
1

Self-organized 3D-printing Patterns Simulated by
Cellular Automata*

Yasusi Kanada
Dasyn.com

yasusi@kanadas.com

Abstract. 3D printers are usually used for printing objects designed by 3D
CAD exactly, i.e., deterministically. However, 3D printing process contains
stochastic self-organization process that generate emergent patterns. A method
for generating fully self-organized patterns using a fused deposition modeling
(FDM) 3D printer with constant filament extrusion has been developed. By
using this method, various patterns, such as stripes, splitting and/or merging
patterns, and meshes can be generated. A cellular-automata-based computa-
tional model that can simulate such patterns have also been developed.

1 Introduction

3D-printing technologies, or additive manufacturing (AM) technologies [Gib 10],
usually aim reproducing objects deterministically designed by using 3D computer-
aided design (CAD) tools. The object models created by CAD are horizontally sliced
into thin “layers” by so-called “slicers”, and a 3D printer prints the layers one by one.
Especially, 3D printers for fused deposition modeling (FDM), such as those of
Stratasys, Makerbot, or RepRap [Rep], shapes 3D objects by layering melted plastic
filament extruded by a hot nozzle.

3D printing process contains self-organization process that generates emergent and
fluctuated patterns but they have been ignored. Printing processes contains
bifurcations, and printing conditions and process including nozzle temperature,
extrusion process, air motion, and so on, are fluctuated, so the generated patterns are
partially self-organized and naturally randomized [Kan 14]. Although the printing
process is usually controlled well so that self-organization is suppressed and the
fluctuation usually does not cause serious problems to shape 3D objects, stochastic
patterns caused by fluctuation can still often be seen in printed objects as described
below. However, self-organized patterns generated by 3D printers are regarded as
noises and are mostly ignored in 3D printing communities and industries.

Self-organized stochastic patterns can be seen in printed objects such as shown in
Fig. 1. Two types of stochastic patterns can be seen in this photo. First, thin strings
exist between standing edges. Although filament extrusion stops when the head is to
move without extrusion, it is difficult to stop it completely and an unintended string is
often generated. Second, small chunks of plastic exist at the end or center of strings in

*A longer version of this paper will be available as a chapter in “The 8th International
Workshop on Natural Computing” published by Springer Verlag.

2

Fig. 1. In contrast to strings, which are more
uniform, the nozzle may create less uniform
chunks. These and other stochastic patterns are
explained more in a previous paper [Kan 14].

The emergence of FDM printing processes
can be stressed by designing a fully self-
organizing printing process that simulates one-
dimensional cellular automata (1D CA), which
was proposed by the previous paper. This
process generates emergent and stochastic 2D
patterns by helical print-head motion. Basic
patterns generated by this printing method are
stripes. However, stripes may sometimes spit or
merge, waves may cross the stripes, and patterns may be meshes according to printing
conditions. This study focuses on these types of patterns and shows a computational
model based on 1D CA that can simulate them and suggest processes of other types.

The rest of this paper is organized as follows. Section 2 proposes a method for
printing fully self-organized patterns and shows basic print results. Section 3 proposes
a CA-based computational method to simulate the basic patterns. Section 4 shows
various types of patterns, an extension to the CA-based method, and compares
patterns generated by the printing and simulation methods. Section 5 describes the
differences between the printing and simulation, and Section 6 concludes this paper.

2 Method for Printing Fully Self-organized Patterns

To generate 1D CA-like patterns, a 1D space without edges is used ([Wol 84]

[Kan 94] etc.) in the method proposed by the previous paper [Kan 14]. The space
occupied by the CA is topologically a circle. Therefore, to generate 1D patterns by an
FDM printer, the print head can approximately draw circles in a clockwise or
counterclockwise direction repeatedly and can extrude filament constantly (Fig. 2);
however, a helix is used for the tool-path, i.e., the orbit of the print head, instead of
layered circles because layer transitions
create edges and spoil the pattern. In
addition, because a head of a FDM 3D-
printer can only moves linearly, a “circle”
is approximated by a collection of line
segments. If the printing condition is
selected carefully the printer can generate
stochastic self-organized patterns.

The important conditions and parame-
ters for this method, which are constant,
are as follows. The nozzle diameter is usually 0.3 to 0.5 mm, the average extruded
filament cross-section (c), which represents the velocity of extrusion, is much less
than 0.2 mm2 (0.5ϕ), and the layer height (h) is 0.1 to 0.3 mm. The number of line
segments in a “circle” is 72. Other less sensitive parameters include the filament

Fig. 1 Printed pyramids with strings
and chunks (ABS, 38×38×33 mm)

circular (helical)
motion

nozzle diameter
0.3 -- 0.5 mm

print head

filament

layer height (vertical
pitch) 0.1 -- 0.3 mm

constant

Fig. 2 1D pattern generation method

3

material (usually ABS or PLA), the head temperature (220 to 260°C for ABS and
180 to 220°C for PLA), and the head motion velocity (40 to 150 mm/s).

The “layers” are formed by using the following method. The usually-used initial
state is all one (i.e., filled); that means, the first layer of the circles is fully (and
slowly) filled with plastic. The second and above layers are printed using the above
parameters. In the second layer, filament sticks to the first layer mostly periodically
because the fluctuation is still small. However, upper layers may be less periodically
because more fluctuations are caused. An example of the printing process can be seen
in YouTube [Das 13].

Although several examples of printed results are shown in the previous paper,
typical patterns, which are shown in Fig. 3, are analyzed here at the first time. A
Rostock MAX 3D-printer with a 0.5-mm nozzle and PLA filament was used for
printing them. Fig. 3(a) shows skewed stripes and strings generated by clockwise
(right to left) head motion with 0.3-mm layer height. Counterclockwise head motion
creates stripes skewed toward the opposite direction. This figure shows that stripes are
generated by stacking chunks and the strings connect stripes. Fig. 3(b) also shows
stripes and strings, but the layer height is 0.1 mm. The strings are very thin and
mostly torn, so stripes are seldom connected by the strings.

3 Basic Simulation Method and Results

This section describes a computational model to simulate the self-organizing printing
process, and shows relationships between printed patterns and simulation results.

3.1 CA-based simulation method

Figures 4 and 5 show a computational model and the whole algorithm for simulating
the printed patterns. Figure 4 shows the model, which is based on 1D asynchronous

(a) Stripes with
thick (h = 0.3 mm)
layers (c = 0.045)

(b) Stripes
with thin
(h = 0.1
mm) layers
(c = 0.02)

Fig. 3 Typical printed patterns (by Rostock MAX)

4

CA [Ing 84][Hof 87][Wik a] (so the circle is
quantized). This model simulates chunks but
does not simulate strings. The values of cells,
which grow upward, are calculated sequen-
tially along the circle; that is, the value of one
cell is decided in each step. Filament is
constantly extruded in each step and it is
accumulated until used for the cell (i.e., the
cell value becomes 1). In the basic model, the accumulated filament is cleared when it
is used; however, this rule may be varied. The value of the cell is probabilistically
decided, and the filament is used only when it is sufficiently accumulated.

The value of a cell at layer l and location i (which is along the head motion) is
defined by the following rule:

 if cell[l–1][i] = 1 then cell[l][i] = 1 at probability p0
 else if cell[l–1][i+1] = 1 then cell[l][i] = 1 at probability p1
 else cell[l][i] = 0

Here, cell[l][i] means the value of cell at layer l and i-th location on the circle. The
value of each cell is on (1) or off (0). Chunk-stacking probabilities p0 and p1
represent the explicitly-introduced randomness and decide the lifecycle and directions
of stripes. The whole algorithm is described in Fig. 5. Instead of using a two
dimensional array, which was used in the previous paper [Kan 14], this algorithm uses
a single-dimensional array for representing all the layers of cells because it is simpler
and more convenient for simulating a helical motion.

N = 4 * 72; // number of arcs
Degree1 = 2 * π / N; // degrees of an arc
extrudedFilament = 0.0;
for i in N, N + 1, …, layers * N loop // repeat for all arcs
 cell[i] = 0; // clear cell
 if extrudedFilament >= 1 then // Amount of extruded filament is sufficient.
 if cell[i-N] > 0 and random() <= p0 or // check the cell below
 cell[i-N+1] > 0 and random() <= p1 then // check the next cell
 cell[i] = 1; // fill the cell
 extrudedFilament = 0.0; // clear extruded filament
 end if
 end if
 angle = Degree1 * (i % N); // “%” means “modulo”
 x = Radius * cos(angle);
 y = Radius * sin(angle);
 z = LayerHeight * i / N;
 drawNextArc(cell[i], x, y, z); // draw a cell (an arc)
 extrudedFilament = extrudedFilament + e1; // extrude unit
end loop

Fig. 5 Basic simulation algorithm

3.2 Simulation of typical patterns

Several results of simulating typical patterns using a program based on the algorithm
are shown in Fig. 6. The simulation program that generates G-code, which is a type of
computer-aided manufacturing (CAM) programs, was written by Python. The
resulting G-code programs were visualized by a CAM tool called Repetier-Host.
Several simulation results of typical patterns with stripes are shown in this figure. The

...

...
current layer
previous layerp0

~ 0.99
p1

~ 0.9
Fig. 4 Cellular automata for simulation

5

value of p0 must be close to 1 to generate long-life patterns. If p1 is less than 1, a
noisy pattern such as shown in Fig. 6(a) is generated. If p1 is 1, a crisp stripes as
shown in Fig. 6(b) is generated. If p0 equals to 1, a vertical stripes as shown in
Fig. 6(c) is generated, but it is difficult to generate such a pattern by printing.

4. Various Types of Patterns in Printing and Simulation

Several types of printed patterns and simulation of the patterns are described in this
section. The same printing parameter values as described in Section 2 were used
unless otherwise stated.

4.1 Extinction of stripes

Chunks sometimes failed to stick to chunks below, so the stripes may be extinguished.
It is difficult to see complete extinction in printed patterns because filament is
constantly extruded. However, partial extinction is easily seen. An example is shown
in Fig. 7(a). The circles show extinction of stripes.

Extinction patterns can be simulated by making p0 smaller in the simulation
program. Figure 7(b) shows an extinction pattern with p0 = 0.97.

4.2 Splitting and merging stripes

Stripes are often split and merged. Fig. 8(a) shows a pure merging pattern and
Fig. 8(b) contains both splitting and merging patterns. It is difficult to generate a pure

(a) Skewed stripes (p0 =
0.99, p1 = 0.9, e1 = 0.4)

(b) Skewed stripes (p0 =
0.99, p1 = 1.0, e1 = 0.4)

(c) Vertical stripes (p0 = 1.0,
p1 = 0 to 1, e1 = 0.4)

Fig. 6 Simulation of stripes

(a) Print result
(PLA,
h = 0.2,
c = 0.02, by
Printrbot Plus)

(b) Simulation
result
(p0 = 0.97,
p1 = 0.9,
e1 = 0.6)

Fig. 7 Extinction of stripes by printing and simulation

6

splitting pattern. Vertical bars, which can be observed in Fig. 8(b), are caused by
change of head velocity, which is caused by approximation of circles by linear lines.

The rule used for simulating splitting and merging patterns is described below and
visualized in Fig. 9(a). The original computational rule is updated and two more
parameters, p_1 and C (0 < C < 1), are introduced because splitting and merging
patterns cannot be simulated by the original algorithm.
 if extruded filament >= 1 then
 if cell[l–1][i–1] > 0 then cell[l][i] = 1 & filament cleared at probability p_1
 else if cell[l–1][i+1] > 0 then cell[l][i] = 1 & filament cleared at probability p1
 else if cell[l–1][i] = 1 then cell[l][i] = 1 & filament reduced by C at probability p0
 else cell[l][i] = 0
 else cell[l][i] = 0

The two new parameters are used in the following way. First, this rule introduces a
dependence between cell[l][i] and cell[l–1][i–1], which enables splitting and which is
controlled by a new chunk-stacking probability p_1. Second, the original rule always
clears the extruded filament when it is used, but the new rule just subtract filament by
C to preserve filament for splitting when the value of the cell below is 1.

Figure 9(b) shows a simulation result that contains both splitting and merging. The
above rule can generate splitting-and-merging patterns; however, because the above
rule modification is not the only way of introducing such patterns and the generated
patterns look differently from printed ones, a method for comparing the patterns and
for evaluating the similarity should be developed, and the rule may have to be updated.

4.3 Crossing waves

Patterns that look like waves often seem to cross stripes. Typical waves can be seen in
Fig. 10. In this figure, waves can be observed by changes of stripe angles and by thick

(a) Pure
merging
pattern
(PLA,
h = 0.2,
c = 0.02, by
Printrbot
Plus)

Merging

Splitting

(b) Splitting
and merging
pattern
(ABS,
h = 0.25,
c = 0.045,
by Rostock
MAX)

Fig. 8 Splitting and merging patterns by printing

...

...
current layer
previous layerp1 p0 p_1

Merging

Splitting

(a) Simulation method (b) Simulation result (p_1 = 0.7, C = 0.8,

p1 = 0.9, p0 = 0.995, e1 = 0.4)

Fig. 9 Extended simulation method for splitting and merging and simulation result

7

strings or absence of strings.
It is not possible to simulate the waves in Fig. 10 exactly because the proposed

algorithm does not simulate strings. However, waves are considered to be propagation
of some change or noise and can widely be seen in patterns generated by the
algorithm. Such waves can be seen easier by slightly modifying a crisp result. For
example, if there is a defect in a vertical stripes shown in Fig. 6(c), it is propagated
such as the results shown in Fig. 11(a) or (b). Figure 11(a) shows another modified
simulation result generated by the layered-circle-based algorithm in the previous
paper. In Fig. 11(b), zeros are randomly introduced to the initial layer (initial
condition). Fig. 6(c) shows waves in a randomized simulation result. Vertical stripes
are “propagated” nearly horizontally. Similar waves are also seen in Fig. 6(a).

4.4 Meshes

Stripes may sometimes be connected by layers of filaments such as shown in Fig. 12.
Such patterns may be called “meshes”. Meshes may be caused by waves; however,
the crossing lines of filaments seem to be different from thick strings in patterns with
waves such as shown in Fig. 10. Thickness of crossing lines depends on the velocity
of extrusion. Meshes have not yet been successfully simulated by CA.

5. Differences between Printing Process and Simplified Model

The printed and simulated patterns are different in the following three points. First,
the computational model only simulates chunks and does not simulate strings.

waves

Fig. 10 Waves by printing (h = 0.25, c = 0.045, by Rostock MAX)

(a) Propagation of defect in

layered-circle model
(p0 = 1.0, p1 = 0.4, e1 = 0.4)

(b) Propagation of explicitly
introduced noise

(p0 = 1.0, p1 = 0.6, e1 = 0.4)

(c) Waves in randomized
model

(p0 = 0.99, p1 = 0.8, e1 = 0.5)

 Fig. 11 Waves by simulation using the original algorithm

8

Especially, patterns with waves (and probably meshes) thus cannot exactly be
simulated. Second, the width of printed patterns (of radius direction) varies, but it is
not simulated. If the width becomes larger, the number of active (1) cells becomes
smaller even if the amount of extruded filament does not change. Third, printed
stripes may bend or oscillate when the print head comes but such motions are not
simulated. In addition, there may be more differences.

6. Concluding Remarks

FDM 3D-printers can generate self-organized and “naturally-randomized” patterns,
which consist of chunks and strings. Fully self-organized patterns can be generated by
the proposed printing method and various types of patterns, i.e., parallel stripes,
splitting and merging stripes, waves, and meshes, can be generated by using this
method. These types of patterns can be partially simulated by proposed 1D-CA-based
computational method. However, there seem to be several differences between the
printed and simulated patterns. In future work, these patterns should be compared by
using a formal method and the CA-based model should be improved.

References

[Das 13] Dasyn.com, “Creating naturally-fluctuated patterns using a 3D printer”, YouTube,
http://youtu.be/IJ15ysJR5l8

[Gib 10] Gibson, I., Rosen, D. W., and Stucker, B., “Additive Manufacturing Technologies”,
Springer, 2010.

[Hof 87] Hofmann, M. I., “A Cellular Automaton Model Based on Cortical Physiology”,
Complex Systems, 1, pp. 187–202, 1987.

[Ing 84] Ingerson, T. E., and Buvel, R. L., “Structure in Asynchronous Cellular Automata”,
Physica D, Vol. 10, pp. 59–68, 1984.

[Kan 94] Kanada, Y., “The Effects of Randomness in Asynchronous 1D Cellular Automata”,
Artificial Life IV, 1994. (Unpublished extended version, http://www.kanadas.com/CA/-
AsyncCA/AsyncCAext.pdf)

[Kan 14] Kanada, Y., “3D Printing and Simulation of Naturally-randomized Cellular-
automata”, 19th International Symposium on Artificial Life and Robotics (AROB 2014),
January 2014.

[Rep] RepRap Wiki, http://reprap.org/
[Wik a] “Asynchronous cellular automaton”, Wikipedia, http://en.wikipedia.org/wiki/-

Asynchronous_cellular_automaton
[Wol 84] Wolfram, S., “Universality and Complexity in Cellular Automata”, Physica D, Vol.

10, pp. 1–35, 1984.

Fig. 12 Meshes by printing (PLA, h = 0.15, c = 0.033, by Rostock MAX)

