

Stochastic Problem Solving by Local Computation based on Self-organization Paradigm

Yasusi Kanada

Tsukuba Research Center Real World Computing Partnership

Masao Hirokawa

Advanced Research Laboratory Hitachi, Ltd.

HICSS-27

Yasusi Kanada, Real-World Computing Partnership, Tsukuba, Japan

94.1.5 V1.3

Problems of real-world computational systems

Introduction

■ Future real-world computational systems are

◆ Complex

(such as secretary robot brains)

- "Non-linear," or
 - (because of strong inter-• Undecomposable into "independent" modules action between modules)
- Open and adaptive to real world (i.e., to humans and/or natural systems)
 - Adaptive to unexpected inputs (in a short period of time)
 - humans and natural systems are unpredictable because autonomous and nondeterministic.
 - Adaptive to environmental change (in a long period of time)

■ In development of real-world computational systems

- No global and complete specifications can be written, because open to real world
- ◆ Top-down design or divide-and-concur method do not work well, because of no complete specification, and complexity.

HICSS-27

Yasusi Kanada, Real-World Computing Partnership, Tsukuba, Japan

94.1.5 V1.3

What is the self-organization paradigm?

■ What is self-organization?

- ◆ An emergent behavior toward "global order" from local motion
- We should learn from nature.
 - Natural sytems are self-organizing systems.
 - Natural sciences on self-organizing systems: Dissipative structure theory by Prigogine, Synergetics by Haken, Molecular evolution theory by Eigen, Autopoiesis theory by Matrana and Varela, Bio-holonics by Shimizu, Natural and artificial neural networks,

"Global order" from computation with local information

- Computation only with local and partial knowledge no algorithms.
- ◆ Computation only with partial specification! (or no specification?)

■ The knowledge shortage must be covered by

- Nondeterminism (trial and error, or random selections) in short range.
- Self-organization in long range. (Nondeterminism is important for self-organization.)

Research goals

■ Long-term research goals

- ◆ To develop a new problem-solving methodology based on a self-organization paradigm.
- ◆ To develop adaptive and open computational systems.

We are only at the beginning of research toward these goals.

Short-term research objective

- ◆ To establish a computation mechanism and methodology, which are
 - Emergent and nondeterministic
 - Based on local and partial information.

HICSS-27

Yasusi Kanada, Real-World Computing Partnership, Tsukuba, Japan

Computation model CCM

A microscopic model of computation

■ We develop a computation model called CCM for self-organizing computation.

- ◆ CCM is an abbreviation of "Chemical Casting Model."
- ◆ "Chemical" means CCM has an analogy to chemical systems.
- "Casting" means programming or computation.
 - I do not use "program" because it means a whole and complete plan.

HICSS-27

Yasusi Kanada , Real-World Computing Partnership, Tsukuba, Japar

94.1.5 V1.3

Components of CCM — 1 Outline An atom (Unit object) Working A link memory (similar to chemical connections) (12) reactions (10) (8) Reaction rules A molecule Local order degrees (Casters) HICSS-27 Yasusi Kanada, Real-World Computing Partnership, Tsukuba, Japar 94.1.5 V1.3

Components of CCM — 2

Casters (Programs) of CCM

■ A caster consists of

- Local order degrees (LODs)
- Reaction rules

■ LODs

- ◆ Are local evaluation functions (or negative energy).
 - "Local" means "defined on a small number of data."
- ◆ Are defined for an atom or between two or more atoms.

■ Reaction rules

- Change partial (local) state of the working memory.
- ◆ Are written as forward-chaining production rules, such as
 - Chemical reaction formulae.
 - Rules in production systems, used for building expert systems.

Computation process in CCM

A reaction

- ◆ An application of a reaction rule is called a reaction.
- ◆ A reaction takes place when
 - There are a rule and a set of data that match the LHS of the rule, and
 - The sum of LODs of the data, concerning the reaction, does not decrease by the reaction.

Succession and termination of reactions

- Reactions occur successively when possible.
 - Their order is nondeterministic (or random) No limit cycles occur!
- If no reaction can occur, then the system (temporarily) terminates.
- The system may begin to work again, when data are modified, removed or added externally.

HICSS-27

Yasusi Kanada , Real-World Computing Partnership, Tsukuba, Japan

94.1.5 V1.3

The N queens problem

Example: the N queens system — 1

■ The N queens problem

◆ An extension of the eight queens problem.

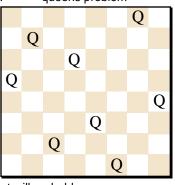
◆ A problem of finding a layout of N queens on Nx N"chess board," where a queen does not take each other.

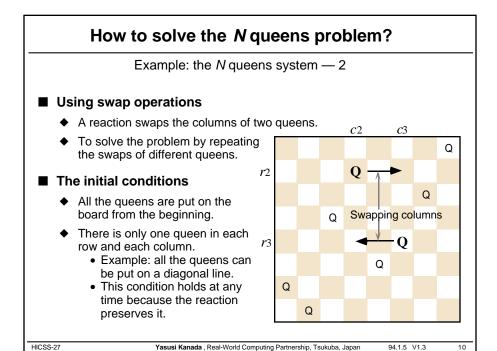
■ The N queens system

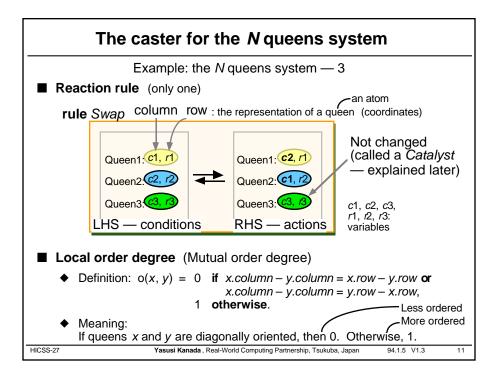
◆ A computational system to solve the N queens problem in CCM.

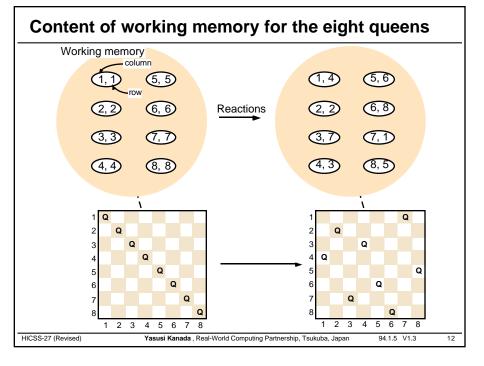
■ The reasons that we use the *N* queens problem

We have to start with a simpler system.


 This system has several characteristics that will probably lead us to a better understanding of complex systems.

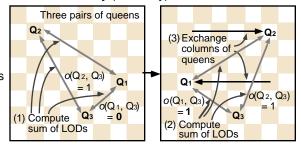

HICSS-27


Yasusi Kanada, Real-World Computing Partnership, Tsukuba, Japan


94.1.5 V1.3

A solution of the eight queens problem

A more detailed semantics of reactions


Example: the N queens system — 4

■ Selections of a rule and objects

- ◆ No need to select a rule because there is only one rule.
- Three gueens are *nondeterministically* (randomly) selected and reacted.

■ Computation of order degrees

♦ The sums of LODs before and after the reaction are computed (before the reaction).

■ The reason that the catalyst (Q₂) is necessary

- ◆ The sum of LODs is not changed if the rule contains only Q₁ and Q₂, because the LOD between Q, and Q_a is not changed.
 - So the system does not stop when a solution is found.

HICSS-27

Yasusi Kanada, Real-World Computing Partnership, Tsukuba, Japar

94.1.5 V1.3

Performance evaluation — 0*

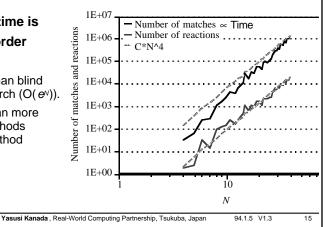
Several conditions of the measurement

- The performance of the *N* queens system is measured using SOOC.
 - ◆ SOOC (Self-Organization-Oriented Computing) is a computation language based on CCM.
- The initial layouts of queens are random.
- All values are averages of ten executions.

HICSS-27

Yasusi Kanada, Real-World Computing Partnership, Tsukuba, Japar

94.1.5 V1.3

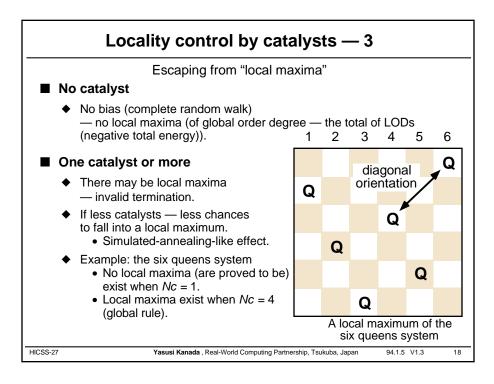

14

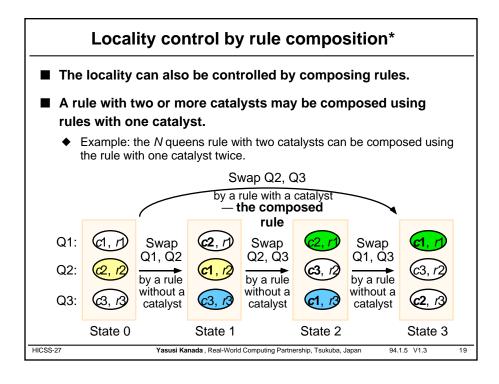
HICSS-27

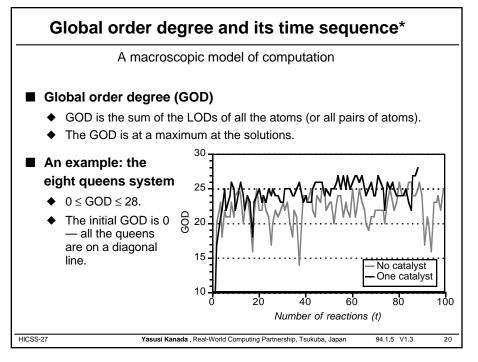
Performance evaluation

Results of the N queens

- The problems never fail to be solved in our experiments,
 - ◆ In spite of the stochastic and non-exhaustive search method.
- The execution time is in polynomial order (O(N^{4.6})).*
 - Much faster than blind backtrack search (O(e^N)).
 - ◆ It is slower than more intelligent methods (Yagrom's method - O(N).


Locality control by catalysts — 1 Variability of locality ■ The locality of data reference can be controlled by adding/removing catalysts to rules. Queen2: C2, r Queen1: ■ Versions of the N queens rule Queen2: (2, 1 Queen3: C1, \bullet A rule with no catalyst (Nc = 0): Most local Queen1: C1, r1 Queen1: **c2**, r1 (minimum data reference) Queen2: C1, r2 ◆ A rule with one catalyst (Nc = 1): Queen3: (3, / Queen3: (3, 1 Queen1: c1, r1 Queen1: c2, r1 ♠ A rule with two catalysts (Nc = 2): Queen2: (c1, r2) · Less local Queen2: (2, /2 Queen3: (3, / Queen3: \bullet A rule with N-2 catalysts Queen4: (04, r4) Queen4: (04, r4) (Nc = N - 2)• Global — all the queens are referred. HICSS-27 Yasusi Kanada, Real-World Computing Partnership, Tsukuba, Japan 94.1.5 V1.3 16


Locality control by catalysts — 2 Performance comparisons when changing Nc ■ No catalyst ◆ The system does not stop even when a solution is found because there is no bias toward solutions. The execution time is 1E+04 infinite. ■ 10*Reactions Matchings One catalyst or more **▲** 1000*Time Performance ◆ The number of reactions decreases when Nc 1E+03 increases. ◆ The execution time is optimum when Nc = 2. 1E+02 Number of catalysts (Nc)


Yasusi Kanada, Real-World Computing Partnership, Tsukuba, Japar

94.1.5 V1.3

HICSS-27

Other applications*

■ Current applications of CCM — still far from real world

			Rules and LODs		Performance	
Classification		Problem	Number of rules*	Number of LODs	Time	Solution quality
	Optimization	TSP	1	1	$O(N^3)$	97 times optimum out of 100 trials ($N = 10$)
NP - hard		0–1 Knapsack	1 (or 2)	1	$O(N^2)$	45 times optimum out of 100 trials ($N = 20$)
		N Queens	1	1	$O(N^{4.6})$	_
	Constraint satisfaction	Graph (or map) coloring	1	1	I	-
P-hard		Sorting	1	1	$O(N^2)$	_

^{*} Rules for working memory initialization are not counted.

■ The above problems are solved using very simple casters.

HICSS-27 Yasusi Kanada , Real-World Computing Partnership, Tsukuba, Japan 94.1.5 V1.3 21

Summary

- I explained the self-oreganization paradigm.
 - Self-organization "global order" from computation with local information
- We proposed a computation model CCM for self-organizing computation.
 - Problems can be solved using one or a few simple production rules and evaluation functions.
 - Both production rules and evaluation functions works locally

 i.e., on a small number of objects.
 - ◆ Locality of data reference can be controlled
 - By adding/removing catalysts and composing rules.
 - Local maxima can be avoided by changing locality.
 - Efficiency of searches can be controlled by changing locality.

HICSS-27

Yasusi Kanada , Real-World Computing Partnership, Tsukuba, Japan

94.1.5 V1.3

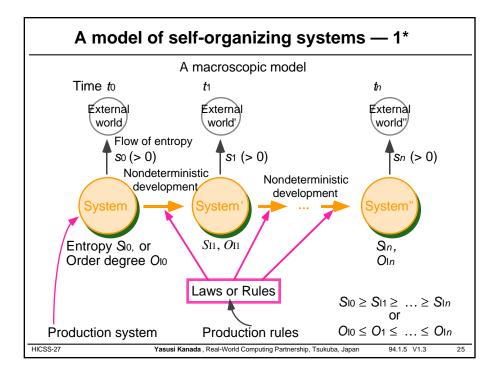
22

Future work

■ Toward open systems

- ◆ To develop CCM-based open systems
 - Constraint satisfaction or optimization problems are basically closed.
- To observe and to analyze more complex emergent properties in those systems.

■ Self-referencial systems: a type of self-organizing systems


- ◆ To study self-modifying rules and LODs.
- To study self-modifying targets of computation.
- ◆ CCM must be enhanced to express self-references.

Contents*

- Introduction the self-organization paradigm
- **■** Computation model CCM (Chemical Casting Model)
- **■** Example: the N queens system
- Locality control of data references
- Other examples
- Summary and future work

HICSS-27

23

A model of self-organizing systems — 2*

- This model can be applied to a wide range of self-organizing systems, such as
 - Our target self-organizing computational system.
 - ◆ A thermodynamic system that generates a dissipative structure.
- The growth of a self-organizing system is autonomous, and, thus, its behavior is unpredictable, or it is observed as nondeterministic or driven by noise that comes from the outside of the system.

HICSS-27

Yasusi Kanada, Real-World Computing Partnership, Tsukuba, Japan

94.1.5 V1.3

26

Data in CCM*

Components of CCM — 3

■ Working memory

◆ The set of objects to which the rules apply.

Atoms

- Atoms are unit objects.
- Atoms have internal state.

Links

- Links are connectors of atoms.
- Links may have directions.
- Links may have labels (names).

Order of reactions*

- Order of reactions is nondeterministic.
 - ◆ Random, or independent of the problem logic.
- Different reaction orders may cause different results.
 - ◆ All possible results will be as expected — because induced by the LODs.

■ Scheduling strategies

- ◆ Are specified by the user, or determined by the system.
- Control the selections macroscopically.
- ◆ Are similar to conflict resolution strategies in conventional production systems.

HICSS-27

Yasusi Kanada, Real-World Computing Partnership, Tsukuba, Japan

28

94.1.5 V1.3

27

Types of scheduling strategies*

■ Mathematical random strategies (MRS)

- Use pseudo-random numbers.
- Do not cause limit cycles, even if the user pays no attention.
- Are the standard strategies.

■ Systematic strategies (SS)

- ◆ Use systematic methods independent of the problem logic.
- May cause limit cycles (infinite loops).

■ Parallel strategies

HICSS-27

Yasusi Kanada, Real-World Computing Partnership, Tsukuba, Japar

94.1.5 V1.3

29

Computation as Markov process*

- Computation can be regarded as a stochastic process in CCM even when an S strategy is used.
- Three states during the computation of CCM.
 - Strongly non-stationary state
 - The state in which the probability distribution rapidly changes when a reaction occurs.
 - Quasi-stationary state
 - The state that the probability of the solution state, p(g_{max}), increases when a reaction occurs, where gmax is the maximum value of the GOD (= NC2), but that the ratio of other states, p(g)/(1 p(g_{max})) (g = g_{min}, ..., g_{max}-1), are almost constant when a reaction occurs, where g_{min} is the minimum value of the GOD (= 0).
 - ◆ Termination state (Stationary state)
 - The state that $p(g_{max})$ is 1. This is the limit state when $t \to \infty$.
- The above states can be modeled by a Markov chain.

HICSS-27

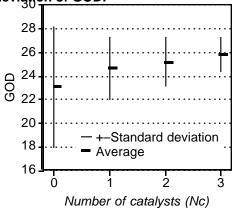
Yasusi Kanada , Real-World Computing Partnership, Tsukuba, Japan

94.1.5 V1.3

3

30

Effect of catalysts on GOD*


■ The average and standard deviation of GOD:

■ When Nc increases,

- The average becomes higher.
- The standard deviation becomes lower.

■ Catalysts bias the search.

 A rule with more catalysts searches among the states where the GOD is higher.

So the number of reactions is smaller.

Conflict and Cooperation in CCM*

Categories of CCM-based systems

■ Cooperative systems

- ◆ No reaction will decrease the GOD in cooperative systems.
- Cooperative systems are called such because reactions cooperate toward the local or global maximum of the GOD.
- Examples: TSP system, the 0–1 Knapsack system and the sorting systems.

■ Conflicting systems

- A reaction may decrease the GOD in conflicting systems.
- Conflicting systems are called such because reactions does not cooperate toward that.
- ◆ Some systems have little conflict while others have considerably more.
- ◆ Examples: the N queens system and the graph coloring system.

HICSS-27 (Revised)

Yasusi Kanada , Real-World Computing Partnership, Tsukuba, Japan

32

31