“3D Turtle Graphics” by 3D Printers

Yasusi Kanada
Dasyn.com
Introduction: Conventional 3D Object Design and Printing

► FDM-type 3D printers

■ There are many types of 3D printers, but a popular cheap one is called fused deposition modeling (FDM) type.
■ FDM-type printers extrude melted plastic from the nozzle and solidify it.

Reprap

Stratasys FDM®

Rostock MAX

MakerBot
Introduction: Conventional 3D Object Design and Printing (cont’d)

► Outline of process for 3D object design and printing

■ Step 1: Design by a 3D CAD tool and generation of (conversion to) a STL file
 • STL means Standard Triangulation Language or Stereo-Lithography.

■ Step 2: Decomposition into layers by using a slicer (software)

■ Step 3: Printing layer by layer by a 3D printer

► This process is explained in detail below.
[Step 1] Design by 3D CAD tools and output as STL files

▶ Conventionally designed by 3D CAD and expressed in a declarative language for describing 3D models.

![Autodesk](CAD software)

▶ 3D models converted to STL, a standard declarative language.

- STL expresses the surface shape of objects by a collection of triangles.

```plaintext
solid tippetop_1piece_v05-repaired
facet normal -0.988014 0.103855 -0.114202
outer loop
vertex -16.500000 0.000000 -7.935401
vertex -16.139400 3.430540 -7.935400
vertex -15.786800 3.355581 -11.054070
endloop
endfacet
facet normal -0.988010 0.103854 0.114240
outer loop
vertex -16.500000 0.000000 -4.816731
vertex -16.139400 0.000000 -7.935401
vertex -16.139400 3.430540 -7.935400
endloop
endfacet
endsolid tippetop_1piece_v05-repaired
```
[Step 2] Slices and G-Code

Sliced objects are usually represented by a procedural language for CAM, which is called G-Code.

- G-Code is originally designed for programming the behavior of machine tools (bites etc.).
- G-Code specifies the motion of a print head, the velocity of extruding plastic, and so on.

Command examples

- G0: simple tool motion
 - G0 X0 Y0 Z0 F3600: move to coordinate (0, 0, 0) at 3600 mm/min
- G1: tool motion with milling (printing)
 - G0 X0 Y0 Z0 F3600 E100: move with extruding filament specified by E100
[Step 3] Printing 3D Objects

► A print head only move horizontally unless transiting to the next layer.
 ■ Because it normally prints horizontally-sliced layers one by one.

► By using G-Code, however, the head can move toward any direction.

\[
\text{G0 X1 Y1 Z1} \\
(X0, Y0, Z0) \rightarrow (X1, Y1, Z1)
\]

■ Although many 3D printers are not good in vertical motion.
Turtle Graphics

► Seymore Papert and Logo

- Papert designed Logo programming language for children.
- By using Logo, 2D line art can be drawn by a “turtle” — (2D) turtle graphics

► Drawing commands for turtle graphics

- Forward d: move forward by d.
- Left a: turn left by a (degrees).
- Right a: turn right by a (degrees).

3D Turtle Graphics

► Basics

- forward, left, right
- up, down

► Extended 3D turtle graphics

- Bernd Paysan, “Dragon Graphics”

“Turtle Graphics” by 3D Printing

- **Drawing commands are translated into G-Code**
 - Forward → G1 (moving while printing)

- **Turtle coordinates are converted to Descartes coordinates**
 - The direction of turtle is memorized by the G-Code generating program.
 - Forward → The next coordinates are calculated from the current coordinates and direction.
 - Left, Right → The direction is updated.

- **Selection of a turtle coordinate system**
 - Polar coordinates
 - Turtle direction is arbitrary in 3D.
 - Coordinates of flight simulators are polar.
 - Difficult to guarantee printability because difficult to know the gravity direction.
 - Cylindrical coordinates
 - Turtle direction is fixed to be horizontal.
 - Vertical displacement is recorded.
 - Probably easier to be designed.
Difference between 3D Printing and 3D Graphics

► It is difficult to print on the fly by 3D printing.
 ■ Lines can be drawn freely at any location in the 3D space by 3D graphics.
 ■ While printing on earth, printing on the fly is difficult because extruded filament must be supported.

► Printing velocity and amount of filament extrusion must be controlled (are controllable).
 ■ Thickness of lines can be controlled in 3D graphics.
 ■ Specialized techniques, which are unnecessary in 3D graphics, are required for pretty 3D printing.
 • E.g., the printing velocity must be regulated.
Alternatives and Library Development

► Alternatives
 ■ To design a language similar to Logo
 ■ To develop libraries for conventional languages
 — this is easier and has more potential to be popular

► Selection: A library for Python, turtle.py, was developed.
 ■ Cylindrical coordinates are used.
 ■ Moving forward with moving up or down by forward(r, z).
 ■ Provided as open-source software: It is for Rostock MAX, so a slight modification is required for other printers.
 ■ Example: helix

```python
turtle.init(FilamentDiameter,
           HeadTemperature, BedTemperature, defaultCrossSection,
           x0, y0, 0.4);

dz = 0.4 / 72;
for j in range(0, 16):
    for i in range(0, 72):
        forward(1, dz);
        left(5);
```
Experiments: Method

► Following examples were tested.
 ■ Cylinder (helix) ■ Skewed square piramid ■ Flat fractal

► Repeated the following steps until succeeded.
 ■ Program description ■ Confirmation by graphics ■ 3D printing
Program Description

► Programming and debugging using editors / IDE

The library is used in the program (that generates G-Code)

A G-Code file is generated
Confirming the Production by Graphics

► The G-Code file is graphically displayed by a 3D printing tool called Repetier-Host.

► Visually confirm whether it will be printed well.
 - The tool checks only weak conditions (such as syntactic correctness of commands)
 - Human beings may however misjudge the printability.
 • Because printing process is dynamic but graphics is static.
By using a 3D printing software, specify a G-Code file and print it.

Using Pronterface may be printed by using Repetier-Host, but ...
Printing Process Example

“3D Turtle Graphics”
by 3D Printing

Dasyn.com

youtu.be/7H5-acxQ_RE
Production (Printing Results)

► Rotation and enlarging/reducing

Failure
Production (Printing Results) (cont’d)

► 2D fractal figure

► Other 2D figure
Bonus: Productions of Methods Other Than Turtle Graphics

► Self-organizing 3D printing

Kanada, Y., “3D Printing and Simulation of Naturally-Randomized Cellular-Automata “, 19th International Symposium on Artificial Life and Robotics (AROB 2014), 2014-1

Bonus: Productions of Methods Other Than Turtle Graphics (cont’d)

▶ Direction-specified printing

▶ Shape generation by parts assembly and deformation

Conclusion

- A Python library for 3D turtle graphics was developed.
- An environment for 3D turtle graphics can be built by combining this library and G-Code tools, 3D printers, and so on.

Future work

- To try various shapes and support methods.
 - Devices with the current library.
 - Extensions of the library.
- To try polar coordinates.

The URL for this slides and the paper: http://bit.ly/1q7OWe6
(http://www.kanadas.com/papers-e/2014/08/3d_turtle_graphics_by_3d_print.html)