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Abstract. 3D printers are usually used for printing objects designed by 3D 
CAD exactly, i.e., deterministically. However, 3D printing process contains 
stochastic self-organization process that generate emergent patterns. A method 
for generating fully self-organized patterns using a fused deposition modeling 
(FDM) 3D printer with constant filament extrusion has been developed. By 
using this method, various patterns, such as stripes, splitting and/or merging 
patterns, and meshes can be generated. A cellular-automata-based computa-
tional model that can simulate such patterns have also been developed.  

1   Introduction 

3D-printing technologies, or additive manufacturing (AM) technologies [Gib 10], 
usually aim reproducing objects deterministically designed by using 3D computer-
aided design (CAD) tools. The object models created by CAD are horizontally sliced 
into thin “layers” by so-called “slicers”, and a 3D printer prints the layers one by one. 
Especially, 3D printers for fused deposition modeling (FDM), such as those of 
Stratasys, Makerbot, or RepRap [Rep], shapes 3D objects by layering melted plastic 
filament extruded by a hot nozzle. 

3D printing process contains self-organization process that generates emergent and 
fluctuated patterns but they have been ignored. Printing processes contains 
bifurcations, and printing conditions and process including nozzle temperature, 
extrusion process, air motion, and so on, are fluctuated, so the generated patterns are 
partially self-organized and naturally randomized [Kan 14]. Although the printing 
process is usually controlled well so that self-organization is suppressed and the 
fluctuation usually does not cause serious problems to shape 3D objects, stochastic 
patterns caused by fluctuation can still often be seen in printed objects as described 
below. However, self-organized patterns generated by 3D printers are regarded as 
noises and are mostly ignored in 3D printing communities and industries.  

Self-organized stochastic patterns can be seen in printed objects such as shown in 
Fig. 1. Two types of stochastic patterns can be seen in this photo. First, thin strings 
exist between standing edges. Although filament extrusion stops when the head is to 
move without extrusion, it is difficult to stop it completely and an unintended string is 
often generated. Second, small chunks of plastic exist at the end or center of strings in 
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Fig. 1. In contrast to strings, which are more 
uniform, the nozzle may create less uniform 
chunks. These and other stochastic patterns are 
explained more in a previous paper [Kan 14]. 

The emergence of FDM printing processes 
can be stressed by designing a fully self-
organizing printing process that simulates one-
dimensional cellular automata (1D CA), which 
was proposed by the previous paper. This 
process generates emergent and stochastic 2D 
patterns by helical print-head motion. Basic 
patterns generated by this printing method are 
stripes. However, stripes may sometimes spit or 
merge, waves may cross the stripes, and patterns may be meshes according to printing 
conditions. This study focuses on these types of patterns and shows a computational 
model based on 1D CA that can simulate them and suggest processes of other types.  

The rest of this paper is organized as follows. Section 2 proposes a method for 
printing fully self-organized patterns and shows basic print results. Section 3 proposes 
a CA-based computational method to simulate the basic patterns. Section 4 shows 
various types of patterns, an extension to the CA-based method, and compares 
patterns generated by the printing and simulation methods. Section 5 describes the 
differences between the printing and simulation, and Section 6 concludes this paper. 

2   Method for Printing Fully Self-organized Patterns 

To generate 1D CA-like patterns, a 1D space without edges is used ([Wol 84] 

[Kan 94] etc.) in the method proposed by the previous paper [Kan 14]. The space 
occupied by the CA is topologically a circle. Therefore, to generate 1D patterns by an 
FDM printer, the print head can approximately draw circles in a clockwise or 
counterclockwise direction repeatedly and can extrude filament constantly (Fig. 2); 
however, a helix is used for the tool-path, i.e., the orbit of the print head, instead of 
layered circles because layer transitions 
create edges and spoil the pattern. In 
addition, because a head of a FDM 3D-
printer can only moves linearly, a “circle” 
is approximated by a collection of line 
segments. If the printing condition is 
selected carefully the printer can generate 
stochastic self-organized patterns.  

The important conditions and parame-
ters for this method, which are constant, 
are as follows. The nozzle diameter is usually 0.3 to 0.5 mm, the average extruded 
filament cross-section (c), which represents the velocity of extrusion, is much less 
than 0.2 mm2 (0.5ϕ), and the layer height (h) is 0.1 to 0.3 mm. The number of line 
segments in a “circle” is 72. Other less sensitive parameters include the filament 

 

Fig. 1 Printed pyramids with strings 
and chunks (ABS, 38×38×33 mm) 

circular (helical) 
motion

nozzle diameter
0.3 -- 0.5 mm

print head

filament

layer height (vertical 
pitch) 0.1 -- 0.3 mm

constant

Fig. 2  1D pattern generation method 



3 
 
 
 
 
 
 
 
 

material (usually ABS or PLA), the head temperature (220 to 260°C for ABS and 
180 to 220°C for PLA), and the head motion velocity (40 to 150 mm/s). 

The “layers” are formed by using the following method. The usually-used initial 
state is all one (i.e., filled); that means, the first layer of the circles is fully (and 
slowly) filled with plastic. The second and above layers are printed using the above 
parameters. In the second layer, filament sticks to the first layer mostly periodically 
because the fluctuation is still small. However, upper layers may be less periodically 
because more fluctuations are caused. An example of the printing process can be seen 
in YouTube [Das 13]. 

Although several examples of printed results are shown in the previous paper, 
typical patterns, which are shown in Fig. 3, are analyzed here at the first time. A 
Rostock MAX 3D-printer with a 0.5-mm nozzle and PLA filament was used for 
printing them. Fig. 3(a) shows skewed stripes and strings generated by clockwise 
(right to left) head motion with 0.3-mm layer height. Counterclockwise head motion 
creates stripes skewed toward the opposite direction. This figure shows that stripes are 
generated by stacking chunks and the strings connect stripes. Fig. 3(b) also shows 
stripes and strings, but the layer height is 0.1 mm. The strings are very thin and 
mostly torn, so stripes are seldom connected by the strings. 

3   Basic Simulation Method and Results 

This section describes a computational model to simulate the self-organizing printing 
process, and shows relationships between printed patterns and simulation results. 

3.1 CA-based simulation method 

Figures 4 and 5 show a computational model and the whole algorithm for simulating 
the printed patterns. Figure 4 shows the model, which is based on 1D asynchronous 

(a) Stripes with 
thick (h = 0.3 mm) 
layers (c = 0.045) 

 

(b) Stripes 
with thin 
(h = 0.1 
mm) layers 
(c = 0.02) 

Fig. 3  Typical printed patterns (by Rostock MAX) 
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CA [Ing 84][Hof 87][Wik a] (so the circle is 
quantized). This model simulates chunks but 
does not simulate strings. The values of cells, 
which grow upward, are calculated sequen-
tially along the circle; that is, the value of one 
cell is decided in each step. Filament is 
constantly extruded in each step and it is 
accumulated until used for the cell (i.e., the 
cell value becomes 1). In the basic model, the accumulated filament is cleared when it 
is used; however, this rule may be varied. The value of the cell is probabilistically 
decided, and the filament is used only when it is sufficiently accumulated.  

The value of a cell at layer l and location i (which is along the head motion) is 
defined by the following rule: 

 if cell[l–1][i] = 1 then cell[l][i] = 1 at probability p0 
 else if cell[l–1][i+1] = 1 then cell[l][i] = 1 at probability p1 
 else cell[l][i] = 0 

Here, cell[l][i] means the value of cell at layer l and i-th location on the circle. The 
value of each cell is on (1) or off (0). Chunk-stacking probabilities p0 and p1 
represent the explicitly-introduced randomness and decide the lifecycle and directions 
of stripes. The whole algorithm is described in Fig. 5. Instead of using a two 
dimensional array, which was used in the previous paper [Kan 14], this algorithm uses 
a single-dimensional array for representing all the layers of cells because it is simpler 
and more convenient for simulating a helical motion. 

 
N = 4 * 72;          // number of arcs 
Degree1 = 2 * π / N;  // degrees of an arc 
extrudedFilament = 0.0; 
for i in N, N + 1, …, layers * N loop  // repeat for all arcs 
 cell[i] = 0;   // clear cell 
 if extrudedFilament >= 1 then // Amount of extruded filament is sufficient. 
  if cell[i-N] > 0 and random() <= p0 or  // check the cell below 
   cell[i-N+1] > 0 and random() <= p1 then  // check the next cell  
   cell[i] = 1;   // fill the cell 
   extrudedFilament = 0.0; // clear extruded filament 
  end if 
 end if 
 angle = Degree1 * (i % N); // “%” means “modulo” 
 x = Radius * cos(angle); 
 y = Radius * sin(angle); 
 z = LayerHeight * i / N; 
 drawNextArc(cell[i], x, y, z); // draw a cell (an arc) 
 extrudedFilament = extrudedFilament + e1;  // extrude unit 
end loop 

Fig. 5  Basic simulation algorithm 

3.2 Simulation of typical patterns 

Several results of simulating typical patterns using a program based on the algorithm 
are shown in Fig. 6. The simulation program that generates G-code, which is a type of 
computer-aided manufacturing (CAM) programs, was written by Python. The 
resulting G-code programs were visualized by a CAM tool called Repetier-Host. 
Several simulation results of typical patterns with stripes are shown in this figure. The 

...

...
current layer
previous layerp0

~ 0.99
p1

~ 0.9  
Fig. 4  Cellular automata for simulation 
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value of p0 must be close to 1 to generate long-life patterns. If p1 is less than 1, a 
noisy pattern such as shown in Fig. 6(a) is generated. If p1 is 1, a crisp stripes as 
shown in Fig. 6(b) is generated. If p0 equals to 1, a vertical stripes as shown in 
Fig. 6(c) is generated, but it is difficult to generate such a pattern by printing. 

4. Various Types of Patterns in Printing and Simulation 

Several types of printed patterns and simulation of the patterns are described in this 
section. The same printing parameter values as described in Section 2 were used 
unless otherwise stated. 

4.1 Extinction of stripes 

Chunks sometimes failed to stick to chunks below, so the stripes may be extinguished. 
It is difficult to see complete extinction in printed patterns because filament is 
constantly extruded. However, partial extinction is easily seen. An example is shown 
in Fig. 7(a). The circles show extinction of stripes.  

Extinction patterns can be simulated by making p0 smaller in the simulation 
program. Figure 7(b) shows an extinction pattern with p0 = 0.97.  

4.2 Splitting and merging stripes 

Stripes are often split and merged. Fig. 8(a) shows a pure merging pattern and 
Fig. 8(b) contains both splitting and merging patterns. It is difficult to generate a pure 

   
(a) Skewed stripes (p0 = 
0.99, p1 = 0.9, e1 = 0.4) 

(b) Skewed stripes (p0 = 
0.99, p1 = 1.0, e1 = 0.4) 

(c) Vertical stripes (p0 = 1.0, 
p1 = 0 to 1, e1 = 0.4) 

Fig. 6  Simulation of stripes 

 

(a) Print result 
(PLA,  
h = 0.2,  
c = 0.02, by 
Printrbot Plus) 

(b) Simulation 
result  
(p0 = 0.97,  
p1 = 0.9,  
e1 = 0.6) 

Fig. 7  Extinction of stripes by printing and simulation 
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splitting pattern. Vertical bars, which can be observed in Fig. 8(b), are caused by 
change of head velocity, which is caused by approximation of circles by linear lines. 

The rule used for simulating splitting and merging patterns is described below and 
visualized in Fig. 9(a). The original computational rule is updated and two more 
parameters, p_1 and C (0 < C < 1), are introduced because splitting and merging 
patterns cannot be simulated by the original algorithm. 
 if extruded filament >= 1 then 
  if cell[l–1][i–1] > 0 then cell[l][i] = 1 & filament cleared at probability p_1 
  else if cell[l–1][i+1] > 0 then cell[l][i] = 1 & filament cleared at probability p1 
  else if cell[l–1][i] = 1 then cell[l][i] = 1 & filament reduced by C at probability p0 
  else cell[l][i] = 0 
 else cell[l][i] = 0 

The two new parameters are used in the following way. First, this rule introduces a 
dependence between cell[l][i] and cell[l–1][i–1], which enables splitting and which is 
controlled by a new chunk-stacking probability p_1. Second, the original rule always 
clears the extruded filament when it is used, but the new rule just subtract filament by 
C to preserve filament for splitting when the value of the cell below is 1.  

Figure 9(b) shows a simulation result that contains both splitting and merging. The 
above rule can generate splitting-and-merging patterns; however, because the above 
rule modification is not the only way of introducing such patterns and the generated 
patterns look differently from printed ones, a method for comparing the patterns and 
for evaluating the similarity should be developed, and the rule may have to be updated. 

4.3 Crossing waves 

Patterns that look like waves often seem to cross stripes. Typical waves can be seen in 
Fig. 10. In this figure, waves can be observed by changes of stripe angles and by thick 

 

(a) Pure 
merging 
pattern  
(PLA,  
h = 0.2,  
c = 0.02, by 
Printrbot 
Plus) 

Merging

Splitting

(b) Splitting 
and merging 
pattern 
(ABS,  
h = 0.25,  
c = 0.045, 
by Rostock 
MAX) 

Fig. 8  Splitting and merging patterns by printing 

 

...

...
current layer
previous layerp1 p0 p_1

Merging

Splitting

 
(a)  Simulation method (b) Simulation result (p_1 = 0.7, C = 0.8,  

p1 = 0.9, p0 = 0.995, e1 = 0.4) 

Fig. 9  Extended simulation method for splitting and merging and simulation result 
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strings or absence of strings.  
It is not possible to simulate the waves in Fig. 10 exactly because the proposed 

algorithm does not simulate strings. However, waves are considered to be propagation 
of some change or noise and can widely be seen in patterns generated by the 
algorithm. Such waves can be seen easier by slightly modifying a crisp result. For 
example, if there is a defect in a vertical stripes shown in Fig. 6(c), it is propagated 
such as the results shown in Fig. 11(a) or (b). Figure 11(a) shows another modified 
simulation result generated by the layered-circle-based algorithm in the previous 
paper. In Fig. 11(b), zeros are randomly introduced to the initial layer (initial 
condition). Fig. 6(c) shows waves in a randomized simulation result. Vertical stripes 
are “propagated” nearly horizontally. Similar waves are also seen in Fig. 6(a). 

4.4 Meshes 

Stripes may sometimes be connected by layers of filaments such as shown in Fig. 12. 
Such patterns may be called “meshes”. Meshes may be caused by waves; however, 
the crossing lines of filaments seem to be different from thick strings in patterns with 
waves such as shown in Fig. 10. Thickness of crossing lines depends on the velocity 
of extrusion. Meshes have not yet been successfully simulated by CA. 

5. Differences between Printing Process and Simplified Model 

The printed and simulated patterns are different in the following three points. First, 
the computational model only simulates chunks and does not simulate strings. 

waves

 

Fig. 10  Waves by printing (h = 0.25, c = 0.045, by Rostock MAX) 

       
(a) Propagation of defect in 

layered-circle model 
(p0 = 1.0, p1 = 0.4, e1 = 0.4) 

(b) Propagation of explicitly 
introduced noise 

(p0 = 1.0, p1 = 0.6, e1 = 0.4)

(c) Waves in randomized 
model 

(p0 = 0.99, p1 = 0.8, e1 = 0.5) 

 Fig. 11  Waves by simulation using the original algorithm 
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Especially, patterns with waves (and probably meshes) thus cannot exactly be 
simulated. Second, the width of printed patterns (of radius direction) varies, but it is 
not simulated. If the width becomes larger, the number of active (1) cells becomes 
smaller even if the amount of extruded filament does not change. Third, printed 
stripes may bend or oscillate when the print head comes but such motions are not 
simulated. In addition, there may be more differences. 

6. Concluding Remarks 

FDM 3D-printers can generate self-organized and “naturally-randomized” patterns, 
which consist of chunks and strings. Fully self-organized patterns can be generated by 
the proposed printing method and various types of patterns, i.e., parallel stripes, 
splitting and merging stripes, waves, and meshes, can be generated by using this 
method. These types of patterns can be partially simulated by proposed 1D-CA-based 
computational method. However, there seem to be several differences between the 
printed and simulated patterns. In future work, these patterns should be compared by 
using a formal method and the CA-based model should be improved. 
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Fig. 12  Meshes by printing (PLA, h = 0.15, c = 0.033, by Rostock MAX) 


