-Set Computer) core architecture and 
are used without running an operating system (OS); that 
is, it operates as in “bare metal” (or “bare bone”) mode. 
Programs used in PPCs are simplified because they are 
not suited for the complicated processing that requires an 
OS. In contrast, because control processing such as 
routing is complicated, a more complex core, i.e., a 
control processing core (CPC), is built on the same chip 
and used for controlling PPCs. For example, IXP network 
processors [Gog 03] developed by Intel have 16 or more 
PPCs and one StrongARM or XScale CPC.  

There are three problems concerning synchronization 
and communication between PPCs and the CPC that 
controls the PPCs: the methods for synchronization and 
communication are complicated, hardware- and vendor-
dependent, and not portable. Because a CPC controls 
PPCs by sending and receiving messages, synchroniza-
tion and communication between them is required. These 
problems occur during this process. In addition, standard-
based methods for synchronization and communication 

between a CPC and PPCs are difficult to use.  
The above-described problems are caused by the 

difference between “slow-path” and “fast-path” 
processing, which require different software and 
hardware. As for the difference between software, the 
existence or non-existence of an OS makes the difference. 
A CPC can support abstract and flexible methods for 
synchronization and communication, but, usually, PPCs 
only support specialized and restricted methods, which do 
not easily match standardized methods. In addition, 
software libraries for synchronization and communication 
between PPCs are usually hardware- and vendor-
dependent. As for the difference between hardware, 
hardware design of a CPC and PPCs makes the 
difference. That is, PPC hardware is optimized for high 
performance and bare-metal usage. This design imposes 
restrictions on usage of synchronization and communica-
tion mechanisms. In contrast, CPC hardware is optimized 
for OS-based environments.  

In the present study, to solve the above-described 
problems, a method for controlling packet processing in 
network processors by using PPCs is proposed. By means 
of this method, PPCs are used for both data processing 
and control processing and; that is, one or more PPCs are 
allocated to control, instead of a CPC, and other PPCs are 
allocated to data processing. Complex control messages 
are partially processed and divided into simplified control 
packets by a CPU outside the network processor chip, and 
they are sent to the control-processing PPC. This PPC 
controls data-processing PPCs by using data-exchange 
mechanisms, such as a shared memory or an on-chip 
network, which are uniform and simpler than data-
exchange mechanisms between a CPC and PPCs. 

The rest of this paper is organized as follows. 
Section II describes the methodology used for solving the 
above-described problems. Section III describes an 
application of the proposed control method, and 
Section IV describes a prototype implementation and 
evaluation of the method. Section V concludes the paper.  

II. METHODOLOGY 

The methodology used for solving the above-mentioned 
problems is described in the following. 

A. Outline 
A typical design of a network processor is shown in 
Figure 1. A network processor, i.e., an LSI chip, contains 
a CPC and multiple PPCs. Certain types of network 
processors have two or more types of specialized PPCs. 
The system (board) has a dynamic random-access low-



 
 

2 
 

speed memory (DRAM), which can hold hundreds or 
thousands of packets, and high-speed memories such as 
static RAM (SRAM), content-addressing memory 
(CAM), or ternary CAM (TCAM), which can hold a 
limited number of packets. The design shown in the 
figure is not the only possible one. For example, in other 
types of network processors, the architecture of the 
network that connects the PPCs and the CPC may be 
different from that shown in the figure. 

A method for controlling packet processing in network 
processors by using PPCs (mainly by software), which is 
proposed in this paper, is compared with a conventional 
method using Figure 2. The same NP hardware as 
conventional methods is used in the proposed method. 
However, it can be used in a different way; that is, PPCs 
are used for both data processing and control processing. 
In a conventional control method (Figure 2(a)), the CPC 
controls the PPCs. However, by means of the proposed 
method (Figure 2(b)), one or more PPCs are used for 
control processing instead of the CPC. The control-
processing PPC receives packets that contain control 
information. It receives the control packets as data-plane 
packets; that is, it receives them by the same method as 
that by which data-processing PPCs receive data packets. 
The control-processing PPC receives control packets from 

a CPU outside the network processor chip. Complex 
control messages received by the CPU are partially 
processed and divided into simplified control packets by 
the CPU, and they are sent to the control-processing PPC. 
No third type of methods is known to the authors. 

Figure 3 diagrams the control schema of this method 
and compares it to the conventional schema. In the 
conventional schema, control-processing software works 
on control-processing hardware, and data (packet) 
processing software works on data processing hardware. 
However, the proposed method can change the border; 
that is, part of control processing works on data 
processing hardware. This method enables a more flexible 
task division and more effective hardware use. 

B. Problems to be solved 
The proposed method solves the problems between a CPC 
and PPCs, i.e., complexity of interaction, hardware- and 
vendor-dependence, non-portability, and non-applicabil-
ity of standards. The first and most important problem is 
interaction, i.e., synchronization and communication, 
between the control-processing and data-processing tasks. 
A program on the controlling PPC can control data-
processing PPCs using data-exchange mechanisms, which 
are uniform and simpler than those between a CPC and 
PPCs because the communicating cores are uniform. This 
issue will be explained more in Section II.C. 

The second problem is control-message simplification. 
Because control messages to be received by the network 
processor are complex, it is difficult to handle messages 
by a bare-metal controlling PPC. The messages are thus 
divided into simpler control packets before sending them 
to the control-processing PPC. However, they can usually 
be translated into a collection of simpler messages by a 
CPU outside the network processor chip. This issue will 
be explained more in Section II.D. 

The third problem is core allocation. The control task 
may be statically allocated to one or more PPCs or it may 
be dynamically allocated to one or more PPCs. This issue 
is briefly explained below. 

In static allocation, instead of the CPC, one or more 
PPCs are used only for control processing, and other 
PPCs are used only for packet processing. The control-
processing PPC receives packets that contain control 
information. Static allocation requires that the data-packet 
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Figure 1. Typical structure of network processor 
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scheduler, which is implemented by hardware in bare-
metal processors, distinguishes data and control packets.  

In the case of dynamic allocation, if the controlling 
task can be allocated to PPCs that may process data 
packets, the PPCs must distinguish data and control 
packets, usually by software, when they arrive. Dynamic 
allocation is focused on hereafter. 

Both in static and dynamic allocations, control and 
data-processing loads on processor cores can be balanced. 
Although network processors usually have a load-
balancing function for packet processing, they usually do 
not have one between data and control processing. The 
proposed method can provide this function. The ratio of 
data processing to control processing may be changed. If 
the load can be estimated statically, it can be balanced 
statically by static allocation. If it can be estimated 
dynamically, it can be balanced by dynamic allocation.  

C. Control-processing and data-processing tasks and 
interaction between them 

To solve the first problem, i.e., interaction complexity 
between control and data processing, in the proposed 
method, a program on the controlling PPC controls data-
processing PPCs using data-exchange mechanisms, such 
as a shared memory or an on-chip network. These data-
exchange mechanisms are more uniform and simpler than 
those between a CPC and PPCs.  

In addition, in the method described here, PPCs are 
allocated dynamically; that is, each PPC is used for both 
control and data processing. A control-processing PPC 
controls data-processing PPCs, including itself.  

The flow chart of the controlling and data-processing 
in each PPC is shown in Figure 4. When a packet arrives 
at the internal network interface, which is connected to 
the control CPU, the PPC first distinguishes control and 
data packets by testing the tag that the packet contains. If 
the packet is a data packet, it is processed by the packet-
processing procedure for internal-to-external packets. If it 
is a control packet, it is processed by the control-
processing procedure. Although this test causes an 
increase in processing time, it is negligibly small. When a 
packet arrives the external-network interface, which is 
connected to the external network (i.e., a network 
between network nodes), the packet is assumed to be a 
data packet (i.e., no control CPU exists in the external 
network) and processed by the packet-processing 
procedure for external-to-internal packets. 

The control-processing and data-processing programs 
can be written following the same semantics, thereby 
making description of interactions easier. That is, they 
can be written using the same language or different 
languages can be used for writing these program modules. 

However, if the same language or languages with 
common semantics are used, the interactions between the 
control-processing and data-processing PPCs follow the 
same semantics. Description of synchronization and 
communication thus becomes easier. In addition, if the 
language is portable, both control-processing and data-
processing programs can be ported to another network 
processor at once because they can be written in the same 
language and in the same program.  

D. Division and simplification of control messages 
To solve the second problem, i.e., that control messages 
are too complex to be process in PPCs, the messages are 
divided into simpler control packets by a CPU outside the 
network processor chip in the proposed method. The 
control messages may be written in a complex form such 
as SOAP [Mit 03] or XML-RPC [XML], and the 
messages may be iteratively or recursively structured. 
However, if the command language is properly defined, 
the complex messages can usually be translated to simpler 
messages. As for the proposed method, therefore, they are 
partially evaluated by the external CPU and divided into 
simplified control packets. The control packets do not 
have complex structures such as iteration or recursion, 
and they consist of fixed-length fields that can be 
processed by simple methods.  

This message conversion conceptually consists of two 
functions, shown in Figure 5. The first function is 
message division, and the second function is translation 
into control packets.  

The message-division function divides a complex 
message into a sequence of unit operations. The 
operations are still abstract, and the length of each 
operation may be variable. If these operations are used in 
a PPC, the PPC requires a parser that analyzes the 
operation, and the parsing requires computational 
resources; therefore, the second function is required. It 
translates each operation into fixed-format control 
packets. The control packets, which do not have complex 
structures such as iteration or recursion and consist of 
fixed-length fields that can be processed by simple 
methods, are sent to the control-processing PPC.  

When a complex message is divided, a structured 
message is basically formed by using the following three 
types of structures: 
• Concatenation: Multiple operations are executed 

sequentially or in parallel. 
• Selection: An operation is selected from multiple 

operations by a conditional expression (a Boolean 
expression) and executed. 

• Repetition: An operation is repeatedly executed while 
the value of a conditional expression is true. 

To unroll a complex message, the conditional expression 
must be evaluated by the CPU. If it cannot always be 
evaluated before the operations are executed in the PPC, 
the message cannot be divided. 

III. APPLICATION 

The proposed control method can be applied to a virtual-
link management function. This function is implemented 
in a virtualization node (VNode) [Nak 12][Kan 12] for 
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network-virtualization platforms.  

A. Introduction to VNode platform 
Nakao et al. [Nak 10][Nak 12] have developed a VNode 
architecture and VNode platform, which consists of 
VNodes and management servers, and a high-perfor-
mance fully functional virtualization testbed. The goal of 
these works is to develop an environment in which 
multiple slices (virtual networks) with independently and 
arbitrarily designed and programmed new-generation-
network functions run concurrently, but are logically 
isolated, on a physical network. 

The VNode can be extended to add a new type of 
virtual link, i.e., a “VLAN link sliver,” to a slice. The 
original VNode only had generic routing encapsulation 
(GRE) [Far 00]-based virtual links (called “GRE link 
slivers”). A VLAN-based virtual link can be added by 
using the proposed control method.  

B. Virtual-link management for a VNode platform 
On a VNode platform, a virtual link between VNodes is 
created by negotiating link parameters, i.e., a link 
identifier, such as GRE key or VLAN identifier (ID), and 

end-point addresses, such as IP addresses or 
MAC addresses (see Figure 6). A substrate link 
such as a GRE tunnel or a VLAN path is 
configured using these parameters.  

To satisfy the “clean virtualization” criteria 
[Kan 12], which include requirements for 
avoiding interference between the external 
networks between VNodes and the internal 
network of a VNode, the protocols and 
addressees of these networks are independently 
defined. A VLAN is therefore used for the 
internal network in the current version of a 
VNode, but outside the VNode, a VLAN or any 
other type of network can be used. Currently, a 
VNode platform supports only GRE-based 
representation in the external network.  

This network-separation design requires ad-
dress and property translation on the border of a 
VNode (see Figure 7) [Kan 12]. If the external 
representation is GRE/IP and the internal 
representation is VLAN, the IP addresses in the 
incoming packets is converted to corresponding 
MAC addresses, and the link properties (i.e., 
GRE keys) in the incoming packets must be 
converted to the corresponding properties (i.e., 
VLAN IDs) if necessary. The reverse 
conversion is required for outgoing packets. 
Even if both the external and the internal 
representations are VLANs, this translation is 

still required for the separation; the MAC addresses and 
the VLAN ID in packets must be translated. 

C. Virtual-link creation using plug-ins 
In addition to built-in GRE link slivers, a new type of 
virtual link can be added to VNodes by using the 
proposed control method. For example, a type of VLAN-
based virtual link can be implemented. As shown in 
Figure 7, a network processor (in the networking 
component called a “redirector”) and a control CPU (in 
the controlling components) are plugged into each VNode 
by using the plug-in architecture for a VNode [Kan 13b]. 
The control CPU translates a link addition, a link 
deletion, or another type of message into a control packet 
and sends it to a control PPC in the network processor.  

When a virtual link is created, the creation message 
contains the following three virtual-link parameters. 

• Internal address is the internal MAC address of the 
local end-point of the virtual link. It is used for the 
destination MAC address used for converting and 

if (link_type_is VLAN) {
vlink_add 0003b0000011 0004b0000001 <CNPUMAC> <NeMIF>

} else if (link_type_is GRE) {
qlink_add 10.1.1.20 5555 <InternalMAC2> <CNPUMAC> <NeMIF>

} else {
error “No such link type”

}
for (i = 1 .. 3) {
link_add 0003b0000020+i 0004b0000020+i <CNPUMAC> <NeMIF>

}

vlink_add 0003b0000011 0004b0000001 <CNPUMAC> <NeMIF>

link_add 0003b0000023 0004b0000023 <CNPUMAC> <NeMIF>

qlink_add 10.1.1.20 5555 <InternalMAC2> <CNPUMAC> <NeMIF>

link_add 0003b0000021 0004b0000021 <CNPUMAC> <NeMIF>

link_add 0003b0000022 0004b0000022 <CNPUMAC> <NeMIF>

CNPUMAC1 NeMMAC type vlink_add 0003b0000011 0004b0000001

CNPUMAC2 NeMMAC type glink_add 10.1.1.20 5555 0004b0000001

CNPUMAC1 NeMMAC type vlink_add 0003b0000021 0004b0000021

CNPUMAC2 NeMMAC type vlink_add 0003b0000022 0004b0000022

CNPUMAC3 NeMMAC type vlink_add 0003b0000023 0004b0000023
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sending incoming packets by the network processor. It 
is also used for the source MAC address when outgoing 
packets are received and converted. 

• Local external address is the external MAC address of 
the local end-point of the virtual link. It is used for the 
destination MAC address when a packet is sent from the 
remote VNode. It is also used for the source MAC 
address when a packet is sent from the local VNode. 

• Remote external address is the external MAC address of 
the remote end-point of the virtual link. It is used for the 
destination MAC address when a packet is sent from the 
local VNode. It is also used for the source MAC address 
when a packet is sent from the remote VNode. 

If multiple VLAN IDs are used for virtual links, there 
must be a fourth parameter: VLAN ID (a link property). 

These parameters are stored in two tables in a memory 
block shared among the PPCs (see Figure 7). Two tables 
are required because there are two types of keys: the local 
(or remote) external MAC address for incoming packets 
and the internal MAC address for outgoing packets. 

The data-processing PPC replaces the MAC addresses. 
When the PPC receives an external packet, it matches the 
destination (or source) MAC addresses with the external 
MAC addresses stored in the first table. If entries that 
match the MAC addresses are found, the destination 
MAC address is replaced by the corresponding internal 
MAC addresses and processed in the VNode. (A constant 
source-address is used in the current implementation.) If 
no entries match, the packet is routed to another node on 
the platform. When the PPC receives an internal packet, it 
matches the source and destination MAC addresses with 
the internal MAC addresses stored in the second table. If 
entries that match the MAC addresses are found, the 
MAC addresses are replaced by the corresponding 
external MAC addresses and sent to the external network, 
i.e., another node on the platform. 

A virtual link can be deleted by another type of 
message, i.e., a deletion message. When the control PPC 
receives a deletion message, it removes an entry from 
each table. Because this sequence is similar to a creation 
sequence, the detail is omitted here. Although the control 
plug-in should support other types of virtual-link control 
messages, they are out of scope of this paper. 

IV. IMPLEMENTATION AND EVALUATION 

A type of VLAN-based virtual link was implemented by 
using the proposed control method. Two sets of VNodes 
are used for this implementation. A control CPU and a 
network processor are plugged into each VNode by using 
the plug-in interface [Kan 13b]. A PC with a control CPU 
and a Cavium Octeon® network processor [Cav 10] 
board, called WANic-56512 (developed by General 
Electric Company), is used. The data (processing) plug-in 
was developed by using an open, hardware-independent, 
and high-level portable programming language for 
network processors, called “Phonepl” (which means 
“portable high-level and high-performance open network 
processing language” and was previously called CSP) 
[Kan 13a]. The control CPU receives input messages 
through a command-line interface (CLI). The syntax of a 
creation message is given as follows. 

link add LMAC RMAC IMAC Additional_Parameters 

LMAC is the local external MAC address, RMAC is the 
remote external MAC address, and IMAC is the internal 
MAC address. Several additional parameters are required 
for minor controls. The syntax of a deletion message is 
similar to that of a creation message. 

The control CPU translates messages to a control 
packet (without message division). A bare Ethernet 
packet is used for control packets because a complex 
packet-processing library, such as IP, UDP, or TCP, is not 
available on the network processor. Because no specific 
mechanism for improving reliability is used, the same 
control packets are sent repeatedly.  

Both control-processing and data-processing tasks 
processed by PPCs are described by Phonepl, and the 
communication between them is programmed following 
normal and uniform shared-memory semantics. This 
makes programming the control-processing task and 
porting a program much easier.  

The outline of a program for control processing and 
data processing by using PPCs is described in Figure 8. 
This program defines class ControlAndDataPro-
cessing. It contains two bidirectional packet streams: 
IStream and EStream (lines 001-002). IStream is a 
stream for the VNode-internal network, and EStream is a 
stream for the external network. When ControlAnd-
DataProcessing is initialized, function main() (line 
021) is executed. This function generates an instance (a 
singleton) of ControlAndDataProcessing. Two 
packet streams are generated and passed as arguments of 
ControlAndDataProcessing. They are assigned to 
physical interfaces outside of this program. 

In the constructor of ControlAndDataProcessing 
(lines 003-006), the parameter declarations specify that 
input packets to the first parameter, iport, are sent to 

000 import IStream; // Internal stream 
001 import EStream;  // External stream 
 
002 class ControlAndDataProcessing { 
   … 
 
003  public ControlAndDataProcessing( 
        NetStream iport > itoe, 
004       NetStream eport > etoi) { 
005   // Initialization 
006  } 
 
007  void processControl(Packet i) { 
               // Process a control packet 
008   // Control-packet processing 
009  } 
 
010  void itoe(Packet i) { // Process an i-to-e data packet 
011   int tag = i.…; 
012   if (tag == ControlPacketTagValue) { 
013    processControl(i); 
014   } else { 
015    // Data-packet processing (internal to external) 
016    } 
017  } 
 
018  void etoi(Packet i) { // Process an e-to-i data packet 
019   // Data-packet processing (external to internal) 
020  } 
 
021  void main() { 
022   new ControlAndDataProcessing(new IStream(),  
                 new EStream()); 
023  } 
024 } 

Figure 8. Phonepl program structure for control- and data-
processing by using PPCs 
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method itoe, and input packets to the second parameter, 
eport, are sent to method etoi. These methods receive 
one packet at a time and process packets in parallel using 
multiple PPCs (multiple threads). Method itoe (line 010) 
handles an outgoing data/control packet that comes from 
IStream. If the packet is a control packet, it is processed 
by another method called processControl (line 007) 
by using the same PPC as itoe uses. Method etoi (line 
018) handles a packet that comes from EStream. 

The control packets are processed by a PPC in the 
Octeon, and the parameters stored in control packets are 
stored in shared variables to control data-processing 
PPCs. Shared variables are supported by Phonepl and 
implemented using a shared memory block that is 
supported by the software of Octeon. The programmer, 
therefore, does not need to pay special attention to 
communication between the control-processing and data-
processing PPCs. In this program, these PPCs do not need 
to be synchronized.  

Table 1 compares the implementations of the proposed 
method and a conventional method; it compares the 
program lengths (in lines) used for the virtual-link 
implementation (including a program for the control 
CPU) and an estimated set of programs described by 
Octeon C program. Because no complete implementation 
for the latter exists, an estimated set is used. Although the 
total number of lines for the control processing is longer 
for the proposed method, the programming is easier 
because it uses normal packet-processing mechanism 
instead of using proprietary hardware and software. 

Performance of both control processing and data 
processing should be evaluated. However, a unit 
operation, i.e., a link creation or deletion, is estimated to 
be 3 μs or less. It is thus difficult to be measured. In 
contrast, data processing can be measured. Successful IP 
communication between the virtual nodes connected by 
the VLAN virtual-link was confirmed by a ping 
command; although virtual links in VNodes can transmit 
arbitrary format packets, IP was used because it requires 
only two commands (i.e., ifconfig and ping) built into 
the virtual node. The performance of the whole prototype 
implementation was not measured, but the throughput of 
the data plug-in was measured to be 9 Gbps or more when 
the packet size was 900 bytes or larger. 

V. CONCLUDING REMARKS 

A method for controlling packet processing in network 
processors by using packet-processing cores (PPCs) is 
proposed. By means of this method, complex control 
messages are divided into simplified control packets by a 
CPU outside the network processor chip, and the control 
packets are sent to a control-processing PPC. The control-
processing PPC controls data-processing PPCs by using 

interaction mechanisms, such as a shared 
memory or an on-chip network, which are 
more uniform and simpler than similar 
mechanisms between a CPC and PPCs. 

This method was applied to a virtual-link 
control-processing task and packet-
processing tasks in a network node with a 
virtualization function. Both tasks are 
described by a hardware-independent high-
level language called “Phonepl,” which was 

implemented for Octeon, and the communication between 
them is programmed following normal and uniform 
shared-memory semantics. As a result, programming the 
control-processing and high-performance data-processing 
tasks and program porting between different types of 
network processors become much easier. 

Future work includes application of the proposed 
method to other types of network processors. 
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Table 1. Comparison of packet-header handling implementations
 Data (packet) 

processing Control processing Interface (memory 
set-up) between D/C

Program 
Length 

Description 
Language 

Program 
Length 

Description 
Language

Program 
Length

Description 
Language

Control by PPC 
(proposed method) 26 Phonepl 21 Phonepl 30 Phonepl

230 C (Linux)
Conventional 

method 160 C (bare 
metal) 200 C (Linux) 80 C (bare 

metal) 
 


