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ABSTRACT 

When creating shapes by using a 3D printer, usually, a static (declarative) model designed by using a 3D CAD 

system is translated to a CAM program and it is sent to the printer. However, widely-used FDM-type 3D printers 

input a dynamical (procedural) program that describes control of motions of the print head and extrusion of the 

filament. If the program is expressed by using a programming language or a library in a straight manner, solids 

can be created by a method similar to turtle graphics. An open-source library that enables “turtle 3D printing” 

method was described by Python and tested. Although this method currently has a problem that it cannot print in 

the air; however, if this problem is solved by an appropriate method, shapes drawn by 3D turtle graphics freely 

can be embodied by this method. 
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I. INTRODUCTION 
When creating solids by using a 3D printer, 

usually, a model designed by a 3D CAD system is 

horizontally sliced by using a program called a 

“slicer” and the resulting file is sent to the printer. 

Although there are various output formats for 3D 

design data outputted by CAD systems, the slicer 

usually accepts a file described by STL (Standard 

Triangulation Language or Stereo-Lithography), 

which is a declarative language. STL approximates 

the surface shape of the model by a collection of 

triangles. (It cannot express the inner structure of 3D 

shapes.)  

Although the model outputted from a CAD 

system is static (declarative), CAM programs for 3D 

printers are dynamic (procedural) because they create 

products operationally. There are various types of 3D 

printers; however, most of cheaper printers belong to 

the FDM (fused deposition modeling) type. FDM-

type printers extrude melted filament (plastic) from a 

tip of a nozzle and solidify it. (Figure 1). When using 

an FDM-type printer, the object to be printed is sliced 

horizontally and represented by G-code [3], which is 

a language for computer-aided manufacturing (CAM) 

and originally used for conventional machining tools 

such as milling machines. The model outputted from 

a CAD system in STL or other format is static 

(declarative); however, because G-code originally 

expresses motion of machine tools, it is intrinsically 

dynamic (procedural/operational). The motion of a 

print head and the velocity of plastic extrusion can be 

specified by G-code.  

Two examples of G-code commands are 

described. First, G0 command orders simple tool 

motion. For example, the following command 

specifies motion to coordinate (0, 0, 0) by speed 3600 

mm/min.   

 

 

G0 X0 Y0 Z0 F3600 

Second, for carving machine tools, G1 command 

means a motion with carving, but it means a motion 

with printing (i.e., with extruding filament) for 3D 

printers. For example, by executing the following 

command, the head of a 3D printer extrudes amount 

of filament specified by E100 while moving to (0, 0, 

0).  

G0 X0 Y0 Z0 F3600 E100 

(The amount of filament may be a relative or absolute 

value according to specified printer mode.)  

 
Figure 1. Principle of FDM-type 3D printers  

("FDM by Zureks" by Zureks - Wikimedia 

Commons) 

 

The print head of an FDM-type printer only 

moves to restricted directions in normal situations; 

however, it can actually move freely. Because an 

FDM-type printer usually prints sliced object layer by 

layer, the print head usually does not move vertically 

except when transition between layers. However, by 

using G-code directly, it can be moved to arbitrary 

direction. For example, if the following command is 

executed when the original coordinate is (x0, y0, z0), 

the head moves to (x1, y1, z1).  

G0 Xx1 Yy1 Zz1  

Although many 3D printers are not designed to 

move toward vertical direction quickly, Delta-type 

printers, such as Rostock MAX, are suited for this 

purpose. 
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II. RELATED WORK 
Although recent researches and practices on 

machining are mostly based on CAD, the history of 

computer numerical control (CNC) started with 

procedural language based approach. 3D printers are 

considered to be machine tools for additive 

manufacturing (AM), and the history of computerized 

numerical machine tools began in subtractive 

manufacturing, such as lathes or milling machines. In 

1950s and 1960s, programming languages for 

subtractive tools were widely studied. A 

representative language is APT [1], which was 

developed in MIT.  

Topolabs [7] develops software for non-

horizontal FDM 3D printing. They demonstrate a 

video on their printing process of a sloped but smooth 

object in YouTube [8] and show several horizontally 

and vertically curved “line arts” [7], which are 

similar to 3D turtle graphics in this paper. However, 

their line arts are 2D (i.e., single-layer) objects. No 

3D objects, such as shown in this paper, are shown. 

Turtle 3D printing is close to APT in describing 

tool motions and process procedurally. However, it is 

different in their objectives, i.e., the purpose of turtle 

3D printing is to develop AM, and in the coordinates 

used for description. In addition, the library 

developed for turtle 3D printing is for a general-

purpose language, i.e., Python, but APT was a 

language specialized for CNC (and maybe close to 

Logo, which was a special-purpose language). 

However, it can be said that turtle 3D printing is a 

revival of machine processing by using a procedural 

language, which has been neglected as a forgotten 

background of CAD-based technologies since 

1960’s.  

 

III. TURTLE GRAPHICS 
This section describes (2D) turtle graphics and 

3D extensions of them. 

 

A. 2D turtle graphics 

Turtle graphics was introduced by Seymore 

Papert in 1960s. Papert proposed a programming 

language called Logo, which was designed for 

children. By using Logo, 2D line-art can be drawn by 

a trajectory of a “turtle”. This is called “turtle 

graphics”.  

The basic drawing commands of turtle graphics 

are the following three.  

 Forward d.  This command moves the turtle 

forward by distance d. 

 Turn left a.  This command turns the turtle to the 

left by angle a° (degrees). 

 Turn right a.  This command turns the turtle to 

the right by angle a°. 

By using these commands, the turtle can be moved to 

any location in the 2D space, and the trajectory can 

be displayed as shown in Figure 2.  

 
Figure 2. 2D turtle graphics 

 

B. 3D turtle graphics 

As described in the previous subsection, turtle 

graphics is originally two-dimensional; however, 

similar methods called “3D turtle graphics” were 

developed to draw 3D shapes (e.g., [9][6]). To extend 

turtle graphics to 3D, commands for moving up/down 

or for turning up/down must be added. Moreover, 

Bernd Paysan proposed “Dragon Graphics” [5], 

which is an extended 3D turtle graphics that can 

generate complex 3D shapes easily. However, all of 

them are graphics for displaying shapes by a 2D 

display. They cannot show the trajectory of turtle by 

3D display.  

 

IV. “TURTLE GRAPHICS” BY 3D 

PRINTING 
This section discusses on a method of 3D 

printing, which is based on 3D turtle graphics and 

describes a design and implementation of this 

method. This method is called the turtle 3D printing 

method. 

 

A. Outline 

The semantics of 3D drawing commands and G-

code are similar, so the former can be translated to 

the latter. Because G-code is procedural, it can 

execute commands similar to turtle-graphics 

commands. However, human beings do not usually 

write G-code directly, and it is not suited for human 

because it is similar to assembly languages. 

Fortunately, it is easy to translate 3D drawing 

commands to G-code; it is required only to translate 

forward command to G1 command. It can thus 

execute commands similar to turtle graphics. 

However, because the coordinate of a print head 

is usually described by using a Descartes coordinate, 

they must be translated to turtle-direction-based 

coordinates. The printing procedure can be translated 

by a combination of the following three. First, the 

direction of the turtle is memorized by the G-code 

generation program. Second, when translating the 

forward command, the next coordinate is calculated 

by using the current coordinate and direction and set 

to the arguments of the G1 command. Third, when 

translating a “turn left” or “turn right” command, the 

direction in the memory is to be updated. An 

up/down motion can be performed in the same way, 
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but a coordinate system must be selected before 

describing the method. 

 

B. Selection of a coordinate system 

There are two alternatives for turtle coordinate: 

polar coordinate and cylindrical coordinate. Polar 

coordinate is used for flight simulators, and the 

direction of turtle is decided independent of the 

gravity direction. Unfortunately, because it is 

inevitable to take gravity direction into account in 3D 

printing, this coordinate makes guaranteeing 

printability difficult. That is, when using a flight 

simulator (and probably when flying by an airplane), 

it is easy to crash the airplane because it is difficult to 

grasp the gravity direction. A similar situation occurs 

in 3D printing. 

When using cylindrical coordinate, the turtle 

always assumed to be directed horizontally. A 

vertical motion is described by specifying the vertical 

displacement, but the direction of the turtle is 

unchanged. Because the gravity direction is constant 

for the turtle, it is easier to design objects to be 

printed than using polar coordinate. 

 

C. Difference between turtle 3D printing and 3D 

turtle graphics 

As described above, by using a 3D printer, solids 

can be generated in a similar way as 3D turtle 

graphics. However, there are two differences between 

turtle 3D printing and 3D turtle graphics. 

The first difference is that a line can be drawn at 

any location in the 3D virtual space by turtle graphics 

but a printed material (or a print bed) to support 

extruded filament is usually required and it is 

difficult to print in the air when using 3D printing. 

The second difference is that the printing speed 

and the amount of filament extrusion, which are 3D-

printing-specific parameters, must (can) be controlled 

in turtle 3D printing. Although thickness or some 

other properties of lines can be specified in turtle 

graphics, they can be freely chosen. In contrast in 

turtle 3D printing, printing speed and/or extrusion 

speed, which determine the thickness, must be 

selected properly for printing exactly and beautifully. 

 

V. ALTERNATIVES AND LIBRARY DESIGN 
Alternatives for supporting turtle 3D printing 

functions are described and the Python library that 

implements the selected functions is explained in this 

section. 

 

A. Alternatives for turtle 3D printing 

Turtle 3D printing function can be naturally 

described procedurally, so this function can naturally 

be part of a programming language in the same 

method as Logo or other turtle-graphics language-

functions. In consequence, two alternative methods 

exist. 

 To develop a special-purpose language such as 

Logo. 

 To develop a library for an existing language.  

The author selected the second alternative. The 

reason is as follows. When Logo was designed in 

1960’s, there were not many programming languages 

and it was not easy to extend an existing language to 

include turtle graphics, probably therefore, an 

alternative to develop a new language was selected. 

However, there are many extensible languages today, 

so there is no reason for introducing a new language 

for this purpose; that is, this function can more easily 

be used if it is introduced into existing languages. 

This is the reason why this function is provided as a 

library for an existing language. 

Although it is better to support this function for 

various languages, Python is selected for the first 

language because Python is one of the most widely 

used language in modern languages. 

 

B. Library for Python 

The author developed turtle.py, which is a 

Python library for turtle 3D printing, and provided it 

as open-source software (http://bit.ly/1rVknxD or 

http://www.kanadas.com/program-e/2014/08/-

a_python_library_for_3d_turtle.html). However, it is 

still under development; that is, it is only for a 

specific 3D printer (Rostock MAX). 

By using functions, such as forward, left, or 

right, which is defined in this library, a G-code 

program for turtle 3D printing can be generated. This 

means, the library enables programming in the 

following way. A cylinder coordinate is used and the 

moving direction of the turtle, i.e., the print head, is 

always the front direction of the coordinate. Function 

forward(dr, dz) generates G-code command that 

proceeds the turtle forward by dr and lifts it up by dz, 

and function left(da) generates G-code command that 

turns the turtle left by da degrees. 

For example, a program that stacks filaments by 

drawing a helix can be described as follows. 

  turtle.init(FilamentDiameter,        

      HeadTemperature, BedTemperature,  

      CrossSection, x0, y0, 0.4) 

  dz = 0.4 / 72 

  for j in range(0, 16): 

     for i in range(0, 72): 

        forward(1, dz) 

        left(5) 

turtle.init is a function for initialization and 

explained later. This program is similar to a 2D 

turtle-graphics program that draws an approximated 

circle by repeating advancing and turning 5° 72 

times. What is different is that, instead of advancing 

straightforward, the turtle lifts up by dz (mm). The 

vertical pitch of extruded filament is assumed to be 

0.4 mm. It lifts up the turtle by 0.4 mm by 72 times 

motions, thus the filaments are stacked well. The 

http://bit.ly/1rVknxD
http://www.kanadas.com/program-e/2014/08/a_python_library_for_3d_turtle.html
http://www.kanadas.com/program-e/2014/08/a_python_library_for_3d_turtle.html
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diameter of the extruded filament must be slightly 

larger than 0.4 mm (that means the amount of 

extrusion must be adjusted so). It makes bonding 

adjacent filaments.  

The initialization function, turtle.init, adjusts the 

following values. The first argument, FilamentDiam-

eter, specifies the diameter of filament inputted to the 

printer. It is usually 1.75 mm or 3 mm depending on 

the printer type. 

The second and third arguments, HeadTempera-

ture and BedTemberature, specify the temperatures of 

the print head and the print bed. Materials such as 

acrylonitrile butadiene styrene (ABS) or polylactic 

acid (PLA) are used for filament. The head 

temperature is around 200–220°C for PLA and 220–

240°C for ABS. The bed temperature is 25–35°C for 

PLA and 80–110°C for ABS. A higher bed-

temperature is used for ABS because ABS shrinks 

when the temperature goes down and printed objects 

unstuck from the print bed. 

The fourth argument, CrossSection, specifies the 

cross section of extruded filament. This argument is 

given for controlling the amount of filament 

extrusion. This parameter specifies the amount of 

extruded filament. An FDM-type 3D printer specifies 

the amount of extrusion by the length of filament 

provided for the printer. This specification must be 

rewritten when changing the diameter of filament. 

The amount of extrusion is specified by the cross 

section in the library, so only the value of the first 

argument of turtle.init must be changed when 

changing the filament diameter. 

The last three arguments specify the initial 

location (coordinates) of the turtle. They are specified 

by Descartes coordinates. 

 

VI. EXPERIMENTS 
The library, turtle.py, was used for several 

shapes as examples. This section describes, in 

addition to the printing results, the development and 

printing processes using several free tools are 

described. 

 

A. Examples 

Shapes such as a cylinder (helix), a skewed 

square pyramid, a 2D fractal, were used for the 

experiments. Figure 3 shows the shapes displayed by 

graphics (by a software tool called Repetier Host). 

Figure 3(a) shows a simplest shape, i.e., a helix or an 

empty cylinder. Figure 3(b) shows a skewed square 

pyramid, which is a shrinking pattern. A 2D fractal 

such as shown in Figure 3(c) does not fully utilize the 

functions of 3D printers, i.e., 3D shape generation. 

3D fractal shapes are better for utilizing them; 

however, as far as the author knows, 3D fractal 

shapes require printing in the air, so they cannot be 

generated by turtle 3D printing; that is, no method for 

supporting filament in the air is given. 

   
(a) Cylinder (Helix)       (b) Skewed square pyramid  

 
(c) Fractal tree (2D) 

Figure 3. Examples for turtle 3D printing  

(visualized by Repetier Host) 

 

B. Method 

The basic procedure for turtle 3D printing is as 

follows (Figure 4). 

(1) Describing the program and generating a G-code 

program 

(2) Verifying the G-code program by graphics  

(3) 3D printing (sending the G-code program to a 

printer) 

This means, the developer first describes a 

Python program using turtle.py, and generates G-

code program by executing the Python program. By 

using a visualization tool, he/she confirms the printed 

shape represented by the G-code program. When 

succeeded, he/she tries printing the program. 

However, the correct shape is not usually obtained by 

a single iteration of this process. So the process is 

repeated (i.e., the program is repeatedly modified) 

until an appropriate result is obtained.   

 
1) Program description 

      
  2) Verification by graphics     3) 3D printing 

Figure 4. Steps of turtle 3D printing 
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The reason why a single iteration does not 

usually generate a correct result is that there are many 

factors that spoil the result even when the 

visualization by the tool is succeeded. An easy factor 

is that, because turtle.init does not initialize the 

printer completely, printing may fail because of 

incomplete initialization; however, this problem can 

easily be solved. Another factor is that optimum 

temperature may vary by the difference of filament 

even when the filament material is the same, e.g., it is 

PLA; however, the temperature can easily be 

optimized. A difficult factor is that printed filament 

may go down or up or may cave in because the 

filament must be supported by previously printed 

filament but it fails. Examples are shown later. When 

it is not possible to avoid caving in, the vertical pitch 

may have to be changed smaller. 

The above three steps are explained in detail in 

the following subsections.  

1) Program description and G-code generation 

To develop a program and to execute it, any 

development tools for Python can be used. The 

author used Emacs for describing and executing 

Python programs (Figure 5). By executing the 

developed program, a G-code program is generated 

from the standard output. It is outputted to a file.  

 
Figure 5. Program description and debugging by 

using an editor / development environment  

(Emacs example) 

 

Figure 6 shows the main parts of the programs 

used for generating objects shown in Figure 3. 

Figure 6(a), which generates a cylinder shown in 

Figure 3(a), shows a straightforward program that 

does not contain any moving- or extrusion-speed 

control commands. In contrast, Figure 6(b), which 

generates a skewed square pyramid shown in 

Figure 3(b), contains motion-speed control, i.e., 

speed function call. These function calls reduce the 

motion speed to take time for cooling. 

Figure 6(c), which generates a fractal tree shown 

in Figure 3(c), contains branching control. This 

means, because the pattern to be generated branches, 

it is necessary to return the print head explicitly to 

branching points and to continue printing. In the case 

of drawing graphics by a programming language, the 

execution context is automatically recovered when a 

function call ended, so there is no need to return 

explicitly. However, in the case of turtle 3D printing 

(by turtle.py), there is no built-in context saving and 

recovery mechanism, so it must be done explicitly. 

No automatic branching control is included in the 

library because the author believes context saving 

and recovery should be manually designed by a 

human programmer. In general (if the printed object 

is really 3D), it is very difficult to design returning 

and printing another branch without collision and 

caving in.  

The program in Figure 6(c) contains branching 

control by using getTurtle and setTurtle functions 

defined in turtle.py. Function getTurtle gets the 

location and the azimuth of the turtle, and function 

setTurtle sets them. These functions must be built-in 

into the library because the location and the azimuth 

are usually hidden in the library.  

def cylinder(): 

    dz = 0.4 / 72 

    for j in range(0, 16): 

        for i in range(0, 72): 

            forward(2, dz) 

            left(5) 

    return 

(a) Cylinder (Figure 3(a)) 

def skewedSquares(): 

    speed(10) 

    dz = 0.4 / 4 

    dxy = 0.4 / 4 

    linelen = 30 

    times = int(linelen / dxy) 

    left(45) 

    for j in range(0, times): 

        speed(linelen + 1) 

        forward(linelen, dz) 

        left(90.5) 

        linelen –= dxy 

    return 

(b) Skewed square pyramid (Figure 3(b)) 

def genTree_1(x0, y0, z0, azimuth0, size): 

    if size >= 2: 

        setTurtle(x0, y0, z0, azimuth0) 

        forward(size, 0) 

        (X0, Y0, Z0, Azimuth0) = getTurtle() 

        size1 = 0.75 * size 

        genTree_1(X0, Y0, Z0, Azimuth0 + 30, size1) 

        genTree_1(X0, Y0, Z0, Azimuth0 – 30, size1) 

    return 

def genTree1(): 

    turtle.speed(20) 

    genTree_1(–30, 0, 0.4, 0, 30) 

    return 

(c) Fractal tree (Figure 3(c)) 

Figure 6. Example programs 
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2) Confirmation of creation by visualization tool 

A visualization tool for 3D printing can be used 

for confirming the shape generated by the G-code 

program. A tool called Repetier Host is convenient 

for this purpose (Figure 7). Repetier Host runs on 

Windows, Macintosh, or Linux. (However, the 

Macintosh version is quite old and it is not easy to 

install it on Linux.) Although other similar tools may 

exist, Repetier Host has various convenient display 

functions and it can be used for printing generated G-

code programs. Figure 7 shows the window of the 

Macintosh version, which is not good for printing but 

may be better for visualization. The G-code program 

is shown at the right-side of the window.  

In this step, the developer should examine the 

object can be printed well by using the visualization 

tool; however, complete check is difficult by such 

tools. Only weak checks such as a command syntax 

check are possible by conventional tools such as 

Repetier Host. The developer may often fail to judge 

printability. One reason for this failure is that the 

print process is dynamic but graphics display is static.  

 
Figure 7. Confirmation of object by visualization  

 

3) Printing object 

Most 3D printers can print a solid represented by 

a G-code program, so the G-code program generated 

by the developed Python program is outputted to a 

3D printer by using a 3D printer driver program. The 

author uses two driver tools for printing objects, i.e., 

Repetier Host and Pronterface. Repetier Host is 

convenient because it can also be used for 

visualization; however, sometimes it is not very 

stable, so Pronterface, which is unstable too, may be 

used. Printing process may sometimes stop in the 

middle. If it stops, it must be started from the 

beginning. However, restarting cost is smaller than 

conventional 3D printing because objects such as 

shown in Figure 3 takes shorter time, i.e., five 

minutes or so, for printing than normal printed solids 

that are filled with filament, which may require hours 

for printing.  

 

4) Printing processes and results 

A printing process was recorded as a video. It 

can be seen in YouTube (http://youtu.be/7H5-

acxQ_RE). 

Examples of shapes, such as cylinders, cones, or 

pyramids, which were created by repeating advance 

and turning (distance x and angle a), are shown in 

Figure 8. If the same amount of advance and turning 

is repeated, it generates a cylinder. If the advance 

parameter, x, is changed, the pattern is shrinking or 

expanding.  

  
(a) Skewed square pyramid (a shrinking pattern) 

     
(b) Example of expanding pattern 

Figure 8. Printed results – patterns with rotation and 

shrinking/expanding  

 

In the case of skewed square pyramid shown in 

Figure 8(a), the pattern is shrinking. The right photo 

in this figure was taken from above. This photo 

suggests the relationship between this shape and the 

2D shape shown in Figure 2. (However, the pattern in 

this figure is expanding, i.e., time is reversed.) 

An example of expanding pattern is shown in 

Figure 8(b). A meticulous care is required when 

printing such an expanding pattern because the 

ground contact area is small and it can easily unstuck 

from the bed.  

Figure 9 shows examples of other types of 

library usages. Figure 9(a) shows a 2D fractal tree, 

which was described in Section 6.1. This figure 

shows thin strings are generated when returning the 

print head. A method for avoiding them should be 

developed. It is not easy to avoid them automatically.  

Figure 9(b) shows a pattern generated by 

increasing the turning angle when repeating 

advancing and turning. This is also a 2D pattern. 

Because it is an emergent pattern, it is difficult to 

design a supported 3D pattern.  

http://youtu.be/7H5-acxQ_RE
http://youtu.be/7H5-acxQ_RE
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(a) 2D fractal tree 

 
(b) 2D shape created by advances and turning 

expanding angles 

    
(c) A shape with less vertical overlapping of 

filaments  

Figure 9. Other printed examples 

 

Figure 9(c) shows a sparse pattern that the turtle 

does not stack filament completely. The left figure 

shows the visualized G-code and the right photo 

shows the printed result. Originally, the vertical pitch 

was designed to be 0.4 mm. However, because the 

pitch was smaller in the printed result, i.e, the pattern 

was caved in, it was redesigned to be 0.3 mm so that 

the macroscopic shape becomes closer to the design. 

However, part of the filament that is not supported by 

the filament below still sags. If supported area is 

reduced, the filament sags more; however, in the case 

of Figure 9(c), the print result is still close to the 

design. 

An example of typical failure is also shown, 

because it is important to analyze such cases. 

Although Figure 9(c) can be regarded as a failed 

case, it is intentional. In contrast, Figure 10 shows an 

example of obvious failure. It was intended to 

generate a skewed cylinder. The diameter of the 

cylinder is designed to be increasing. If the amount of 

increase is small, this process succeeds. However, if 

it exceeds the limit, it does not stack well. If tension 

works on the filament, the filament follows a straight 

line instead of an arc as shown in Figure 10 (a).  

  
(a) Failed result 

 
(b) Succeeded result 

Figure 10. An example of failure in turtle 3D printing 

 

 

VII. DISCUSSION 
In the turtle 3D printing method, a cylindrical 

coordinate or a polar coordinate, which is fixed to the 

turtle, is used. However, to specify an orbit of a head 

of a 3D printer, in addition to this method, a method 

based on a Descartes coordinate, which is fixed to the 

outside world, can also be used. The turtle-based 

method is suited for emergent drawing, which is not 

completely designed. In contrast, the Descartes-

coordinate-based method is suited for designing the 

shape and orbit completely. Although the patterns 

shown in Figure 7 have approximately continuous 

side surfaces, such surfaces can be more easily 

handled by using a Descartes coordinate. Another 

paper [2] develops such a method, which creates 

objects by combining predefined parts, deforming 

them, and printing them. The research directions of 

these two methods seem to be different. To develop 

turtle 3D printing further, it is necessary to loosen the 

constraint that it is impossible to print in the air. 

Actually, there are some 3D printers, e.g., “Mataerial 

3D printer” [4], which can print in the air, although 

shapes they can create are restricted. 

 

VIII. CONCLUSION 
“Turtle 3D printing” method, which is a method 

for printing solids in a way similar to turtle graphics, 

was developed. A library for turtle 3D printing was 

described by Python, and used for printing some 

examples such as a skewed square pyramid or fractal 

shapes. By combining this library and G-code tools 

and a 3D printer, turtle 3D printing based 

environment for developing 3D shapes can be 
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realized. Although turtle-based printing process is 

strictly constrained by the fact that most of current 

3D printers cannot print in the air, various shapes, 

especially emergent artistic shapes, can be generated 

by this method if this problem is solved by an 

appropriate method. 

Future work includes trial of other shapes, 

especially shapes with smaller supported area, 

development of new usage of turtle.py, enhancing 

turtle.py, trial of polar coordinate.  
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