
Yasusi Kanada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -5) April 2015, pp.70-77

 www.ijera.com 70 | P a g e

“3D Turtle Graphics” by using a 3D Printer

Yasusi Kanada
Dasyn.com, Japan

ABSTRACT

When creating shapes by using a 3D printer, usually, a static (declarative) model designed by using a 3D CAD

system is translated to a CAM program and it is sent to the printer. However, widely-used FDM-type 3D printers

input a dynamical (procedural) program that describes control of motions of the print head and extrusion of the

filament. If the program is expressed by using a programming language or a library in a straight manner, solids

can be created by a method similar to turtle graphics. An open-source library that enables “turtle 3D printing”

method was described by Python and tested. Although this method currently has a problem that it cannot print in

the air; however, if this problem is solved by an appropriate method, shapes drawn by 3D turtle graphics freely

can be embodied by this method.

Keywords - 3D printer, Turtle graphics, Fused Deposition Modeling, FDM

I. INTRODUCTION
When creating solids by using a 3D printer,

usually, a model designed by a 3D CAD system is

horizontally sliced by using a program called a

“slicer” and the resulting file is sent to the printer.

Although there are various output formats for 3D

design data outputted by CAD systems, the slicer

usually accepts a file described by STL (Standard

Triangulation Language or Stereo-Lithography),

which is a declarative language. STL approximates

the surface shape of the model by a collection of

triangles. (It cannot express the inner structure of 3D

shapes.)

Although the model outputted from a CAD

system is static (declarative), CAM programs for 3D

printers are dynamic (procedural) because they create

products operationally. There are various types of 3D

printers; however, most of cheaper printers belong to

the FDM (fused deposition modeling) type. FDM-

type printers extrude melted filament (plastic) from a

tip of a nozzle and solidify it. (Figure 1). When using

an FDM-type printer, the object to be printed is sliced

horizontally and represented by G-code [3], which is

a language for computer-aided manufacturing (CAM)

and originally used for conventional machining tools

such as milling machines. The model outputted from

a CAD system in STL or other format is static

(declarative); however, because G-code originally

expresses motion of machine tools, it is intrinsically

dynamic (procedural/operational). The motion of a

print head and the velocity of plastic extrusion can be

specified by G-code.

Two examples of G-code commands are

described. First, G0 command orders simple tool

motion. For example, the following command

specifies motion to coordinate (0, 0, 0) by speed 3600

mm/min.

G0 X0 Y0 Z0 F3600

Second, for carving machine tools, G1 command

means a motion with carving, but it means a motion

with printing (i.e., with extruding filament) for 3D

printers. For example, by executing the following

command, the head of a 3D printer extrudes amount

of filament specified by E100 while moving to (0, 0,

0).

G0 X0 Y0 Z0 F3600 E100

(The amount of filament may be a relative or absolute

value according to specified printer mode.)

Figure 1. Principle of FDM-type 3D printers

("FDM by Zureks" by Zureks - Wikimedia

Commons)

The print head of an FDM-type printer only

moves to restricted directions in normal situations;

however, it can actually move freely. Because an

FDM-type printer usually prints sliced object layer by

layer, the print head usually does not move vertically

except when transition between layers. However, by

using G-code directly, it can be moved to arbitrary

direction. For example, if the following command is

executed when the original coordinate is (x0, y0, z0),

the head moves to (x1, y1, z1).

G0 Xx1 Yy1 Zz1

Although many 3D printers are not designed to

move toward vertical direction quickly, Delta-type

printers, such as Rostock MAX, are suited for this

purpose.

RESEARCH ARTICLE OPEN ACCESS

Yasusi Kanada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -5) April 2015, pp.70-77

 www.ijera.com 71 | P a g e

II. RELATED WORK
Although recent researches and practices on

machining are mostly based on CAD, the history of

computer numerical control (CNC) started with

procedural language based approach. 3D printers are

considered to be machine tools for additive

manufacturing (AM), and the history of computerized

numerical machine tools began in subtractive

manufacturing, such as lathes or milling machines. In

1950s and 1960s, programming languages for

subtractive tools were widely studied. A

representative language is APT [1], which was

developed in MIT.

Topolabs [7] develops software for non-

horizontal FDM 3D printing. They demonstrate a

video on their printing process of a sloped but smooth

object in YouTube [8] and show several horizontally

and vertically curved “line arts” [7], which are

similar to 3D turtle graphics in this paper. However,

their line arts are 2D (i.e., single-layer) objects. No

3D objects, such as shown in this paper, are shown.

Turtle 3D printing is close to APT in describing

tool motions and process procedurally. However, it is

different in their objectives, i.e., the purpose of turtle

3D printing is to develop AM, and in the coordinates

used for description. In addition, the library

developed for turtle 3D printing is for a general-

purpose language, i.e., Python, but APT was a

language specialized for CNC (and maybe close to

Logo, which was a special-purpose language).

However, it can be said that turtle 3D printing is a

revival of machine processing by using a procedural

language, which has been neglected as a forgotten

background of CAD-based technologies since

1960’s.

III. TURTLE GRAPHICS
This section describes (2D) turtle graphics and

3D extensions of them.

A. 2D turtle graphics

Turtle graphics was introduced by Seymore

Papert in 1960s. Papert proposed a programming

language called Logo, which was designed for

children. By using Logo, 2D line-art can be drawn by

a trajectory of a “turtle”. This is called “turtle

graphics”.

The basic drawing commands of turtle graphics

are the following three.

 Forward d. This command moves the turtle

forward by distance d.

 Turn left a. This command turns the turtle to the

left by angle a° (degrees).

 Turn right a. This command turns the turtle to

the right by angle a°.

By using these commands, the turtle can be moved to

any location in the 2D space, and the trajectory can

be displayed as shown in Figure 2.

Figure 2. 2D turtle graphics

B. 3D turtle graphics

As described in the previous subsection, turtle

graphics is originally two-dimensional; however,

similar methods called “3D turtle graphics” were

developed to draw 3D shapes (e.g., [9][6]). To extend

turtle graphics to 3D, commands for moving up/down

or for turning up/down must be added. Moreover,

Bernd Paysan proposed “Dragon Graphics” [5],

which is an extended 3D turtle graphics that can

generate complex 3D shapes easily. However, all of

them are graphics for displaying shapes by a 2D

display. They cannot show the trajectory of turtle by

3D display.

IV. “TURTLE GRAPHICS” BY 3D

PRINTING
This section discusses on a method of 3D

printing, which is based on 3D turtle graphics and

describes a design and implementation of this

method. This method is called the turtle 3D printing

method.

A. Outline

The semantics of 3D drawing commands and G-

code are similar, so the former can be translated to

the latter. Because G-code is procedural, it can

execute commands similar to turtle-graphics

commands. However, human beings do not usually

write G-code directly, and it is not suited for human

because it is similar to assembly languages.

Fortunately, it is easy to translate 3D drawing

commands to G-code; it is required only to translate

forward command to G1 command. It can thus

execute commands similar to turtle graphics.

However, because the coordinate of a print head

is usually described by using a Descartes coordinate,

they must be translated to turtle-direction-based

coordinates. The printing procedure can be translated

by a combination of the following three. First, the

direction of the turtle is memorized by the G-code

generation program. Second, when translating the

forward command, the next coordinate is calculated

by using the current coordinate and direction and set

to the arguments of the G1 command. Third, when

translating a “turn left” or “turn right” command, the

direction in the memory is to be updated. An

up/down motion can be performed in the same way,

Yasusi Kanada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -5) April 2015, pp.70-77

 www.ijera.com 72 | P a g e

but a coordinate system must be selected before

describing the method.

B. Selection of a coordinate system

There are two alternatives for turtle coordinate:

polar coordinate and cylindrical coordinate. Polar

coordinate is used for flight simulators, and the

direction of turtle is decided independent of the

gravity direction. Unfortunately, because it is

inevitable to take gravity direction into account in 3D

printing, this coordinate makes guaranteeing

printability difficult. That is, when using a flight

simulator (and probably when flying by an airplane),

it is easy to crash the airplane because it is difficult to

grasp the gravity direction. A similar situation occurs

in 3D printing.

When using cylindrical coordinate, the turtle

always assumed to be directed horizontally. A

vertical motion is described by specifying the vertical

displacement, but the direction of the turtle is

unchanged. Because the gravity direction is constant

for the turtle, it is easier to design objects to be

printed than using polar coordinate.

C. Difference between turtle 3D printing and 3D

turtle graphics

As described above, by using a 3D printer, solids

can be generated in a similar way as 3D turtle

graphics. However, there are two differences between

turtle 3D printing and 3D turtle graphics.

The first difference is that a line can be drawn at

any location in the 3D virtual space by turtle graphics

but a printed material (or a print bed) to support

extruded filament is usually required and it is

difficult to print in the air when using 3D printing.

The second difference is that the printing speed

and the amount of filament extrusion, which are 3D-

printing-specific parameters, must (can) be controlled

in turtle 3D printing. Although thickness or some

other properties of lines can be specified in turtle

graphics, they can be freely chosen. In contrast in

turtle 3D printing, printing speed and/or extrusion

speed, which determine the thickness, must be

selected properly for printing exactly and beautifully.

V. ALTERNATIVES AND LIBRARY DESIGN
Alternatives for supporting turtle 3D printing

functions are described and the Python library that

implements the selected functions is explained in this

section.

A. Alternatives for turtle 3D printing

Turtle 3D printing function can be naturally

described procedurally, so this function can naturally

be part of a programming language in the same

method as Logo or other turtle-graphics language-

functions. In consequence, two alternative methods

exist.

 To develop a special-purpose language such as

Logo.

 To develop a library for an existing language.

The author selected the second alternative. The

reason is as follows. When Logo was designed in

1960’s, there were not many programming languages

and it was not easy to extend an existing language to

include turtle graphics, probably therefore, an

alternative to develop a new language was selected.

However, there are many extensible languages today,

so there is no reason for introducing a new language

for this purpose; that is, this function can more easily

be used if it is introduced into existing languages.

This is the reason why this function is provided as a

library for an existing language.

Although it is better to support this function for

various languages, Python is selected for the first

language because Python is one of the most widely

used language in modern languages.

B. Library for Python

The author developed turtle.py, which is a

Python library for turtle 3D printing, and provided it

as open-source software (http://bit.ly/1rVknxD or

http://www.kanadas.com/program-e/2014/08/-

a_python_library_for_3d_turtle.html). However, it is

still under development; that is, it is only for a

specific 3D printer (Rostock MAX).

By using functions, such as forward, left, or

right, which is defined in this library, a G-code

program for turtle 3D printing can be generated. This

means, the library enables programming in the

following way. A cylinder coordinate is used and the

moving direction of the turtle, i.e., the print head, is

always the front direction of the coordinate. Function

forward(dr, dz) generates G-code command that

proceeds the turtle forward by dr and lifts it up by dz,

and function left(da) generates G-code command that

turns the turtle left by da degrees.

For example, a program that stacks filaments by

drawing a helix can be described as follows.

 turtle.init(FilamentDiameter,

 HeadTemperature, BedTemperature,

 CrossSection, x0, y0, 0.4)

 dz = 0.4 / 72

 for j in range(0, 16):

 for i in range(0, 72):

 forward(1, dz)

 left(5)

turtle.init is a function for initialization and

explained later. This program is similar to a 2D

turtle-graphics program that draws an approximated

circle by repeating advancing and turning 5° 72

times. What is different is that, instead of advancing

straightforward, the turtle lifts up by dz (mm). The

vertical pitch of extruded filament is assumed to be

0.4 mm. It lifts up the turtle by 0.4 mm by 72 times

motions, thus the filaments are stacked well. The

http://bit.ly/1rVknxD
http://www.kanadas.com/program-e/2014/08/a_python_library_for_3d_turtle.html
http://www.kanadas.com/program-e/2014/08/a_python_library_for_3d_turtle.html

Yasusi Kanada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -5) April 2015, pp.70-77

 www.ijera.com 73 | P a g e

diameter of the extruded filament must be slightly

larger than 0.4 mm (that means the amount of

extrusion must be adjusted so). It makes bonding

adjacent filaments.

The initialization function, turtle.init, adjusts the

following values. The first argument, FilamentDiam-

eter, specifies the diameter of filament inputted to the

printer. It is usually 1.75 mm or 3 mm depending on

the printer type.

The second and third arguments, HeadTempera-

ture and BedTemberature, specify the temperatures of

the print head and the print bed. Materials such as

acrylonitrile butadiene styrene (ABS) or polylactic

acid (PLA) are used for filament. The head

temperature is around 200–220°C for PLA and 220–

240°C for ABS. The bed temperature is 25–35°C for

PLA and 80–110°C for ABS. A higher bed-

temperature is used for ABS because ABS shrinks

when the temperature goes down and printed objects

unstuck from the print bed.

The fourth argument, CrossSection, specifies the

cross section of extruded filament. This argument is

given for controlling the amount of filament

extrusion. This parameter specifies the amount of

extruded filament. An FDM-type 3D printer specifies

the amount of extrusion by the length of filament

provided for the printer. This specification must be

rewritten when changing the diameter of filament.

The amount of extrusion is specified by the cross

section in the library, so only the value of the first

argument of turtle.init must be changed when

changing the filament diameter.

The last three arguments specify the initial

location (coordinates) of the turtle. They are specified

by Descartes coordinates.

VI. EXPERIMENTS
The library, turtle.py, was used for several

shapes as examples. This section describes, in

addition to the printing results, the development and

printing processes using several free tools are

described.

A. Examples

Shapes such as a cylinder (helix), a skewed

square pyramid, a 2D fractal, were used for the

experiments. Figure 3 shows the shapes displayed by

graphics (by a software tool called Repetier Host).

Figure 3(a) shows a simplest shape, i.e., a helix or an

empty cylinder. Figure 3(b) shows a skewed square

pyramid, which is a shrinking pattern. A 2D fractal

such as shown in Figure 3(c) does not fully utilize the

functions of 3D printers, i.e., 3D shape generation.

3D fractal shapes are better for utilizing them;

however, as far as the author knows, 3D fractal

shapes require printing in the air, so they cannot be

generated by turtle 3D printing; that is, no method for

supporting filament in the air is given.

(a) Cylinder (Helix) (b) Skewed square pyramid

(c) Fractal tree (2D)

Figure 3. Examples for turtle 3D printing

(visualized by Repetier Host)

B. Method

The basic procedure for turtle 3D printing is as

follows (Figure 4).

(1) Describing the program and generating a G-code

program

(2) Verifying the G-code program by graphics

(3) 3D printing (sending the G-code program to a

printer)

This means, the developer first describes a

Python program using turtle.py, and generates G-

code program by executing the Python program. By

using a visualization tool, he/she confirms the printed

shape represented by the G-code program. When

succeeded, he/she tries printing the program.

However, the correct shape is not usually obtained by

a single iteration of this process. So the process is

repeated (i.e., the program is repeatedly modified)

until an appropriate result is obtained.

1) Program description

 2) Verification by graphics 3) 3D printing

Figure 4. Steps of turtle 3D printing

Yasusi Kanada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -5) April 2015, pp.70-77

 www.ijera.com 74 | P a g e

The reason why a single iteration does not

usually generate a correct result is that there are many

factors that spoil the result even when the

visualization by the tool is succeeded. An easy factor

is that, because turtle.init does not initialize the

printer completely, printing may fail because of

incomplete initialization; however, this problem can

easily be solved. Another factor is that optimum

temperature may vary by the difference of filament

even when the filament material is the same, e.g., it is

PLA; however, the temperature can easily be

optimized. A difficult factor is that printed filament

may go down or up or may cave in because the

filament must be supported by previously printed

filament but it fails. Examples are shown later. When

it is not possible to avoid caving in, the vertical pitch

may have to be changed smaller.

The above three steps are explained in detail in

the following subsections.

1) Program description and G-code generation

To develop a program and to execute it, any

development tools for Python can be used. The

author used Emacs for describing and executing

Python programs (Figure 5). By executing the

developed program, a G-code program is generated

from the standard output. It is outputted to a file.

Figure 5. Program description and debugging by

using an editor / development environment

(Emacs example)

Figure 6 shows the main parts of the programs

used for generating objects shown in Figure 3.

Figure 6(a), which generates a cylinder shown in

Figure 3(a), shows a straightforward program that

does not contain any moving- or extrusion-speed

control commands. In contrast, Figure 6(b), which

generates a skewed square pyramid shown in

Figure 3(b), contains motion-speed control, i.e.,

speed function call. These function calls reduce the

motion speed to take time for cooling.

Figure 6(c), which generates a fractal tree shown

in Figure 3(c), contains branching control. This

means, because the pattern to be generated branches,

it is necessary to return the print head explicitly to

branching points and to continue printing. In the case

of drawing graphics by a programming language, the

execution context is automatically recovered when a

function call ended, so there is no need to return

explicitly. However, in the case of turtle 3D printing

(by turtle.py), there is no built-in context saving and

recovery mechanism, so it must be done explicitly.

No automatic branching control is included in the

library because the author believes context saving

and recovery should be manually designed by a

human programmer. In general (if the printed object

is really 3D), it is very difficult to design returning

and printing another branch without collision and

caving in.

The program in Figure 6(c) contains branching

control by using getTurtle and setTurtle functions

defined in turtle.py. Function getTurtle gets the

location and the azimuth of the turtle, and function

setTurtle sets them. These functions must be built-in

into the library because the location and the azimuth

are usually hidden in the library.

def cylinder():

 dz = 0.4 / 72

 for j in range(0, 16):

 for i in range(0, 72):

 forward(2, dz)

 left(5)

 return

(a) Cylinder (Figure 3(a))

def skewedSquares():

 speed(10)

 dz = 0.4 / 4

 dxy = 0.4 / 4

 linelen = 30

 times = int(linelen / dxy)

 left(45)

 for j in range(0, times):

 speed(linelen + 1)

 forward(linelen, dz)

 left(90.5)

 linelen –= dxy

 return

(b) Skewed square pyramid (Figure 3(b))

def genTree_1(x0, y0, z0, azimuth0, size):

 if size >= 2:

 setTurtle(x0, y0, z0, azimuth0)

 forward(size, 0)

 (X0, Y0, Z0, Azimuth0) = getTurtle()

 size1 = 0.75 * size

 genTree_1(X0, Y0, Z0, Azimuth0 + 30, size1)

 genTree_1(X0, Y0, Z0, Azimuth0 – 30, size1)

 return

def genTree1():

 turtle.speed(20)

 genTree_1(–30, 0, 0.4, 0, 30)

 return

(c) Fractal tree (Figure 3(c))

Figure 6. Example programs

Yasusi Kanada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -5) April 2015, pp.70-77

 www.ijera.com 75 | P a g e

2) Confirmation of creation by visualization tool

A visualization tool for 3D printing can be used

for confirming the shape generated by the G-code

program. A tool called Repetier Host is convenient

for this purpose (Figure 7). Repetier Host runs on

Windows, Macintosh, or Linux. (However, the

Macintosh version is quite old and it is not easy to

install it on Linux.) Although other similar tools may

exist, Repetier Host has various convenient display

functions and it can be used for printing generated G-

code programs. Figure 7 shows the window of the

Macintosh version, which is not good for printing but

may be better for visualization. The G-code program

is shown at the right-side of the window.

In this step, the developer should examine the

object can be printed well by using the visualization

tool; however, complete check is difficult by such

tools. Only weak checks such as a command syntax

check are possible by conventional tools such as

Repetier Host. The developer may often fail to judge

printability. One reason for this failure is that the

print process is dynamic but graphics display is static.

Figure 7. Confirmation of object by visualization

3) Printing object

Most 3D printers can print a solid represented by

a G-code program, so the G-code program generated

by the developed Python program is outputted to a

3D printer by using a 3D printer driver program. The

author uses two driver tools for printing objects, i.e.,

Repetier Host and Pronterface. Repetier Host is

convenient because it can also be used for

visualization; however, sometimes it is not very

stable, so Pronterface, which is unstable too, may be

used. Printing process may sometimes stop in the

middle. If it stops, it must be started from the

beginning. However, restarting cost is smaller than

conventional 3D printing because objects such as

shown in Figure 3 takes shorter time, i.e., five

minutes or so, for printing than normal printed solids

that are filled with filament, which may require hours

for printing.

4) Printing processes and results

A printing process was recorded as a video. It

can be seen in YouTube (http://youtu.be/7H5-

acxQ_RE).

Examples of shapes, such as cylinders, cones, or

pyramids, which were created by repeating advance

and turning (distance x and angle a), are shown in

Figure 8. If the same amount of advance and turning

is repeated, it generates a cylinder. If the advance

parameter, x, is changed, the pattern is shrinking or

expanding.

(a) Skewed square pyramid (a shrinking pattern)

(b) Example of expanding pattern

Figure 8. Printed results – patterns with rotation and

shrinking/expanding

In the case of skewed square pyramid shown in

Figure 8(a), the pattern is shrinking. The right photo

in this figure was taken from above. This photo

suggests the relationship between this shape and the

2D shape shown in Figure 2. (However, the pattern in

this figure is expanding, i.e., time is reversed.)

An example of expanding pattern is shown in

Figure 8(b). A meticulous care is required when

printing such an expanding pattern because the

ground contact area is small and it can easily unstuck

from the bed.

Figure 9 shows examples of other types of

library usages. Figure 9(a) shows a 2D fractal tree,

which was described in Section 6.1. This figure

shows thin strings are generated when returning the

print head. A method for avoiding them should be

developed. It is not easy to avoid them automatically.

Figure 9(b) shows a pattern generated by

increasing the turning angle when repeating

advancing and turning. This is also a 2D pattern.

Because it is an emergent pattern, it is difficult to

design a supported 3D pattern.

http://youtu.be/7H5-acxQ_RE
http://youtu.be/7H5-acxQ_RE

Yasusi Kanada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -5) April 2015, pp.70-77

 www.ijera.com 76 | P a g e

(a) 2D fractal tree

(b) 2D shape created by advances and turning

expanding angles

(c) A shape with less vertical overlapping of

filaments

Figure 9. Other printed examples

Figure 9(c) shows a sparse pattern that the turtle

does not stack filament completely. The left figure

shows the visualized G-code and the right photo

shows the printed result. Originally, the vertical pitch

was designed to be 0.4 mm. However, because the

pitch was smaller in the printed result, i.e, the pattern

was caved in, it was redesigned to be 0.3 mm so that

the macroscopic shape becomes closer to the design.

However, part of the filament that is not supported by

the filament below still sags. If supported area is

reduced, the filament sags more; however, in the case

of Figure 9(c), the print result is still close to the

design.

An example of typical failure is also shown,

because it is important to analyze such cases.

Although Figure 9(c) can be regarded as a failed

case, it is intentional. In contrast, Figure 10 shows an

example of obvious failure. It was intended to

generate a skewed cylinder. The diameter of the

cylinder is designed to be increasing. If the amount of

increase is small, this process succeeds. However, if

it exceeds the limit, it does not stack well. If tension

works on the filament, the filament follows a straight

line instead of an arc as shown in Figure 10 (a).

(a) Failed result

(b) Succeeded result

Figure 10. An example of failure in turtle 3D printing

VII. DISCUSSION
In the turtle 3D printing method, a cylindrical

coordinate or a polar coordinate, which is fixed to the

turtle, is used. However, to specify an orbit of a head

of a 3D printer, in addition to this method, a method

based on a Descartes coordinate, which is fixed to the

outside world, can also be used. The turtle-based

method is suited for emergent drawing, which is not

completely designed. In contrast, the Descartes-

coordinate-based method is suited for designing the

shape and orbit completely. Although the patterns

shown in Figure 7 have approximately continuous

side surfaces, such surfaces can be more easily

handled by using a Descartes coordinate. Another

paper [2] develops such a method, which creates

objects by combining predefined parts, deforming

them, and printing them. The research directions of

these two methods seem to be different. To develop

turtle 3D printing further, it is necessary to loosen the

constraint that it is impossible to print in the air.

Actually, there are some 3D printers, e.g., “Mataerial

3D printer” [4], which can print in the air, although

shapes they can create are restricted.

VIII. CONCLUSION
“Turtle 3D printing” method, which is a method

for printing solids in a way similar to turtle graphics,

was developed. A library for turtle 3D printing was

described by Python, and used for printing some

examples such as a skewed square pyramid or fractal

shapes. By combining this library and G-code tools

and a 3D printer, turtle 3D printing based

environment for developing 3D shapes can be

Yasusi Kanada Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -5) April 2015, pp.70-77

 www.ijera.com 77 | P a g e

realized. Although turtle-based printing process is

strictly constrained by the fact that most of current

3D printers cannot print in the air, various shapes,

especially emergent artistic shapes, can be generated

by this method if this problem is solved by an

appropriate method.

Future work includes trial of other shapes,

especially shapes with smaller supported area,

development of new usage of turtle.py, enhancing

turtle.py, trial of polar coordinate.

REFERENCES
[1] Brown, S. A., Drayton, C. E., and Mittman,

B., “A Description of the APT Language”,

Communications of the ACM, 6(11), 1963,

649‒658.

[2] Kanada, Y., “3D-printing of Generative Art

by using Combination and Deformation of

Direction-specified 3D Parts”, 4th Interna-

tional Conference on Additive

Manufacturing and Bio-Manufacturing

(ICAM-BM 2014), November 2014,

http://www.kanadas.com/papers-e/2014/11/3

dprinting_of_generative_art_b.html.

[3] Kramer, T. R., Proctor, F. M., and Messina,

E. “The NIST RS274NGC Interpreter -

Version 3”, NISTIR 6556, August 2000.

[4] Mataerial – A Radically New 3D Printing

Method, http://www.mataerial.com/.

[5] Paysan, B., ““Dragon Graphics”, Forth,

OpenGL and 3D-Turtle-Graphics”, August

2009, http://bernd-paysan.de/dragongraphic

s-eng.pdf

[6] Tipping, S., “Cheloniidae”, December

2010.

[7] Topolabs, “Topolabs”, http://www.topolabs.

com/.

[8] Topolabs, “Topolabs Revolutionary New 3D

Printing Software Changes How We Think

of FDM Printers”, http://www.youtube.com

/watch?v=pbGUJt_hcCE.

[9] Verhoeff, T., “3D Flying Pipe-Laying

Turtle”, Wolfram Demonstrations Project,

http://demonstrations.wolfram.com/3DFlyin

gPipeLayingTurtle/

http://www.kanadas.com/papers-e/2014/11/3%20dprinting_of_generative_art_b.html
http://www.kanadas.com/papers-e/2014/11/3%20dprinting_of_generative_art_b.html
http://www.mataerial.com/
http://bernd-paysan.de/dragongraphic%20s-eng.pdf
http://bernd-paysan.de/dragongraphic%20s-eng.pdf
http://demonstrations.wolfram.com/3DFlyingPipeLayingTurtle/
http://demonstrations.wolfram.com/3DFlyingPipeLayingTurtle/

