Methods of Parallel Processing of Constraint Satisfaction Using CCM
— A Model for Emergent Computation

Yasusi Kanada*
Tsukuba Research Center, Real World Computing Partnership
Takezono 1-6-1, Tsukuba, Ibaraki 305, JAPAN
kanada@trc.rwep.or.jp

Abstract

Two methods for solving large-scale constraint
satisfaction problems using parallel processing
are surveyed in the present paper. These meth-
ods are based on CCM, which is a model for
emergent computation. The number of con-
straint violations is minimized in these meth-
ods. The minimization is performed by opti-
mization of local functions. The computation
is stochastic and no global information is used.
An annealing method called FAM has been in-
troduced to avoid “local maxima.” FAM also
works only with local information. Two types
of parallel processing of CCM-based constraint
satisfaction using FAM has been tested. One is
a parallel search and the other is a cooperative
search. QOur experiments has shown that both
methods improve performance almost linearly
in large-scale graph coloring problems when the
number of processors is ten or so.

1 Introduction

Problems in the real world are not only large-scale and
complex but also open to the human society and/or the
nature. The problems themselves are continually chang-
ing and only incomplete information is available for solv-
ing them. The changes may sometimes be unexpected,
because the behavior of humans and other natural sys-
tems are sometimes unpredictable.

Conventional methods for problem solving, such as
those used in operations research or various search meth-
ods in artificial intelligence do not work well in such
situations. We believe that this is because global and
complete planning is necessary and global information is
used in these methods. Global planning and global in-
formation based computation are considered to be eas-
ily voided by small changes in the information, require-
ments or environment. Global information referencing
also makes parallel processing difficult, because of the
global reference creates a global data dependence.

We believe emergent computation [For 91], or local in-
formation based computation, is the key for solving these

The author’s current address is Central Research Labo-

ratory, Hitachi Ltd., Kokubunji, Tokyo 185, JAPAN.

problems. Thus, we have been developing a model called
CCM (the chemical casting model) [Kan 92, Kan 94al,
which is a stochastic computational model for emergent
computation. We have developed a method of solv-
ing constraint satisfaction problems (CSP) using CCM.
The number of constraint violation is minimized in this
method. The minimization is performed by optimiza-
tion of local functions, i.e., partial sums of numbers of
violations, but not by optimization of their total.

An annealing technique called FAM (the frustration
accumulation method) has also been introduced in this
method to avoid “local maxima.” This method was de-
veloped because the annealing method that does not de-
pend on global information is necessary. In FAM, No
global parameter, such as temperature, is used. No
global control, such as changing the value of a global
temperature, is necessary, and the system thus works
autonomously. The absense of global informtion is dif-
ferent from the usual annealing methods. FAM has made
solving large-scale problems using CCM possible.

Because computation in CCM does not depend on
global information, it continues to work even when infor-
mation is changed dynamically and new information is
added or removed. Thus, it seems to have the potential
to process unexpected situations properly using implicit
knowledge that emerges from interaction between local
computation processes. New information may be added
or preexisting information may be dynamically changed
by environmental changes while solving problems. The
nonexistence of global information references also makes
parallel processing much easier.

CCM is briefly explained in Section 2. The basic
method of solving CSP using CCM is explained in Sec-
tion 3 and a CCM-based method with FAM is explained
in Section 4. Two methods of solving CSP in parallel
with FAM are explained in Section 5. The results of
performance evaluation of these methods are shown in
Section 6. Finally, our conclusion is given in Section 7.

2 Computational Model CCM
CCM [Kan 92, Kan 94a] is explained briefly here. CCM

has been developed for computation using only local in-
formation. CCM is based on a forward-chaining produc-
tion system [New 72], such as systems written in OPS5
[For 81]. Production systems are often used for develop-



Atom |
(atomi c data) Molecule
\ [ Link

@ 2 %) Reactions
(2)
Working Rules and functions
memory (Reaction rulesand
(WM) local order degrees)

Figure 1: The elements of CCM

ing expert systems or when modeling the human brain
in AT or cognitive sciences.

However, CCM differs from conventional forward-
chaining production systems in two points. Firstly, eval-
uation functions, which are called local order degrees
(LODs). LODs are similar to negated energy in chemical
reaction systems, and are evaluated to decide whether to
apply a rule or not. Rules and functions are computed
using only local information. Secondly, stochastic con-
trol or randomized ordering of rule applications, is ap-
plied. Because of these features, we believe that CCM
is much more similar and analogical to chemical reac-
tion systems than conventional production systems in
Al. Because chemical reactions occur in parallel, it is
very natural to make reactions occur asynchronously in
parallel in CCM, and the parallelization is much easier
in CCM than in conventional production systems.

The structural components in CCM are shown in Fig-
ure 1. The set of data to which the rules apply is called
the working memory. A unit of data in the working
memory is called an atom. An atom has a type and
an internal state, and may be connected to other atoms
by links. Links are similar to chemical bonds, but the
difference is that links may have directions.

A local state of the working memory is changed by a
reaction rule. “Local” means that the number of atoms
referred by a reaction rule is small. The reaction rules
are written as production rules. However, reaction rules
are at a lower level, or more primitive, than rules in ex-
pert systems. This means that the behavior of the sys-
tem 1s not directly programmed using rules but it should
emerge from repeated rule applications. Therefore, a re-
action rule is more similar to the reaction formula of a
single reaction in compex chemical reactions, and this
model is thus called the chemical casting model.

The abstract syntax of reaction rules is as follows:
LHS — RHS. LHS and RHS are sequences of patterns.
The reaction rule can be activated when there is a set
of atoms that matches the LHS patterns. If the reac-
tion rule is activated, the matched atoms vanish and new
atoms that match the RHS patterns appear. So an atom
may be modified, bonded to another atom, removed, or
created by a reaction rule.

Local order degrees (LODs) are evaluation functions,
or local objective functions, whose values are defined for
a type or more types of atoms, using only local infor-
mation. LODs are functions with one or two arguments.
The arguments are atoms. An LOD may be regarded as
a negated energy. For example, it i1s analogous to the

vertexv2

vertex v4

Figure 2: An example of a graph coloring problem

bonding energy in chemical reaction systems.

A reaction takes place when the following two con-
ditions are satisfied. Firstly, there exists an atom that
matches each pattern in the LHS. Secondly, the sum of
the LODs of all the atoms that are involved in the re-
action, i.e., the atoms that appear on either side of the
reaction rule, does not decrease as a result of the re-
action. Reactions repeatedly occur while the above two
conditions are satisfied by a combination of any rules and
atoms. The system enters a stationary state, or stops,
when such a combination is exhausted. If the system is
to solve a problem, this state must be the solution. How-
ever, reactions may occur again if the working memory
is modified because of changes in the problem or the
environment. A CCM-based system is a dynamical sys-
tem rather than just a problem solving system. Thus, a
CCM-based system can solve dynamical problems with-
out additional rules or data.

Typically, there are two or more combinations that
satisfy the two conditions at the same time. There may
be two or more collections of atoms that satisfy the LHS
of a reaction rule, or may be two or more reaction rules
containing atoms that match the patterns in the LHS.
In both cases, the order of the reactions are stochas-
tic, and whether they occur in parallel or sequentially is
arbitrary. The CCM-based systems that we have devel-
oped use random numbers for selecting rules and atoms.
The same set of rules and LODs can be used both in
sequential and parallel processing.

3 Constraint Satisfaction Using CCM

Kanada [Kan 94a] describes a method of problem solving
using CCM, and uses the N queens problem, which is a
CSP, as an example. The same method can be applied
to other CSPs. A CCM-based system to solve a coloring
problem is described below.

The problem is how to color the vertices of a graph
using a specified number of colors, for example, four.
Each pair of neighboring vertices must be given different
colors. A map coloring problem can be converted to a
graph coloring problem, if areas of the map are converted
to vertices and the area borders are converted to edges.
Thus, the map coloring problem can be solved by the
same rules and LODs as the graph coloring problems.
For example, the problem of coloring the graph with five
vertices, shown in Figure 2, is equivalent to the problem
of coloring the map with five areas, which is also drawn
in Figure 2. The data structure used for solving the
problem is as follows. Vertices are represented by atoms.
An atom of type vertex has a color as its internal state.
In Figure 2, cl, ¢2, ¢3 and c4 are the colors.



i i

i i

| =l : @_O

i fvertexl vertex2
' . randomize C2

vertexl vertex2

Figure 3: The reaction rule for the graph coloring system

The reaction rule and LOD to solve the problem are
shown below. The only reaction rule is illustrated in
a graphical form in Figure 3. This rule refers only to
two neighboring vertices and the edge between them,
and changes the color of one of the vertices randomly.
The LHS of the rule contain two patterns; vertexl and
vertex2. Cl and C2 are variables to be matched to the
colors of vertexl and vertex2. There is a link between
the atoms, and this link represents the edge between the
vertices. Thus, vertex] and vertex2 can only match two
vertices that have a link between them. When a reac-
tion occurs, the internal state of the atom that matches
vertex1 is rewritten. That is, the color that was equal
to C1 before the reaction becomes equal to C3, which is
selected randomly from a predefined set of colors.

The LOD is defined between two vertices, v; and vs.
Its value is 1 when the constraint between v; and vy 1s
satisfied, and otherwise it is 0.

o(v1,v2) =
1 if notconnected(vy, v2) or vy .color < vy.color
0 otherwise

This definition means that the value of the LOD is 1
(higher) if the vertices are not connected or have different
colors, and otherwise that it is equal to 0 (lower). The
value of LOD is 1 when the vertices are not connected in
this case. The value is also 1 when the vertices are con-
nected and have different colors, because the constraint
between the vertices is satisfied. The value is 0 when the
vertices are connected and have the same color, because
the constraint is violated.

A reaction occurs when two connected vertices, V7 and
Va, are selected by the system, and the following condi-
tion holds: o(V1,Vs) < o(V{,V3), where V{ is V; after
the reaction (with the new color).

A pattern of atoms, whose value is not changed by the
rule, is called a catalyst [Kan 94a]. An atom that is not
changed by a reaction is called a catalyst of the reaction.
A pattern in a rule is also called a catalyst if the same
(unchanged) pattern appears in both LHS and RHS of
the rule. In the rule in Figure 3, vertex2 is a catalyst.

A slightly modified version of the rule and LOD, which
is more complicated but performs better than the above
rules and L.ODs, was coded by SOOC, which is a compu-
tational language based on CCM, and then tested. The
coloring system on SOOC was applied to the map of
the USA mainland, consisting of 48 states [Tak 92]. A
correct solution was found in every run.

Coloring the USA mainland is a rather easy problem.
Thus, it can be solved using the rule with only one cata-
lyst. However, if the problem is more difficult, more cat-
alysts are necessary. Otherwise, the computation time
will be too long. If more catalysts are used, the com-
putation can more easily fall into a “local maximum” of
MOD [Kan 94a]. For example, a rule with a variable
number of catalysts is more efficient than the single-
catalyst rule. However, sometimes it fails to solve the

problem but falls into a stationary state, which is a “lo-
cal maximum.” Or, sometimes it flips randomly between
several states, which are “local maxima.”

4 FAM: An Annealing Technique

A method of escaping from “local maxima” in CCM is
proposed here. This method is called the frustration
accumulation method (FAM) [Kan 94b]. In this method,
the same rule and LOD shown in the previous section are
used. However, the mechanism of computation, or the
compiler of SOOC, must be modified.

Each atom, or vertex, has a type of energy called frus-
tration, whose value is positive, in this method. The
frustrations of all the atoms to be modified by the reac-
tion are subtracted from the sum of the LODs. Thus,
if a vertex has a non-zero frustration, reactions occur
more easily. For example, if the rule in Figure 3 is used,
a reaction occurs when the following condition holds:

0(V1, V2) -Wn.f< O(Vll, VQ) - Vl.f’,

where V1.f and V1.f’ are the frustration of 7 before and
after the reaction. The frustrations of catalysts are not
counted.

Each vertex initially has a certain level of frustration,
fo, which is, for example, 107%. The frustration is in-
creased, when the application of a reaction rule fails but
there are unsatisfied constraints. That means that the
frustration of an atom is increased when the following
three conditions hold.

e The atom is tested for modification.
e The reaction does not occur.

e There are constraints, relating to the matched ver-
tex which are not or will not be fully satisfied.

More specifically, if a rule and a set of atoms are tested
for a reaction, if the reaction does not occur, and if the
sum of the LODs is less than the maximum, then the
frustration of each atom to be modified by the rule, f, is
replaced by ¢f, where ¢ (> 1) is a constant. The value of
c is 2, for example. Thus, the procedure that runs after
each test for a reaction can be described as follows.

if a reaction occurred then
fi = fo; /* reset to the initial value */

else if not all the constraints are satisfied then
fi == cfi; /* increased */

end if;

Assume that the sum of the LODs of the vertices
matched to patterns in the rule before the reaction is
represented by O, and that after the reaction is repre-
sented by O’. The sum of the frustrations before and
after the reaction are represented by F and F’. Then
the reaction occurs when O — F < O' — F’. Thus, the
reaction occurs more easily when the value of F is larger.

An example is shown in Figure 4. An improved ver-
sion of the rule, which is called the variable catalyst rule
[Kan 94a] is applied to the state shown in the upper fig-
ure. A reaction may or may not occur depending the
color selected by the RHS of the rule. In case 1, no re-
action occurs, and in case 2, a reaction does occur. The
rule is applied to vertex v3 and its three neighboring
vertices. The sum of LODs before the reaction, o, is 2,
because the colors of v1 and v3 are different, that of v4
and v3 are the same, and that of v5 and v4 are different.



v3=V1

=3 frustration=
0.002(increased
once)

o=1+0+1=2

frustration'= 0.106
(increased — doubled)

v5

0o-f=0+1+0-0.001=
0.999 <0 — f=1.998.
No reaction occurs

c2israndomly selected
for pattern C3.

vl
frustration'= 0.001
(initial value)

@ v3
(<)
2
v2 (c])
v5
v4

o'—f=1+1+1-0.001=
2.999 >0 —f=1.998.
Reaction occurs

for pattern C3.
Figure 4: The outline of FAM

The values labeled on the edges in the figures, 0 or 1, are
the LOD values. The value of frustration is assumed to
be 0.002, the value increased once from the initial value,
fo = 0.001. The value of ¢ is 2.

In case 1, the randomly selected color for variable C3
(in Figure 4) is c¢1. The sum of LODs after the reaction,
o', 1is 1, because now the colors of v1 and v3 are the same.
That of v4 and v3 are different, and that of v5 and v3 are
the same. The sum of LODs would be decreased by the
reaction. Thus, no reaction occurs, and the frustration of
v3 is increased to 0.004. The subtraction of frustration
does not affect the comparison result in this case, i.e.,
o' <oand o — f' < o— f. If the value of frustration
before the reaction were 1.002 or more, the subtraction
of f' from o' would change the comparison result, i.e.,
o' <obut o — f' >0— f, and a reaction would occur.

In case 2, the randomly selected color is ¢2. The sum
after the reaction, o', is 3, because the colors of all the
neighrors of v3 are different from that of v3. The sum
would be increased by the reaction. Thus, the reaction
occurs, and the frustration of v3 is reset to the initial
value, 0.001. A subtraction of frustration never changes
the comparison result in cases that a reaction occurs.

fo and ¢, are constant during the execution, and they
are considered to be properties of each atom or each type
of atoms. Thus, this method works only with local infor-
mation and no global parameters, such as temperature
in simulated annealing, is used. The values of fy and ¢
are the same for all the vertices in our implementation.

5 Methods of Parallel Processing Using
Annealed CCM

There are two types of parallel processing in CCM. One
is parallel reaction or cooperative search, and the other

Maybe the same or different

-
-
—
--
-
—‘——

Processor 1

-
-

-
-

Process 2
" Rulest s Random i Rules| | Random Random
' and ' 1 number and number number
1 LODs| igenerator | LODs| |generator generator
L. .\;- S S P ~
~- '~
‘\ I ", """" I =
h s —oSs=soL
) ” -
\ P N
AP e Communication Network—
The same

Figure 5: The method of parallel processing CCM-based

computation

is parallel search. Parallel reaction means that reactions
in a working memory are processed in parallel. The pro-
cesses cooperate to find a solution. Parallel search means
that each process search a solution independently. Paral-
lel reaction corresponds to and-parallelism and parallel
search corresponds to or-parallelism in logic program-
ming.

5.1 Parallel search

A parallel search method using non-communicating mul-
tiple processes is explained here.

A parallel computer with at least M processors is used
(Figure 5). Only one process runs on each processor. A
processor and a process are thus identified here. The
same reaction rule and LOD are stored in each proces-
sor. The initial data may be the same or different for all
the processes. The computation of each process, which
is based on CCM, is performed independently. Each pro-
cess generates independent random numbers for selecting
data to be reacted. This independence is very impor-
tant. When a process finishes its computation, the solu-
tion found is output, and all other processes are killed.
Communication between processors is used only for this
process termination, and is never used during the com-
putation. If the distribution of sequential computation
time is exponential, the performance will be improved in
proportion to M by this method.

The reason why the acceleration is linear can be in-
tuitively explained as follows. This computation can be
regarded as a search for a solution in combinatorial prob-
lem solving. Processes probably search in different areas
in the search space, if the search space is large enough.
The efficiency is thus in proportion to the number of
processes. The reason for linear acceleration is explained
theoretically by Kanada [Kan 94c].

5.2 Parallel reaction

A parallel reaction method of constraint satisfaction us-
ing CCM with FAM is shown in the present section.
Reactions may occur in parallel in CCM. Thus, if the
working memory is shared between parallel processors,
the computation is parallelized. This is shown in Fig-
ure 6. However, if two processes try to modify an atom
concurrently, a wrong result may be obtained in general.
The analogy to chemical reaction systems is useful here.



Working Memory

I Communication Network / Shared Memory I

WM Cache 1 WM Cache 2 WM Cache M
Process 1 Process 2 ProcessM
Processor 1 Processor 2 Processor M

Figure 6: Parallel processing of CCM-based computation

In chemical systems, two reactions that affect the same
bond do not occur at the same time. The same principle
must be applied to CCM. Atoms to be modified by the
reaction must be accessed exclusively.

However, fortunately, because the rules of coloring
modify only one atom at a time, no wrong result can
be obtained by parallel reactions without explicit mu-
tual exclusion in this case. The only possible new effect
caused by parallel reaction is that the sum of LODs may
be decreased accidentally by parallel reactions even when
the frustration is small. This is because, after a pro-
cess tested the reaction condition but before rewriting
an atom, another process may rewrite the atom. This
effect seems to be small because the probability of two or
more reactions occurring on the same atom concurrently
is small, if there are enough atoms and the degree of
parallelism is not massive. Thus, no mutual exclusion is
necessary here. This non-strictness in parallel processing
is made possible by the stochastic nature of CCM.

The following problem has to be solved to improve
performance. Each parallel process works independently
in principle in this method. A process tests termination
condition without testing the states of other processes if
it follows the principle strictly. However, this sometimes
causes premature termination. Some processor may run
for long time after other processors terminate, because
the termination test is stochastic. This load imbalance
lowers the degree of parallelism, and causes performance
degradation. This actually occurred in our experiments.

To solve this load imbalance problem, weak global
communication is introduced. The termination test is
modified as follows. A counter variable is allocated and
is set to the number of processes when the system is
initialized. Each process decrements the counter (where
mutual exclusion is necessary) when its local termina-
tion condition becomes satisfied. However, the process
continues its task until the counter value becomes zero.
This technique avoids premature termination and the
consequent performance degradation.

6 Experiments on Large-scale Problems

The results of evaluating the two methods using several
large-scale problems are shown here. The performance
of sequential processing is shown first for comparison.

6.1 Sequential performance

The problems used to evaluate performance are chosen
from DIMACS benchmarks [Tri][DIM]. Some have been
used by Johnson, et al. [Joh 91] and by Selman and
Kautz [Sel 93a).

Table 1: The performance of coloring by annealed CCM
compared with annealing methods and GSAT (¢ = 2)

Graph | N¢ CCM Seq | CCM Par SA | GSAT
125.1 6 0.2 (-5) 0.2 (=5) | <360
125.1 5 13.2 (—5) 1.5 (=5) 720
125.5 18 | 34.0 (—15) 2.4 (—15) 360 44
125.5 17 | 3113 (—30) | 149 (-30) 6700 1800
125.9 44 | 208 (—30) | 13.6 (—30) 1080
125.9 43 - - -
250.1 9 2.9 (—4) 0.3 (—4) | <360
250.1 8 | 298 (—10) | 17.6 (—10) 9360
250.5 31| 239 (—35) | 18.9 (—35) 360
250.5 30 | 513 (—35) | 47.9 (—35) 2900
250.5 29 | 5111 (—45) | 360 (—45) | 22000 | 4000

The name of graph is DSJCN.p, where N is the number of vertices and p
is the probability of existence of edge. The performance is shown by CPU
time in seconds. The parentheses contain logjg fo. A single CPU of CS56400
is used for the sequential processing, and twelve CPUs are used for the par-
allel processing. The results of SA (simulated annealing) are by Johnson, et
al. and those of GSAT are by Selman and Kautz. Hyphens mean that no
solution could be found.

The results are shown in Table 1. The graphs used
here, which were randomly generated and used by John-
son et al., have 125 or 250 vertices, and the probability
of existence of edge, p, is 0.1 to 0.9. The performance of
annealed CCM is comparable to GSAT or the methods
tested by Johnson et al. in several cases. The parameters
used here, which are kept constant during the computa-
tion, are shown in the table. Each case has been mea-
sured at least 20 times, and the results shown in the ta-
ble are the averages except the cases in which the system
failed to find a solution. The probability that the system
fails to find a solution is less than 0.05 experimentally,
with appropriate parameter values. Although a compiler
and interpreter for SOOC is available, a reaction rule and
LOD coded using C are used in these measurements, for
better performance of the program written by C. The
performance has been measured on a Cray Superserver
6400 (CS6400), which is a parallel computer with 60MHz
SuperSPARC processors, but only one CPU is used here.

6.2 The performance of Parallel search

The parallel search method has been applied to several
combinatorial problems, and the measured acceleration
ratios by the parallelization are shown here.

The performance of solving the graph or map coloring
problem has been evaluated by the method using simu-
lation. The simulated performance is shown in Figure 7.
The performance of the USA mainland map [Tak 92]
is not good, probably because the problem is too small
for parallelization. However, the performance of sev-
eral problems in the DIMACS benchmarks [Tri] [DIM]
is good, and this method has been proved to be effective
for the coloring problems.

Performance of real parallel processing has not yet
been measured for the coloring problem. However, the
performance of the N queens problems was measured by
Kanada [Kan 94c]. The method and the result are sum-
marized here. The rule and LOD are hand-coded using
C on a Cray Superserver 6400 (CS6400). The CS6400
has shared memory, and multiple threads (not UNIX
processes) that run on different processors but share the
same memory, are thus used for this measurement. How-
ever, the shared memory is used only for initial data
distribution, final data output, and process termination.



— USA Mainland Map )
— DSJC125.1 (A DIMACS benchmark)
144 -- Leighton 5d (A DIMACS benchinark)

o — Leighton 5¢ (A DIMACS berichmark)
3 124~ |deal performance 7
8 104
@
E 8-
S
g 69
44
2 -
0 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

M (number of processors)

Figure 7: Simulated performance of the graph/map col-
oring problems

There is a parent thread that distributes the input data,
1.e., the value of N, to M child threads. Only the thread
that finds the solution first outputs the solution and syn-
chronizes with the parent. (The parent is busy waiting
for this synchronization.) The parent then terminates
and the other threads are killed by the operating system.
The threads are not explicitly killed in the program. The
measured time includes the initialization time because
the initialization is also performed in parallel and is dif-
ficult to be separated.

Each thread computes random numbers indepen-
dently. The random number seed is generated using both
the current time in microseconds and the address of in-
put data for each thread. The method of seed generation
was chosen carefully to guarantee the independence of
random numbers between threads.

The execution time was measured 50 times for each
N. The result of measurement is shown in Figure 8.
The CS6400 used for the measurement has 12 proces-
sors, each of which a thread is assigned to, and there is
also a parent thread. The maximum value of M is thus
11, where the parent is not counted. The performance is
worse than the simulation. When N = 14, the accelera-
tion is nearly linear in the simulation, but it is far below
linear in the real parallel execution. However, the accel-
eration is almost linear when N is 18 or 20. Thus, the
method shown in the previous section has been proved
to be effective for this problem. The reasons that the
performance is worse than the simulation are probably
as follows:

e There is parallelization overhead, which is caused by
the time required for thread dispatching and final
synchronization.

e The measured time includes the initialization time,
which is not accelerated by the parallelization.

Both reasons cause the distribution of execution time
to be different from an exponential distribution.

Not all constraint satisfaction problems are linearly ac-
celerated by this method. Even the performance of the
same problem can be different, if a different set of rules
is used. Other problems, including exchange sort and

12+
— Ideal performance

104 X N=12 /Zl
o + N=14
x aN=18 ol
o T -
S 6l © N=20 ©
S
S N
¥ 4 N

X
2
0 1 1 1 1 1 1

M (number of processors)

Figure 8: Parallel search performance of the N queens
problem

the traveling salesperson problem (TSP), are also simu-
lated. The execution time of exchange sort, which can
be regarded as a constraint satisfaction problem, is al-
most constant. Therefore, it is almost never accelerated.
The acceleration ratio was far less than 2, even when
the number of processors is 16. No global optimization
problem that can be accelerated nearly linearly has yet
be found. Tt is probably difficult to improve the perfor-
mance of solving global optimization problems by this
method because of the non-local nature of their compu-
tation. They are global optimizations.

6.3 The performance of parallel reaction

The parallel reaction performance of the same problems,
as shown in the preceding sections, has been measured
on CS6400 with 12 processors. A relatively small num-
ber of processors is used because the performance will
not improve much by using hundreds or thousands of
processors; only 125 atoms are used in these problems.

The performance of four problems, DSJC125.1 with 5
and 6 colors, and DSJC125.5 with 17 and 18 colors, is
displayed in Figure 15. The parameter values of FAM
used in the evaluations are fixed; ¢ = 8,¢ = 1.05, fo =
0.8. Each case is measured at least 20 times, and the
results are the averages. The performance of the 5 and
17 color problems is close to ideal. They are acceler-ated
nearly linearly. However, the performance of the 6 and
18 color problems is less than the half the ideal. The
reason for this is not yet known, but the performance is
known to be better for some other parameter values. For
example, in the case of 18 colors with M = 12,¢ = 1.2
and fy = 0.2, the acceleration ratio was 10.3.

The effect of load balancing is measured for
DSJC125.1 with 5 colors. The result for 100 runs is
shown in Table 2. The standard deviation of CPU time
is reduced to 0.4, and the average CPU time is reduced
to 0.75.

7 Conclusion

Two parallel processing methods for solving constraint
satisfaction problems using CCM with FAM are surveyed
in the present paper. FAM makes large-scale constraint



14 -
» DSJC125.1, 6 colors /D
124 A DSIC125.1, 5 colors S
3 DSJIC125.5, 18 colors “
© 104 — ldeal performance
ol 7 A
«c 1 AL glam—
§ 81 y
g S .
& 6 o s
8 -
< 44 -
2_ "\\L
0 1 1 1 1 1 1
0 2 4 6 8 10 12

M (number of processors)

Figure 9: Parallel reaction Performance of coloring prob-
lems by parallel annealed CCM

Table 2: The effect of load balancing
(DSJC125.1, 5 colors, 12 processors, fo = 107°, ¢ = 2)

Load balance | CPU time | ¢ of CPU time
Balanced 15.1 sec 11.5 sec
Not balanced 20.1 sec 28 .4 sec

o means the standard deviation.

satisfaction using CCM possible, without spoiling the
feature of CCM, i.e., local-information-based computa-
tion. No global functions or global parameters such as
temperature are used in FAM. The performance is com-
parable to conventional simulated annealing or GSAT.
Because of the nonexistence of global information ref-
erences, CCM with FAM can be parallelized ealily The
performance is improved nearly linearly by paralleliza-
tion in in graph coloring problems in DIMACS bench-
marks and several other problems both in parallel search
and parallel reaction.

Acknowledgment

The author thanks to Susumu Seki and Hironobu Taka-
hashi of Tsukuba Research Center of Real World Com-
puting Partnership, for their assistance in use and pro-
gramming of the Cray Superserver 6400.

References

[DIM] Center for Discrete Mathematics and Theoretical
Computer Science, http://dimacs.rutgers.edu/.

[Fei 91] Feige, U., Goldwasser, S., Lovész, L, Safra, S.,
and Szegedy, M.: Approximating Clique is Almost
NP-complete, 32th Symposium on Foundations of
Computer Science, 2-12, 1991.

[For 81] Forgy, C. L.: OPS5 User’s Manual, Technical
Report CMU-CS-81-135, Carnegie Mellon Univer-
sity, Dept. of Computer Science, 1981.

[For 91] Forrest, S., ed.: Emergent Computation, MIT
Press, 1991.

[Gu 93] Gu, J.: Local Search for Satisfiability (SAT)
Problem, IFEE Trans. on Systems, Man, and Cy-
bernetics, 23:4, 1108-1129, 1993.

[Joh 91] Johnson, D. S., Aragon, C. R., McGeoch, L.
A., and Schevon, C.: Optimization by Simulated
Annealing: An Experimental Evaluation; Part II,
Graph Coloring and Number Partitioning, Opera-
tions Research, 39:3, 378406, 1991.

[Kan 92] Kanada, Y.: Toward Self-organization by
Computers, 33rd Programming Symposium, In-
formation Processing Society of Japan, 1992 (in
Japanese).

[Kan 93] Kanada, Y.: Features of Problem-Solving
Method using Computation Model CCM, based
on Production Rules and Local Evaluation Func-
tions, SWoPP ’93, Information Processing Society
of Japan, 1993 (in Japanese).

[Kan 94a] Kanada, Y., and Hirokawa, M.: Stochastic
Problem Solving by Local Computation based on
Self-organization Paradigm, 27th Hawait Int’l Conf.
on System Sciences (HICSS-27), 82-91, 1994.

[Kan 94b] Kanada, Y.: Methods of Controling Locality
in Problem Solving using CCM: A Model for Emer-
gent Computation, SWoPP 94, 94-A1-95-4, 29-38,
1994 (in Japanese).

[Kan 94c] Kanada, Y.: A Method of Independent Paral-
lel Processing of Constraint Satisfaction and Other
Problems using CCM: A Model for Emergent Com-
putation, 49th National Conference, Information
Processing Society of Japan, 4-321-322, 1994 (in
Japanese).

[Kan 95] Kanada, Y.: Fuzzy Constraint Satisfaction Us-
ing CCM — A Local Information Based Compu-
tation Model, FUZZ-IEEE/IFES ’95, 2319-2326,
Yokohama, Japan, 1995.

[Meh 85] Mehrotra, R., and Gehringer, E. F.: Super-
linear Speedup Through Randomized Algorithms,
14th ICPP, 291-300, 1985.

[Min 92] Minton, S., Johnston, M. D., Philips, A. B.,
and Laird, P.: Minimizing Conflicts: a Heuris-
tic Repair Method for Constraint Satisfaction and
Scheduling Problems, Artificial Intelligence, 58,
161-205, 1992.

[Mor 93] Morris, P.: The Breakout Method For Escap-
ing From Local Minima, AAAT ’93, 40-45, 1993.

[New 72] Newell, A., and Simon, H. A.: Human Problem
Solving, Prentice-Hall, N. J., 1972.

[Sel 92] Selman, B., Levesque, H. J., and Mitchell, D.
G.: A New Method of Solving Hard Satisfiability
Problems, AAAT 92, 440-446, 1992.

[Sel 93a] Selman, B., and Kautz, H.: Domain-Indepen-
dent Extensions to GSAT: Solving Large Structured
Satisfiability Problems, IJCAT ’93, 290-295, 1993.

[Sel 93b] Selman, B., and Kautz, H. A.: An Empiri-
cal Study of Greedy Local Search for Satis-fiability
Testing, AAAT ’93, 46-51, 1993.

[Tak 92] Takefuji, Y.: Neural Network Parallel Process-
ing, Kluwer Academic Publishers, 1992.

[Tri] Tricks, M.: The Second DIMACS Challenge,
http://mat.gsia.cmu.edu/challenge.html.



