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Abstract: When manufacturing or 3D-printing a product using a computer, a program that procedurally controls
manufacturing machines or 3D printers is required. G-code is widely used for this purpose. G-code was developed
for controlling subtractive manufacturing (cutting work), and designers have historically written programs in G-code,
but, in recently developed environments, the designer describes a declarative model by using computer-aided design
(CAD), and the computer converts it to a G-code program. However, because the process of additive manufacturing,
of which FDM-type 3D-printing is a prominent example, is more intuitive than subtractive manufacturing, it is some-
times advantageous for the designer to describe an abstract procedural program for this purpose. This paper therefore
proposes a method for generating G-code by describing a Python program using a library for procedural 3D design
and for printing by a 3D printer, and it presents use cases. Although shapes printable by the method are restricted, this
method can eliminate layers and layer seams as well as support, which is necessary for conventional methods when an
overhang exists, and it enables seamless and aesthetic printing.

Keywords: 3D printing, additive manufacturing, declarative model, declarative description, procedural description,
3D printer, G-code

1. Introduction

When a computer is used to process physical parts by machin-
ing, the machining procedure is usually described by a language
called G-code. 3D printing is a form of additive manufactur-
ing (AM), which is a type of machine processing that requires
a program for controlling manufacturing. For this purpose, an
assembly-language-like language called G-code [17] was used.
G-code is originally used for describing the motion of blades of
machine tools, so it is procedural.

Originally, programs written in G-code or APT, which is a
procedural language introduced in Section 2, were described by
the designer of physical parts. Today, however, the designer de-
scribes a declarative model of parts by computer-aided design
(CAD). G-code was originally developed for cutting work (or
subtractive manufacturing, to use the current term). A computer
converted a model to procedural G-code.

In cutting work, procedural design has been completely re-
placed by declarative design, but the author suggests that, in addi-
tive manufacturing, procedural design methods still have advan-
tages. Procedures of cutting work have many constraints and are
complicated, so a procedural description is not suited for describ-
ing cutting work. Moreover, languages for describing it such as
G-code are very low-level and have no abstraction mechanisms,
so it was difficult to program machine work by using such lan-
guges. However, because AM, such as 3D printing, is more in-
tuitive than subtractive manufacturing and because it may be dif-
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Fig. 1 Example of procedurally 3D-printed empty sphere (surface and in-
side).

ficult to print parts using declarative method, it is easier for the
designer to design shapes using abstract procedural description.
For example, it is difficult to generate an empty sphere, which
is similar to the one shown in Fig. 1, by normal layer-by-layer
3D printing, because of the following reason. Almost horizon-
tal overhang of filament is required when printing near the top
of the sphere, so support inside the sphere is inevitable, and it is
difficult to make it empty. However, using an intuitive and elab-
orate procedural description, a clean-shaped empty sphere can be
printed. This is similar to software development; that is, it is
easier to describe the intended behavior of the printer with a pro-
cedural language than with a declarative language. In contrast to
machining, in software development, procedural methods are still
the mainstream.

This paper therefore presents a method for generating G-code
by a Python program that uses a library for 3D printing and is pro-
cedurally abstracted, presents a method for printing using a 3D
printer, and demonstrates the use of this method. The key aims
of this paper are to describe the proposed method from the view-
point of programming and to position the method in the history
of machining and in the range of conventional methods. In Sec-
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tion 2, the history of procedural cutting work, the basic method
for 3D printing, and the programming method for 3D printing are
described. The procedural 3D printing method using a Python
library, which was developed by the author, is described in Sec-
tion 3, and the experimental use of procedural 3D printing is in-
troduced in Section 4. Related work is briefly described in Sec-
tion 5, and Section 6 concludes the paper.

2. Conventional Cutting Work and Additive
Manufacturing

This section examines the value of procedural description in
machining and describes practices of 3D printing. First, the his-
tory of machining is reexamined, and second, the 3D printing
method and programming 3D printers are described.

2.1 History of Procedural Cutting Work
The technologies of cutting work using computerized numerial

control (CNC) and a programming language called APT for CNC
were developed from the 1940s to the 1950s. The technology
of numerical control was invented by John T. Parsons in 1942,
and based on this technology, the technology of CNC was de-
veloped at the Massachusetts Institute of Technology (MIT) [24].
For the control of cutting work, a programming language called
APT [1], [7], [20] was developed at MIT, and it was used for pro-
gramming cutting work. Like an assembly language, APT is pro-
cedual. Parsons used punch cards to record CNC programs, but
paper tapes were used at MIT for this purpose. MIT researchers
developed various subroutines and primitive procedural abstrac-
tion mechanisms such as macros or nested definitions [20]. In
the 1970s, the relationships between APT and data abstraction or
object-orientedness were discussed [20].

However, after initial CAD technologies were developed, de-
signers of physical parts seldom ran machines using procedural
methods. The designers described declarative models, and com-
puters converted them to procedural programs. Declarative meth-
ods were used probably because of the complex nature of cutting
work, which is not amenable to procedural description or the low-
level and weak abstraction functions of G-code and APT. De-
spite the various improvements to APT, certain limitations, such
as compatibility, remained. It was likely difficult for designers to
program cutting machines using APT.

2.2 Conventional 3D Printing and G-code
When using a 3D printer to shape a 3D object, a model is typ-

ically designed by a 3D CAD tool and horizontally sliced by a
program called a slicer; the result is sent to a 3D printer, and it
is printed. When using a CAD tool, the model is usually proce-

durally designed using a graphical user interface, but the model
itself is declarative. For example, a 3D design tool called Open-
SCAD [23], which is a CAD tool used for 3D printing, is unique
because, in this environment, a model is described using a pro-
gramming language; however, this description is still declarative.
The output file formats varies among CAD tools, but a standard
declarative format called STL (Standard Triangulation Language
or Stereo-Lithography) [25] is used to send data to a slicer. STL
approximates the surface shape of models by a collection of tri-

Fig. 2 FDM-type 3D printers (FDM by “Zureks” by Zureks - Wikimedia
Commons).

angles. It does not express the internal structure of models.
There are many types of 3D printers. The cheapest type, which

is widely used (and used in this study), is called fused deposition
modeling (FDM). This type of printers extrudes melted filament
(plastic) from the nozzle and solidify it (Fig. 2).

Conventional 3D printers basially print objects on a layer-by-
layer, but G-code itself is not constrained by the concept of layer.
The result of slicing is usually expressed by G-code, and it spec-
ifies the behaviour of the print head, the extrusion speed of plas-
tic, and so on. 3D printers typically print horizontally and layer
by layer, so they do not usually move the print heads vertically,
except when transitioning between layers. However, because G-
code is not restricted by the concept of layer, they do have the
capacity to move the heads much more freely.

Two examples of G-code commands are shown below. First, a
command named G0 specifies a simple tool (head) motion. For
example, command “G0 X1 Y2 Z3 F3600” describes a motion at
the rate of 3,600 mm/min to location (1, 2, 3). Second, a com-
mand named G1 specifies cutting and moving operations for a
cutting machine and printing and moving operations for a 3D
printer. For example, command “G1 X1 Y2 Z3 F3600 E100”
describes printing with the extrusion amount of filament speci-
fied by “E100” while moving to location (1, 2, 3). (The amount
of filament is specified by an absolute or relative value.) In both
G0 and G1, there are no constraints on direction of motion.

3. Development of Method for Procedural 3D
Printing

A method of procedural 3D printing using Python as the base
language is proposed. In this section, the language and the
method for 3D printing using Python are described.

3.1 Python-based Description Method
In contrast to cutting work, the machining process in additive

manufacturing is relatively intuitive, so it is useful for the de-
signer to describe the model procedurally, as explained in Sec-
tion 1. Therefore, a Python library (application programming in-
terface (API)) is proposed for this purpose. By using a proce-
dural abstraction function (i.e., functions and methods), which is
common in programming languages, modular 3D printing, which
cannot be described by G-code, can be achieved.

Python is used for describing the library in stead of a language
conventionally used for machining, such as APT, for the follow-
ing reasons. APT was improved and updated to have some ab-
straction functions, so it is not impossible to be used for 3D print-
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ing. However, instead of extending APT, it is probably better
to use a languge such as Python as the base for procedural 3D
printing for two reasons. First, it is considered more effective to
employ a widely used language based on modern syntax and se-
mantics. Second, a modern language such as Python has required
language functions such as procedural abstraction, so it is not nec-
essary to extend the language but only to add a library. Many
other languages satisfy these conditions, but Python is selected
as the base language because it is more widely and internation-
ally used than the alternatives. Because APT cannot be executed
by manufacturing machines, a file with an intermediate format
called Cutter Location (CL) is obtained when executing an APT
program. In the same way, in the proposed method, a G-code file
is generated by executing a program written in Python.

Two libraries for procedural 3D printing were developed.
They are draw3dp.py, which is used for 3D model genera-
tion by assembling and deforming parts, and turtle.py, which
is used for model generation by 3D turtle graphics. The lat-
ter (published in http://www.kanadas.com/program-e/2014/08/
a python library for 3d turtle.html) is a library for 3D turtle
graphics. The method for drawing graphics by using turtle.py
is close to that of LOGO [18], but it is used for 3D printing. The
coordinate used for this library is turtle centered (i.e., similar to
that used for a flight simulator), and the turtle creates the shapes
of parts directly. The location of the print head is always the zero
point, and its direction of motion is always forward [8], [9].

In contrast, draw3dp.py (published in http://www.kanadas.
com/program-e/2014/10/3d printing library for parts.html) is
based on Cartesian coordinate. This feature is similar to its
counterpart in Processing [19], MetaPost [6], or Asymptote [22].
However, there is an important difference between this library
and these languages. In the former, as described below, shapes
are generated by a procedural method, that is, the stacking
of directed strings (lines), which is 3D-printing oriented. In
this library, an object surface is thus generated by stacking
strings. In contrast, in the latter, surfaces are a primitive and
lines have no direction. The programming languge available in
OpenSCAD [23] is designed according to the same principle.
In draw3dp.py, a shape can therefore be directly mapped to
a 3D-prining procedure, but in the languages listed above,
including OpenSCAD, it cannot be directly mapped to a 3D-
printing procedure. Therefore, in the case of OpenSCAD, as in
other CAD tools, to enable printing models, a program called a
slicer, which converts a model to a printable form, is required.
Printing fails when the slicer works in a manner that diverges
from the intention of the model designer, as in the case of the
empty sphere described in the introduction. In contrast, the
printer works according to the designer’s intention when using
draw3dp.py.

Figure 3 summarizes the APIs included in draw3dp.py. The
APIs for assembling parts (2D and 3D shape generation) [10] are
explained in Section 3.3, and the APIs for deforming parts [12]
are explained in Section 3.4. The API for modulating parts (part
surfaces) is explained in Section 3.5.

• Constructor: part = draw3dp.Trace(crossSection, x, y, z)

Generate an empty part and specify the start point (current location)

and the cross section.

• Low-level functions

– Motion: part.move(x, y, z)

Move linearly from the current location to (x, y, z), which is the next

location to extrude filament.

– Line generation: part.draw(x, y, z)

Generate a string and add it to the part while moving linearly to (x, y,

z).

– String cross section configuration: part.setCrossSection(c) or

part.thickness(c)

Set the cross section of the string used for part to c from now on.

– Print speed configuration: part.setVelocity(v) or part.speed(v)

Set the print speed of the part to v from now on.

• Two-dimensional part generation (parts assembly)

– Circle generation: part.circle(r, x, y, z)

Add a circle with center location (x, y, z) and radius r to the part.

– Spiral generation: part.spiral(r, hpitch, x, y, z)

Add a spiral with center (x, y, z) and radius r to the part. (hpitch is the

horizontal pitch of the string).

• Three-dimensional part generation (parts assembly)

– Helix generation: part.helix(r, h, vpitch, x, y, z)

Add a helix with center (x, y, z), radius r, and height h to part (vpitch

is the vertical pitch of the string).

– Cylinder generation: part.cylinder(r, h, vpitch, hpitch, x, y, z)

Add a filled cylinder with center (x, y, z), radius r, and height h to the

part (vpitch and hpitch are vertical and horizontal pitch).

• Part deformation

– Deformation by Cartesian coordinates: part.deform xyz(fd, fc, fv)

Map the Cartesian coordinates of part before and after the deforma-

tion by function fd, and convert the cross section by function fc and

printing speed by function fv.

– Deformation by cylinder coordinates: part.deform cylinder(fd, fc, fv)

Map the cylinder coordinates of part before and after the deforma-

tion by function fd, and convert the cross section by function fc and

printing speed by function fv.

• Modulation of part (surface)

– Modulation by cylinder coordinates: part.modulate cylinder(fm)

Modulate part by function fm (generate texture on the part surface).

• G-code generation: part.draw()

Generate G-code to print part (finalize the part).

Fig. 3 Major APIs of procedural 3D printing.

3.2 Part Representation and Generation
3D printers, including the FDM-type, stack strings of ma-

terials (these strings are called “filaments” in FDM). In
draw3dp.py, a part is thus represented by a sequence of strings
S i, (S 1, S 2, ..., S n) [12].

S i = (Pstarti, Pendi, ci, vi)

In this expression, Pstarti denotes the start point and Pendi de-
notes the end point of the string. (They are assumed to be con-
nected by a straight line.) Moreover, ci denotes the cross section
of the string (which can be replaced by a parameter of filament
density), and vi denotes the printing speed (mm/sec), that is, the
velocity of the head motion. Although vi is conceptually unneces-
sary, it is practically convenient. A sequence of strings represents
an object (model), and it depends on the procedural generation of
the object. Each string and a sequence of strings can be regarded
as programs. These programs are converted to G-code before ex-
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Fig. 4 Spiral and helix.

ecuting them.
In this representation, the direction of the filament in each lo-

cation inside the part is specified. If the part is thick, not only the
surface shape but also the structure and density of the filament in
each internal location of the part can be specified. These param-
eters cannot be described by conventional CAD models or STL.
The original purpose of the string-based representation presented
above is to utilize the direction of the filament in 3D prinitng for
expressions of objects (e.g., for an aesthetic purpose) [10], [12].

Parts are treated as objects (in the sense of object-oriented de-
sign), and the class name for parts is Trace. For this purpose, first,
the constructor, draw3dp.Trace, is used to generate an empty part
(See Fig. 3, which also illustrates the methods described below).

In the current version, the library contains a limited number
of simple parts, such as circle, spiral, and helix; however, shapes
that are not combinations of these shapes can also be described
using low-level methods such as line generation. Programs that
represents abstract high-level parts but that cannot be described
by high-level library functions or methods can be described us-
ing low-level library functions in the same way as conventional
procedural programs.

High-level parts were gradually added to the library. The addi-
tion is intended to extend the library by adding useful parts. How-
ever, in the current version, because shapes such as arcs are not
supported, the programmer (designer) must describe them using
the low-level APIs. Available low-level methods include draw,
which draws a straight line to the specified location (which corre-
sponds to G1), and move, which moves the head to the specified
location without extruding filament (which corresponds to G0).
The cross section of a string and the printing speed should also
be controlled by using low-level methods.

The library includes a method called circle, which can draw a
circle easily. Because a string is a line, a circle is approximated by
lines. Because 3D printers cannot typically draw exact arcs, this
approximated shape represents both a limitation of string-based
expression and a limitation of current 3D printers. The number of
strings that forms a circle can also be given by a parameter. How-
ever, if a circle consists of many and excessively short strings,
the printing speed becomes lower than specified, and the printing
work may stop or become unstable.

The library also includes a method called spiral, according to
which single spiral can be drawn (See Fig. 4 (a)). A more compli-
cated part generation method, helix, is also included in the library.
This method generates unnested helix, that is, an empty cylinder
without a bottom. It can generate a thin cylinder of any height,
with no layers and hence no seams between layers.

In contrast to a single cylider generated by method helix,
method cylinder generates a filled cylinder. However, seams can-
not be avoided completely when printing a filled cylinder.

Fig. 5 Olympic symbol printed as a collection of splitted and assembled
rings.

All the methods explained above prints objects helically or spi-
rally from the bottom to the top. By printing helically, new fila-
ment can be supported by the filament below, which can elimi-
nate the inter-layer seams which are often generated by 3D print-
ing [13]. Printing a helix (or a spiral) is, therefore, considered to
be the most important function in procedural 3D printing.

3.3 Parts Assembly
When creating a product or a prototype using machine process-

ing, the normal process is to generate the parts first and then to
assemble them. In subtractive manufacturing, parts are assem-
bled after the cutting process; however, when using AM, multiple
parts are often generated at once. Instead of printing part by part,
all preassembled parts are printed concurrently. Such combina-
tions are enabled by conventional 3D design and printing meth-
ods. The proposed library may also be used for printing assem-
bled parts, although there are currently many limitations on the
combinations.

When using the proposed library, if the parts satisfy the fol-
lowing two conditions, they can be assembled by printing them
sequentially.
• The print head is not disturbed by previously printed fila-

ments.
• Printed filaments are supported by the print bed or previously

printed filament.
Note that the processes for testing these conditions are not yet
automated.

If the above conditions cannot be satisfied even by changing
the printing order, the conditions are to be tested whether they
are satisfied or not by dividing a part and the printing order [10].
For example, a chain of rings cannot be printed procedurally un-
less the rings are divided. Thus, in a previous paper [10], a 3D-
shaped (chained) Olympic symbol was attempted by dividing the
ring manually (because not yet automated) (Fig. 5). However,
because an Olympic symbol cannot be represented by a combi-
nation of parts introduced in Section 3.2, specialized parts (gener-
ation functions) were required. In addition, this Olympic symbol
had to be printed without contact with the print bed, so support
material was required.

By introducing functions with part-assembly procedures, the
functions will become generation functions of complex parts.
They represent procedurally abstracted modular structures (of
programs and printed parts).

3.4 Deformation of Objects
In the library draw3dp.py, a part generated by 3D- or 2D-

generation functions can be deformed before it is printed. De-
formation is introduced because only a limited number of simple
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shapes are manually registered in this library, and thus it is diffi-
cult to generate various shapes through assembly alone. If a part
or a combination of parts can be freely deformed, especially by
applying nonlinear transformations, various shapes can be rela-
tively easily created. In conventional CAD tools, linear transfor-
mations such as translation, rotation, enlargement, and reduction,
can be applied to models. The OpenSCAD lauguage, which was
mentioned in Section 3.1, can also apply these transformations.
However, they can be applied only to declaratively defined parts.
In contrast, in draw3dp.py, procedurally defined parts, which are
defined as a sequence of strings, can be deformed. Because a part
can be regarded as a program as described before, this deforma-
tion can be regarded as a program transfomation. In computer
graphics, a freer deformation is important [2], [21], but deforma-
tions operate only on declaratively defined shapes. Deformation
operation not only has the ability to create various shapes, but can
also preserve 3D-printable [12] parts, and the printability can be
preserved by using these parts.

In draw3dp.py, two methods, deform xyz and deform cylinder,
are supplied for deformation, and method draw is used for fixing
the shape of the part (to generate G-code) (see Fig. 3). Two of
the deformation methods have the same function; however, both
methods are prepared in order to facilitate the used of Cartesian
coordinates in some cases and the use of cylinder coordinates in
others [12].

Method part.deform xyz(fd, fc, fv) deforms part based on
Cartesian coordinates. Function fd(x, y, z) (the first argument)
maps a location (x, y, z) before the deformation to a location after
the deformation. Function fd, thus, returns three values. Func-
tion fc(c, x, y, z) (the second argument) maps a cross section c

before the deformation to a cross section after the deformation.
Function fv(v, x, y, z) (the third argument) maps a printing speed
(head-motion speed) v to a printing speed after the deformation.
Because there is currently no way to preserve 3D printability au-
tomatically, the part designer must define appropriate functions fc

and fv to preserve it.
Method part.deform cylinder(fd, fc, fv) deforms part accord-

ing to the cylinder coordinates. The function of this method is the
same as deform xyz, with the exception that the coordinates are
different. Most of the currently defined parts are printed helically,
so this method, which is based on cylinder coordinates, is more
useful than that based on Cartesian coordinates.

These deformation methods transform the coordinates of the
start and end points of strings. These transformations map
straight lines, that is, strings, to straight lines, so the errors of
midpoints of the strings vary. To preserve printabiity, the trans-
formation function should be continuous, and enlargement and
reduction should be suppressed by these transformations because
enlargement or reduction causes errors, which may spoil print-
ability (i.e., disable printing).

Examples of deformation are shown in Figs. 6 and 7. A 3D-
printing tool called Repetier Host was used to visualize the mod-
els in these figures.

Figure 6 shows a cup, which consists of a helix and thin cylin-
der (bottom), and a shape that is a deformation of the cup. The
cup in Fig. 6 (a) becomes the plate shown in Fig. 6 (b) by applying

Fig. 6 Example of deformation from a cup.

Fig. 7 Example of deformation from helix.

the following deformation:
deform cylinder(fdd, fcd, fvd),

where fdd(r, θ, z) = (r + 1.05z, θ, 0.3z),
fcd(c, r, θ, z) = 0.96 c, and fvd(v, r, θ, z) = v.

Note that the size of the deformed bottom must fit the shape, that
is, deformed helix.

Figure 7 shows a helix and a sphere; the latter is generated by
deforming the helix. Figure 7 (a) shows the original helix, from
which the sphere shown in Fig. 7 (b) is obtained by deformation.
This deformation is based on the following expression, where the
pitch of the filament is preserved (that is, this transformation does
not enlarge or reduce the helix vertically, but it just twist around
a sphere).

deform cylinder(fds, fcs, fvs),
where fds(r, θ, z) = (Radius * sin(π z/cylinderHeight),
θ, r − Radius * cos(π z/cylinderHeight)),

fcs(c, r, θ, z) = 1.2 c, and
fvs(v, r, θ, z) = 1.2 * ((fr(r, θ, z)/Radius)**2 + 0.1) v,

where parameter cylinderHeight denotes the height of the helix
before the deformation, and the length is equal to the half of the
meridian length after the transformation. Several other examples
were shown in a previous paper [12].
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Fig. 8 Binary-valued bitmapped map.

3.5 Texture Map by Modulation of Printing
The proposed 3D-printing method can be relatively easily ex-

tended by drawing (mapping) characters, images, or textures on
the surface of objects to be printed by controlling the printing
process. This method generates asperity by changing the cross
section of filament [14]. An application of this method is called
modulation of printing [14]. Although changing the cross section
while printing cannot generate deep asperity, it can generate shal-
low asperity.

There are two ways to change the cross section of filament.
• Changing the extrusion speed of filament.
• Changing the motion speed of the print head.

The first way is more direct; however, the second way is used in
the present study because it has better responsiveness. Concern-
ing 3D printers, delay of extrusion, that is, the time from motion
change of the extruder, which extrudes the filament, to the change
of filament extrusion, is lengthy. It may be several seconds. The
first method is thus limited by slow responsiveness. Although
the print head of a 3D printer has a high level of inertia, it re-
sponds much more quickly to a motion-speed change. The second
method is thus suited for generating shallow asperity. The pro-
posed library thus uses this method. Method modulate cylinder

is defined for modulation (See Fig. 3).
The example of modulation by a map is described below. If a

plain surface is modulated by a map, the map is printed as is.
In contrast, if a sphere is modulated, a globe can be printed.
Figure 8 shows a binary-valued world map generated from a
world map by equidistant cylindrical projection based on data
from NASA, which can be obtained from the Celsia Mother-
load (http://www.celestiamotherlode.net/catalog/earth.php). This
site contains various maps with various processing and various
bitmap sizes. The size of the map shown in Fig. 8 is 300× 150.
Therefore, each dot in a bitmap should be mapped to an area with
1.2◦ of longitude and 1.2◦ of latitude. Each circle of the globe
should consist of 300 strings; a sphere is generated with 150 cir-
cles, and each dot on the map is mapped to a string on the globe.
That is, the printing speed of each part of the string is selected
from two values.

3.6 Program Example
Because it may be difficult to grasp the entire model generation

and printing process, the process is explained using the program
in Fig. 9, which prints a sphere. After this program configures
constants and parameters, it calls method init for overall initial-

import draw3dp
from math import sin, cos
## Constant ##
PI = 3.14159265359
## Printer parameters ##
IsABS = False # Using PLA as the material
DefaultVelocity = 40 # mm/sec
## Printing parameters ##
x0 = 0; y0 = 0; z0 = 0.4
## Extrusion parameters ##
defaultCrossSection = 0.196 # mm2 (Radius 0.5 mm)
FilamentDiameter = 1.75 # mm (Normally 1.75 mm or 3 mm)
## Temperature patameters ##
if IsABS:

HeadTemperature = 235
# ABS requires slightly highter temperature

BedTemperature = 90 # ABS requieres heating printbed
else: # PLA

HeadTemperature = 220
BedTemperature = 35

# Close to room temperature for PLA

## Initialize ##
draw3dp.init(FilamentDiameter, HeadTemperature,

BedTemperature, DefaultVelocity)
## Generate and print skirt ##
sk = draw3dp.Trace(defaultCrossSection, 0, 0, 0.4)
skirt2(sk) # Definition if skirt2 is omitted
sk.draw(0.4)

## Generate object to be printed ##
obj = draw3dp.Trace(defaultCrossSection, x0, y0, 0.4)
radius = 25.0
helixHeight = PI/2 * radius
rmax = 30.0
vpitch = 0.2; x0 = 0; y0 = 0; z0 = 0.4
obj.setVelocity(36) # Initial printing speed configuration
obj.helix(radius, helixHeight, vpitch, x0, y0, 0) # Generate helix

obj.deform cylinder(
lambda r, theta, z:

(radius * sin(PI*z/helixHeight), theta,
r - radius * cos(PI*z/helixHeight)),

lambda v, r, theta, z: v,
lambda c, r, theta, z:

0.35 * ((0.5 * r + radius) / radius) * c) # Deformation 1
obj.deform cylinder(

lambda r, theta, z: (r, theta, z + z0),
lambda v, r, theta, z: 0.6 * ((r/radius)**1.5 + 0.2) * v,
lambda c, r, theta, z: 2.0 * c) # Deformation 2

## Print ##
obj.draw()

Fig. 9 Program for printing empty sphere.

ization (but especially for initialization of the 3D printer). The
program prints a so-called “skirt”. A skirt is extra filament around
the printing area, which is generated before the part is printed. It
is printed for the sake of stabilizing the state of the print head and
filament. The part to be printed is named “obj”. “Obj” is ini-
tially empty but becomes a helix (by the addition of strings that
form a helix by method helix), and it is deformed to a sphere by
applying method deform cyliner twice. The main deformation is
performed by the first application, but it is slightly moved to z

direction and the printing speed and filament-extrusion speed are
adjusted by the second application. Finally, the strings are con-
verted to G-code using method draw.
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4. Practice of Procedural 3D Printing

By using the method described in the previous section, small
plates, pods, spheres, and globes, which can be printed in
10 to 20 minutes, were manufactured. Although the products
shown in this section are not intended for real-world use, read-
ers can obtain all of these samples (http://bit.ly/1EZ4SZI or
http://store.shopping.yahoo.co.jp/dasyn/).

4.1 Plates and Pods Generated from Cup
Plates and pods with various shapes generated using the

method described in Section 3.4 are shown in Fig. 10. Fig-
ures 10 (a) and (b) show plates [3], which are deformed from a
helix as shown in Fig. 6 (b). Even when winding filaments mostly
horizontally, no support material, which may make the printed
object cloudy, is required. Figure 10 (a) shows a four-cycle plate
(i.e., with four trigonometric-function-based cyclic motions), and
Figs. 10 (b) shows a three-cycle plate. Both specify a trigono-
metric function in function f d, which is an argument of method
deform cylinder. Because the angle of plate surface and filament
density varies from location to location, the reflection of light also
varies [12]. Such reflection or brightness is generated using pure
and transparent polylactic acid (PLA) and by eliminating support
material. No such reflection is generated by colored plastics.

Figure 10 (c) shows a plate generated by using a transformation

Fig. 10 Plates and pods.

from a circular helix to a heart-shaped helix [4]. The following
function, which converts a circle to a heart shape, is used.

fdh(x, y, z) = (x + b z sqrt(abs(y)/radius), y, z)
This shape is based on the equation of a heart-shaped

curve [26]. An appropriate range of b is 0−1.2. This transfor-
mation becomes an identity function if b z = 0 holds, and it gen-
erates a sharper heart shape if the value of b − z becomes large.
The helix is deformed using this function and deform xyz. The
shape of the horizontal cross section is a circle at the bottom, and
it becomes sharper toward the top because the value of b − z in-
creases monotonically. By changing the maximum value of b,
the various shapes shown in Fig. 10 (c) are generated. Moreover,
as Fig. 10 (c) shows, the gradient and reflection of plate parts are
varied by adding small verticall oscillations using a trigonomet-
ric function. Figure 10 (d) shows two types of vases. The left
vase [14] is generated by radius-direction and vertical-direction
deformations using trigonometric functions. The right vase is
generated by twisting the same heart-shaped helix (that is, the
direction of the heart changes according to the height).

4.2 Helix-based Spheres and Other Objects
As explained in Section 3.4, a sphere can be generated by de-

forming a helix. The left photo in Fig. 11 shows a simple sphere
generated by this method. Because it is not possible to support
it at single point (i.e., the south pole) when printing it, a spe-
cial technique for support is required. However, no support in
the conventional meaning is used [12]. The right photo in Fig. 11
shows an object generated by further deforming a sphere using a
trigonometric function in the same way for the objects shown in
Figs. 10 (a) and (b).

Figure 12 shows objects generated with the modulation tech-
nique that uses a bitmap, which is described in Section 3.5. The
left photo shows a globe [5], which was generated by modulating

Fig. 11 Sphere and deformed sphere.

Fig. 12 Modulated sphere (globe) and bowl.
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Fig. 13 Shade for small lamp.

a sphere by a map. The whole sphere is illuminated by only one
LED placed below the sphere [15]. The right photo shows a half-
sphere-shaped bowl (more precisely, a half sphere and a stand)
modulated by alphabets. (This bowl was printed upside down.)

When printing a globe, the printing speed of each string is se-
lected from two alternative values. The printing may fail if the
ratio of the cross sections of sea and land is too large. An appro-
priate ratio is 1 to 0.6 or 1 to 0.7.

As described above, when using a bitmap of 300× 150, each
string cycle is divided into 300 short strings. However, near the
poles, the strings are too short, so the number of strings is re-
duced. It is possible for reducing them when generating the globe
model, but, because method draw has a function to reduce the
number of connected short strings, the model representation does
not to be changed.

Figure 13 shows small shades [11] for LED bulbs generated
from a helix. The left photo shows a shape generated by de-
forming a partial sphere using trigonometric functions. The right
photo shows a shape generated by modulating the same partial
sphere using trigonometric functions. Most of the materials for
FDM-type 3D printing become weak in the presense of heat, so
they are not suited for filament lamps; however, even PLA can
be used for LED shades because LEDs generate less heat. These
shades are largest of the objects shown in this section (but their
diameter is about 100 mm), but the printing time is around 20
minutes. The printing time is shorter than in conventional 3D
printing because the shades are thin (the filament is unnested), but
their relatively strong intensity protects them from beging easily
broken even if dropped (This is is the case for other objects as
well).

5. Related Work

The proposed method is characterized by modeling objects to
be 3D printed using a combination of procedural parts, which are
printed helically or spirally. In the examples shown in the previ-
ous section, filament is stacked seamlessly and in an aesthetically
pleasing manner. Klein, et al. [16] established a method for the
helical 3D printing of transparent glass. The objects printed ac-
cording to this method are seamless and aesthetically pleasing.
The photos in their paper shows aesthetic effects of light reflec-
tion and refraction. However, they did not mention the design
method used for their work.

6. Conclusion

Current design methods for 3D printing are declarative, and
procedural description by designers has not been succeeded in
cutting work. However, the author suggests that procedural de-
scription is advantageous in additive manufacturing. Thus, li-
braries for procedural 3D printing are developed, as is a method
for 3D printing, in which G-code programs are generated by this
method and procedurally abstacted Python programs. Although
printable shapes are restricted when using this method, layers and
layer seams can be eliminated, as can the support materials re-
quired for conventional methods eliminated, and seamless and
aesthetically pleasing printing is enabled by this method. The au-
thor intends to disseminate this method and the library through
this paper.
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