
1998-12 (Partially updated on 2009-7)

 1

Fine-grained Full-text Search

Yasusi Kanada

Central Research Laboratory, Hitachi Ltd.
 Higashi-Koigakubo 1-280, Kokubunji, Tokyo 185, Japan

E-mail: kanada@crl.hitachi.co.jp

Keywords:
IR theory and models (general), passage retrieval, user interface (UI) design for IR

(general).

Abstract
Most conventional text retrieval methods are designed to search for documents.

However, users often do not require documents themselves, but are searching for spe-
cific information that may come from a large collection of texts quickly. To satisfy this
need, we have developed a model and two methods for fine-grained searching. The unit
of search in this model is called an atom, and it can be a sentence or smaller syntactic
unit. A score, i.e., a relevance value, is defined for each atom and for each query, and the
score is propagated between atoms. By using the two methods, excerpts from texts
surrounding the search-result items and/or hyperlinks to the document parts that include
the items are displayed. Multiple topics in a document can be separately listed in a
search result. Evaluation of two prototypes, using a conventional full-text search engine
as is or with only a small modification, has demonstrated that these methods are feasible
and can decrease the search cost in terms of time and effort for users.

1998-12 (Partially updated on 2009-7)

 2

1 Introduction
Most conventional text retrieval methods are able to search for documents, but not for smaller units
of text. Although document retrieval is sufficient for users who want to read entire documents,
many users are only interested in specific information within documents rather than the documents
themselves. Such users want to find needed or interesting information from a large collection of
documents quickly. If a document contains multiple interesting topics, they should be listed sepa-
rately in the search results for the benefit of such users. To satisfy these user needs, information
retrieval methods must be developed that can

• Locate text parts, that contain information relevant to the user, and/or display excerpts from
around the text parts.

• Separately list multiple topics within single documents.

We call this type of text search fine-grained searching.
A passage retrieval method can be the basis for a fine-grained searching function. In passage

retrieval, a document is divided into smaller units, such as chapters, sections, paragraphs, and so on.
The text units are characterized by a vector of term frequencies or similar quantities, and text units
that have characteristics that match the query are obtained as the search-result items. Although
passage retrieval can be used to retrieve text units that are smaller than documents, this approach has
almost always been used to improve document retrieval performance [Woo 97].

There are three problems in using passage retrieval to retrieve fine-grained text units, such as
words or sentences. First, statistics play an important role in passage retrieval, but they do not work
well when the unit of search is too small because the statistical errors becomes excessive. Second,
the text units must be fixed before beginning a retrieval. Thus, the text units may be too large or too
small, or the text may be inappropriately divided. If the text unit can vary depending on the query,
interesting topics may be listed separated in the search result even if the text units are not
fine-grained. However, the topics cannot be separated well in passage retrievals. Third, although
an ad hoc technique that can handle the relationships between text units can be introduced into a
passage retrieval method, there is no unified framework to do so.

We have developed two search methods that satisfy the two needs stated above and that do not
involve the above three problems. These methods are called fine-grained search methods, and have
two main features.

The first feature is that a document is regarded as consisting of atoms, which are small text units,
such as sentences, words, or characters. Atoms are the units of search. An item in a search result
contains the text in an atom or the text surrounding the atom, and/or contains a hyperlink to the atom
in the original text. So that part of the document or an excerpt that contains the atom can be dis-
played to the user. Also, if a topic is equal to or larger than an atom, multiple topics can be separated
in the search result.

The second feature is that a score, which is a measure of the relevance to the query, is assigned
to each atom, and the propagation mechanism of the value between atoms is introduced as the
framework for describing the relationship between atoms.

1998-12 (Partially updated on 2009-7)

 3

In this paper, the model of fine-grained searching is described, then two methods for imple-
menting the model are explained and compared, and results assigned when implementing and
evaluating these methods are shown.

2 The Fine-grained Search Model
A model for fine-grained searching is explained in this section in the following order: (1) the most
generalized model, (2) the basic function in a more specific model, in which input is limited as
character strings, (3) the function of conjunctive and disjunctive searching and searching that re-
flects term frequency.

2.1 A generalized model
The fine-grained search model, at a generalized level, is explained using Figure 1. In this model, a
text collection consists of documents and hyperlinks between document parts (Figure 1(a)). A
document is a sequence of atoms. An atom may be a character, word, sentence or larger unit of text.
A hyperlink is a directed edge between two atoms. To simplify the model, the anchor texts of the
hyperlink, in the sense of the Web, are asserted to be an atom in this paper.1 A score, i.e., a re-
levance value, is defined for each query and for each atom (Figure 1(b)). A score function s(a, q) is
thus defined for each atom a ∈ A in the text collection and each possible query q ∈ Q.

Text collections can be embedded into a continuous space. This means that the domain of the
score function, Q×A, can be continuous. However, only the above discrete model, in which both Q
and A are discrete, is explained and used in this paper.

atom hyperlink

a3

a2a1

a4
low score

high score
propagation

score s(a, q)

higher

higher

neighbor of a1

A Text Collection

(a) A text collection (b) Score and value propagation
Figure 1. Fine-grained text searching

The function of fine-grained text searching is explained using Figure 2. A search operation is to
find a set of atoms {a1, a2, …, an} (or a set of atom sequences) that have scores higher than a

1 If the anchor texts contain multiple atoms, a hyperlink must be defined as a directed edge between two sets
of sequences of atoms. If the anchor texts are parts of an atom, this fine-grained search model should be
redefined to be exact.

1998-12 (Partially updated on 2009-7)

 4

threshold. The search system inputs query q and outputs a list of search-result items, each of which
corresponds to ai (i = 1, 2, …, n). A search-result item contains a copy of the text in the atom or the
text surrounding the atom. The item also contains a hyperlink to the atom in the original text.1 This
output is similar to the conceptual index [Woo 97]. The user can follow this hyperlink and see the
text surrounding the atom or the whole document.

User
Query q

Search result

Fine-grained
Search Engine

atom hyperlink

A Text Collection

a1 text1
a2 text2
a3 text3
...

a1

a2

a3

text1

text2

text3

Figure 2. The function of fine-grained searching

2.2 A string-list-input model
From this section, a query is asserted to be defined by character strings to be searched for and
possibly operators, such as AND or NOT. The syntax of queries is not specified and it can be more
general in the abstract model described in the previous section.. If an atom or a sequence of atoms
contains a specified character string (or a string close to the specified one), the score of the atoms is
high (Figure 3). If an atom is a word or sentence and the specified string is a word, the atom can
contain the string (see “word” in Figure 3(a)). If an atom is a character, it cannot contain a string
that consists of multiple characters (see “word” in Figure 3(b)).

atom

high scorescore s(a, q) score s(a, q)

threshold threshold

w o r dw o r d

(a) Case 1: atom is larger (b) Case 2: search string is larger
Figure 3. Relative size of atoms and search string and scores

If the score of an atom is high, the scores of the neighboring atoms become higher in this model.
This means that a score value is propagated to the syntactic neighbors (see a2 in Figure 1(b)).

1 It is possible to include only an excerpt or a hyperlink in the search-result item, instead of both.

1998-12 (Partially updated on 2009-7)

 5

Propagated values from different atoms are additive.1 Several propagation methods are shown here.
The first method is the one-time propagation method. Atoms ai1, ai2, … are the neighbors of ai, and
s0(ai, q) is the score function without the propagation, then the score function with the propagation,
s(ai, q), may be computed by

s(ai, q) = s0(ai, q) + ∑i ≠ k cik s(aik, q) (a summation over all the neighbors of ai),

where cik (0 ≤ cik < 1, i = 1, 2, …) are constants. The second method is the relaxation method.
Scores are repeatedly propagated to nearest atoms until the scores converge. The third method is the
decay function method. Score s(ai, q) is computed by

s(ai, q) = ∑ j ≥ i d(ai, aj) s0(aj, q) (a summation over all the atoms a1, a2, a3, …),

where d(a, a’) (0 ≤ d(a, a’) ≤ 1 and d(a, a) = 1) is a decreasing function of distance between a and
a’. This function is called a decay function.

If an atom is connected by a hyperlink from another atom, the former is regarded as a neighbor
of the latter. The value is thus propagated by hyperlinks as well as through syntactic neighbors (see
a4 in Figure 1(b)).2

Due to the score propagation, a document can be regarded as a “smooth” object. This means that
each atom in the document is in a text flow (of syntax or semantics) among atoms, and the neigh-
boring atoms do not suddenly have very high or very low scores. In other words, although the text
units are very small in the fine-grained search method, are not independent texts but they are related
by the neighboring relationships or hyperlink relationships. This is in contrast to passage retrieval
or conventional document retrieval in which the text units are basically independent of each other.

The most distinct feature of the fine-grained search method is that a unified means, i.e., prop-
agation, is used to represent the relationships between text units. Other effects caused by score
propagation are explained in the next section.

However, two problems may be caused by score propagation. The first problem is the redun-
dancy in search results. The fine-grained search algorithm may output all the neighboring atoms of
an atom that has a high score value (Figure 3(b)). This makes the search result very redundant
because the user will often see the neighbor atoms by following the text or links from an atom. It
would be better for the search algorithm to return only representative atoms.

The second problem is the computation overhead. A large amount of computation is necessary
if the score value is propagated throughout a document or an entire set of linked documents. This is
especially so when using the relaxation method. The model must be designed so as to keep the
amount of computation under a reasonable limit.

2.3 Extended search function
In the fine-grained search model, functions similar to disjunctive searching (i.e., searching with
OR), conjunctive searching (i.e., searching with AND), and searching that reflects term frequencies
can be roughly simulated by using the score propagation, as explained below.

1 Thus, theoretically, it is natural to represent the fine-grained search method by a neural net, in which atoms
are represented by neurons.
2 The neighboring relationship can be defined by the edges in syntactic trees or case structures.

1998-12 (Partially updated on 2009-7)

 6

• Simulated OR searching
If multiple strings are specified in the query, the score of an atom or a sequence of atoms that
contains at least one of the strings will be high. A disjunctive search can thus be simulated by
simply specifying multiple strings.

• Simulated AND searching
If two or more specified strings occur in an atom or a sequence of atoms, the score will be higher
than that in single occurrence cases due to the additivity of propagation. Thus, if an appropriate
propagation and score calculation method is introduced, and an appropriate threshold is set, only
atoms that are close to all the search strings will be included in the search result. A conjunctive
search can thus be roughly simulated. A similar result can be obtained by limiting the range of
score propagation instead of adjusting the threshold. (An example is given later.)

• Searching that reflects term frequency
When a specified string occurs several times in an atom or a sequence of atoms, the score is
higher than when there is a single occurrence. This is also due to the additivity of propagation.
The score of an atom in a document or a part of a document in which the term frequency (tf) is
high will therefore be higher.

In conventional text retrieval, the score of a search-result item is often a function of the inverse
document frequency (idf). However, in a fine-grained search, no such global information is in-
cluded in the score, because the score propagation is a local effect.

The simulation of a conjunctive search is explained in more detail here. In a simulated con-
junctive search, unlike a conventional conjunctive search in document retrieval, the score does not
rise due to multiple strings appearing in a document if the strings are far apart. Thus, if multiple
strings appear in a document and the score is high, the strings are close each other and probably
related to the context.

The threshold must be specified so that the score value exceeds the threshold when multiple
search strings occur within a limited distance. For example, the decay function may be defined as
exp(–x2/4), where the number of search strings ns is asserted to be two to four, and the threshold is
defined as ns – 1. If all ns strings occur in the same atom or neighboring atoms (i.e., the distance is
zero or one), the score is above the threshold. If ns – 1 strings occur in the same atom, the score is
equal to ns – 1, but is not above the threshold.

However, other conditions, such as the term frequency, may cause high scores. So an atom may
be included in the search result even when the conjunctive condition is not satisfied. To realize
crisp conjunctive searching without such events, a method different from the decay function or
relaxation method may be introduced. In this method, the score propagation can be defined as
follows. The score value of an atom is propagated only within the distance m (given with atoms as
the unit). Only the score values of atoms that contain the search string become high. Then, it be-
comes possible to select only the atoms that satisfy the conjunctive conditions. Thus, the query
ANDm(s1, s2, …, sn) means that all of strings, s1, s2, …, sn, occur in an existing sequence of atoms
with length m. If this condition is satisfied for a sequence of atoms in the text collection, the scores
of the atoms (after propagation) will be high.

1998-12 (Partially updated on 2009-7)

 7

2.4 Examples of fine-grained searching
As an example of fine-grained searching, a search result for the query AND5(impressionist，music)
(translated from Japanese) in the World Encyclopædia [HDH 98] is shown in Table 1. The result
shown is a translated output of the search system that implements the atom-document search method
explained in Section 3.2. In Table 1, as well as in the article titles (document titles) and the excerpts
(copies of text that the atoms contain), the headings of the sections that contain each atom are
shown. Hyperlinks to the original text are embedded in the excerpts. The heading column is empty

if there is no heading except the article title. There were 18 search-result items, and six documents.
Articles 2, 3, 9, 10, 11, 17, and 18 are considered to be non-relevant.1

1 The relevance of the search-result items was judged in an ad hoc manner here, and was not very objective.
Items 14 and 15 in Table 1 implies that Saint-Saëns was an anti-impressionist, so he was regarded as being
related to the impressionists, and the items were judged to be relevant. On the contrary, in items 18 and 19, it

Table 1. The search result of query AND5(impressionist, music) in the World Encyclopædia*
Article title Heading Excerpt Score
 1 Impressionism The concept of impressionism is also used for music. 0.88
 2 Impressionism [Origin and pioneers] Partially, a movement that leads to the impressionist movement can

sometimes be seen at the end of the 18C.
0.88

 3 Impressionism [Impressionism and
modern art in Japan]

It had a strong tendency toward expressionism, and it is the special
condition of Japan, in which the introduction of impressionist was
going to tie to avant-garde painting movement.

0.88

 4 Impressionism [Music] [Music] 0.99
 5 Impressionism [Music] who borrowed the concept of impressionism from paintings and applied

it to music,
0.99

 6 Impressionism [Music] To describe strictly in the music mode, 0.89
 7 Symphonic poem Debussy, as an impressionist, composed “Prélude à l’après-midi d’un

Faune”,
0.97

 8 Symphonic poem This genre, which was derived from the romantic musical thought, 0.97
 9 Samuel Cour-

tauld
 He affected by his wife, who had a profound knowledge of music and

art,
0.98

 10 Samuel Cour-
tauld

 French impressionists’ works, including van Gogh’s “Sunflowers”, at
the Tate Gallery in 1923,

0.99

 11 Samuel Cour-
tauld

 He donated fund for purchasing paintings of Post-Impressionists. 0.99

 12 Charles Camille
Saint-Saëns

 He did not reach really original musical expression, 0.98

 13 Charles Camille
Saint-Saëns

 He established the National Music Society with R.Bussine, Faure, C.
Franck, etc. (1871),

0.98

 14 Charles Camille
Saint-Saëns

 He stood against Wagner and impressionists as a writer. 0.98

 15 French movie [French impressionists
and movie art movement]

Movie artists, who intended to create poems and music by images,
became the mainstream.

0.98

 16 French movie [French impressionists
and movie art movement]

The movie writers, who George Sador called “French impressionists”,
brought forth an age.

0.98

 17 Édouard Lalo He greatly succeeded the first time, and was applauded by “the king of
chair” as theater music (premiere on 1888),

0.98

 18 Édouard Lalo His style was quite different from Franck’s school or the impression-
ists,

0.98

* All of the result was translated from Japanese.

1998-12 (Partially updated on 2009-7)

 8

3 Two methods
Two methods for fine-grained full-text searching are explained and compared in this section.

3.1 The atom-addressing search method
The first method, the atom-addressing search method, is explained using Figure 4. In this method,
the address of each atom is defined. If the atom is a character, as shown in Figure 4(b), the address
of atom ai can be specified by a pair, (di, li), where di is the identifier of the document that contains
the character and li is the displacement of the character from the beginning of the document (see
Figure 4(a)). The displacement may be measured by the number of bytes, number of characters, or
number of some other unit of text. If the entire text is included in a file, no document identifier is
required. This means the address may be a displacement from the beginning of the file.

T h i s i s t h e
f i r s t
d o c u m e n t .

document (0, 18) (1, 19)

first (0, 12)

is (0, 5) (1, 5)

second (1, 12)

the (0, 8) (1, 8)

This (0, 0) (1, 0)
T h i s i s t h e
s e c o n d
d o c u m e n t .

text collection
doc id: 0

doc id: 1

inverted indexdoc id displacement

atom

(a) Inverted index (b) Text collection
Figure 4. Inverted index and addresses of atoms for the atom-addressing method

A full-text search system generates and refers to an inverted index of words or characters. The
index contains the locations of all the occurrences of words or characters (Figure 4(a)). The index
can be designed to contain the addresses of atoms, as illustrated in Figure 4(a), or to be able to
calculate them from the index. The full-text search algorithm must return the displacements, as well
as the document identifiers.

A technique for implementing the atom-addressing method using a conventional full-text search
system is explained here. Conventional full-text search engines only return document identifiers.
Even if such an engine is used, the displacement of the atom can be obtained by scanning whole of
the documents found. However, this scanning requires a very high cost in terms of machine time, it
is complicated when multiple search strings are specified, and a considerable amount of computa-
tion is still required to use the scanned result. It is inefficient because the scanning and computation
must be done during the search time instead of during the index-generation time. However, al-
though the displacements of words or characters are not returned by the application programming
interface (API), an inverted index usually holds the displacements, as shown in Figure 4(a), and,

is stated that Lalo’s music is different in nature from that of the impressionists, so these items are not actively
related to impressionists, and were judged to be non-relevant. However, these judgments are affected by the
intention of the query, and, thus, are very delicate.

1998-12 (Partially updated on 2009-7)

 9

thus, we can easily design the search system to return displacements of atoms. This makes it easy to
redesign or modify the search engine to return the positions of the atoms.

The scoring mechanism can be designed as follows. A decay function may be used for scoring.
For example, if an atom is a character, function d(x) = max(0, 1 – 10–5x2) can be used for the decay
function between two atoms in a document, where x is the distance measured by the number of
characters. To reduce the computation overhead, only the beginning positions of strings that match
the search strings are evaluated, and the propagation is computed only between them. To reduce the
redundancy in search results, an elaborate method should be deviced.

3.2 The atom-document search method
The second method, the atom-document search method, is explained using Figure 5. In this me-
thod, each atom is regarded as a document (Figure 5(b)). A conventional full-text search algorithm,
which returns document identifiers, is used. The inverted index contains a list of document iden-
tifiers of the atoms (Figure 5(a)). Only a string that is wholly included in an atom can be searched.
Thus, the atom length must be larger or equal to the word length, as in Figure 5(b). If the atom is a
character, only a single character could be searched, and the search system would be useless.

document 00 01 10 11

first 00 01 10

is 00 01 10 11

second 01 10 11

sentence 00 01 10 11

the 00 01 10 11

This 00 01 10 11

text collection

This is the first sentence of
the first document.

This is the second sentence
of the first document.

doc id
inverted index

atom

This is the first sentence of
the second document.

This is the second sentence
of the second document.

00

01

10

11

doc id only

Figure 5. Inverted index and addresses of atoms for the atom-document method

A reasonable size for an atom is a sentence. The redundancy in search results is not excessive in
this case. If a sentence is long, it is better to split the sentence into several atoms. If a sentence is an
atom, though, the number of “documents” becomes huge. The performance may, thus, become very
low with some algorithms. However, the performance of full-text search systems based on inverted
indices does not decrease in principle.

The scoring method can be designed as follows. A decay function is used for scoring. An
example of a decay function between two atoms (i.e., sentences here) in a document is d(x) = 8 /
(x + 8), where x is the distance measured by the number of sentences. To reduce the computation
overhead, only the atoms contained in the search result are evaluated and propagation is computed
only between them.

3.3 Comparison
The atom-addressing and atom-document search methods are compared here.

1998-12 (Partially updated on 2009-7)

 10

• Use of a conventional full-text search engine
A conventional full-text search engine (API) that only returns document identifiers can be used
for the atom-document method. However, it cannot be used for the atom-addressing method
because it requires the locations of atoms in a document.

• Tolerance to text changes
Even if only a space character is inserted into a document, all the index entries generated by the
atom-addressing method after the space will be invalidated (if the spaces are counted when
computing displacements) because the addresses will have shifted. This is especially so if the
text is in ISO-2022-JP code, which is a code used for Japanese where there are characters that
have the same meaning but a different size (one byte or two bytes). For example, “A” is a sin-
gle-byte character and “Ａ” is a double-byte character. This often causes shifts in the dis-
placements when the text format is changed. The task of maintaining an index may become
heavy if the addresses are shifted. The atom-document method is more durable to format
changes because the search result does not change regardless of the place where the terms occur
unless the terms in the documents change.

• Ease of displaying excerpts
As explained in Section 3.1, the text that is contained in the atom or that surrounds the atom is
copied into the search-result item. An appropriate size for an atom in the atom-document me-
thod is a sentence, because a sentence is a unit that is bound to a meaning, and it is easy for the
system to display the sentence in the atom as is. On the contrary, a smaller unit size that is not
bounded to a meaning is used in the atom-addressing method. Thus, to display a text from
which the user can obtain useful information, the system must extract and display an appropriate
text fragment surrounding the atom. This may not be a very easy task.

The atom-document method seems to perform better in terms of these three criteria. However, the
atom-addressing search method can still be a candidate.

4 Evaluation
Both the atom-addressing and atom-document methods have been implemented and evaluated. In
this section, the atom-document method and conventional document full-text search method are
compared by using a user cost model, and the actual performance of the fine-grained search method
is evaluated. Although information retrieval methods are usually evaluated in terms of precision
and recall, these properties are not considered here because it is semantically very subtle and dif-
ficult to objectively decide whether a text part is relevant when using the fine-grained search me-
thod.1

1 The footnote in Section 2.4 pointed out that the relevance judgment is delicate and less objective. However,
the relevance in a document retrieval can be judged by the relationship between the query and the document
subject. Items 14, 15, 18, 19 in this example were judged as non-relevant, and such a delicate problem did not
occur. This means the difficulty of relevance judgment is caused by searching multiple topics from a
document.

1998-12 (Partially updated on 2009-7)

 11

4.1 Comparison with document full-text searching
In this subsection, a model of searches using the fine-grained search method is described. A model
of the user cost (i.e., the time and effort required from the user for the search) is also described, and
the cost using the fine-grained search and that using a conventional full-text search are compared.

The model of the searches is explained here. In this model, it is asserted that the user reads only
small part from each document. If this hypothesis does not hold, i.e., if the user reads the entire
document, this model does not apply. The user types search strings and gets a search-result list.
Then it is asserted that the user reads all the atoms and their neighbors of all the occurrences of the
search strings in the document collection. The cost of reading is estimated in this model. A
search-result list contains the atom, or a link to the atom.

In a document search, it is asserted that the user scans the text from its beginning. Because the
search string may occur several times in the text, the whole text is asserted to be scanned. If the
document is short and the search string is highlighted in the result display, this scanning would not
be necessary, and, thus, this hypothesis would not hold. However, if the document is long, a type of
scanning, such as window scrolling, is required, and, if the search string is not highlighted or is
weakly highlighted, text scanning is required even if the document is short. Therefore, the hypo-
thesis that scanning is required is appropriate. If the user reads the text surrounding the atom and
finds that the search-result item can satisfy the requirement, the user will probably read the text
further. For example, the user may read the entire document. However, the cost of further inves-
tigation is not counted here.

The model of search cost is described below. The number of documents that occur in the
search-result list is defined as n. The number of search strings that occur in the search-result list is
defined as N. (If two or more search strings are specified, N is the summation of their occurrences.)
The average cost (time) of reading the text surrounding an atom in the original text is defined as Cr.
The cost of reading an item in a search-result list is defined as Cl. The cost of scanning the whole
text, per atom, is defined as Ct.

The number of items in a search-result list is n in a conventional document search, so the cost of
reading the whole list is Cl n. The number of atoms to be read is N. So the cost to read all of them
is Cr N. If the number of atoms in document i is defined as ai, then the number of atoms is ∑i ai. So
the total cost for the scanning is Ct∑i ai. The total cost Cd is expressed by

Cd = Cl n + Cr N + Ct∑i ai .

The number of items on the search-result list is N in the fine-grained search, so the cost of
reading the whole list is Cl N. If the user always reads the original text surrounding the atom, its
cost will be Cr N, which is the same as the cost of the document search.1 There is no need to scan
the text to find the search string, so the total cost Cf consists of two terms:

Cf = (Cl + Cr) N.

The difference between the document search cost and the fine-grained search cost, ΔC, is ex-
pressed as

1 The actual cost is less than Cr N because a search-result item can be found to be non-relevant by reading
only the text in the item. However, the cost is asserted to be Cr N here for the sake of simplicity.

1998-12 (Partially updated on 2009-7)

 12

ΔC = Cd – Cf = Ct∑i ai – Cl (N – n).

Re is defined as Re≡Ct/Cl; the ratio of the cost to scan the text in an atom and the cost to read an
item in the search-result list is defined as Re. The sufficient condition that the cost of the
fine-grained search is lower, i.e., ΔC > 0, is expressed as

Re > (N – n) / ∑i ai .

This condition is not defined when the search-result list is empty, i.e., ∑i ai = 0.
The CD-ROM World Encyclopædia [HDH 98], which is written in Japanese, was used as the

corpus. Each encyclopedia article was regarded as a document in the document searches. The
atom-document search method, in which an atom is usually a sentence, was used for the
fine-grained search. A sentence was an atom if the sentence is short, but was divided at a comma if
longer than 32 bytes (16 characters). The number of documents was 85,387, and the total number of
sentences was 2,696,147. The average number of sentences per document was, thus, 31.6. The
decay function d(x) = 8 / (x + 8) was used for scoring. The search engine embedded in the World
Encyclopædia was used for the document search. Thirty queries and the measured values of (N –
n) /∑i ai are shown in Table 2. The set of queries consisted of twelve queries that contained only
one search string, twelve queries that were conjunctions of two search strings, and six queries that
were conjunctions of three search strings. All the strings were in Japanese. Some conjunct strings
occurred adjacently, but others did not.

The value of Re will vary between user interfaces. In this experiment using the World Encyc-
lopædia, Ct was 0.3-0.6 s, Cl was 2-4 s, and Re was 0.1-0.2.1,2 Therefore, the values of (N – n) /
∑i ai were smaller than Re in all cases, and the fine-grained search was found to cost less. How-
ever, in the queries in which the term frequency of the search strings is high (i.e., ∑i ai / N is
smaller), such as “AND5(cocoa, chocolate)”, the difference between the document search cost and
the fine-grained search cost becomes smaller.

If N is much larger than n, the fine-grained search is less advantageous because the search-result
list becomes lengthy. However, N is at most three times larger than n in this measurement.

4.2 Performance evaluation of the fine-grained searches
Both the atom-addressing and atom-document search methods were implemented and the basic
performance measured. Both were an implementation of the axis-specified search [Kan 98a]
[Kan 98b], which is a higher search function based on the fine-grained search. However, only the
fine-grained search function of the implementation is used here. To compare the results, the per-
formance of a full-text document search using the search engine embedded in the CD-ROM World
Encyclopædia was also measured. The atom-addressing and atom-document searches are not
compared here, because their implementation methods are very different.

1 Although scrolling or paging takes time if the entire search-result list cannot be displayed in the window, its
cost is not included in Cl.
2 For example, the search strings were highlighted in coloring them by red in the CD-ROM World Encyc-
lopædia. However, it is not always easy for a user to distinguish red characters from black characters. So the
value of Re seems to become lower.

1998-12 (Partially updated on 2009-7)

 13

In the implementation of the atom-addressing method, JPerl5, which is a Japanese version of
Perl5 language, was used. A non-volatile hashing table package, GNU DBM, was used to build the
inverted indices. The search engine, which is a character bi-gram engine, was also implemented
using JPerl5. Because Perl programs are executed by an interpreter, the search time was an order of
magnitude greater than with search engines using native code. Score values were propagated
throughout a document, but no propagation through hyperlinks was introduced. Because the size of
each document was relatively small (i.e., 2 kB on average) the search time was not greatly leng-
thened by the score propagation. The measurement results are shown in Table 3.

The Inprise Delphi developing environment was used for implementing the atom-document
search method. The character uni-gram search engine used in the full-text document search was
also used for the atom-document search. Score values were propagated only between matched
strings with no other matched string between. These results are also shown in Table 3.

Table 2. The values of (N – n) /∑i ai in the World Encyclopædia search

Query

Number of
document
search re-

sults n

Number of search
string occurrences

in fine-grained
search N*

∑i ai (N – n) /∑i ai

Shikarami-soshi (しからみ草紙) 3 4 116 0.0086
Presley (プレスリー) 6 14 860 0.0093
Iridium (イリジウム) 28 40 2347 0.0068
Cocoa (ココア) 44 71 4352 0.0062
Yoshinobu (慶喜) 75 129 6893 0.0078
Chocolate (チョコレート) 84 127 11690 0.0037
Asano (浅野) 223 325 16041 0.0064
Computer (コンピュータ) 708 2015 100087 0.0131
Life (生命) 1386 2325 183998 0.0051
Tokugawa (徳川) 1613 2215 116928 0.0051
Philosophy (哲学) 2146 5065 177064 0.0165
America (アメリカ) 9785 22523 709151 0.0180
AND(Cocoa, Chocolate)** 7 39 375 0.0853
AND(Elvis, Presley)** 5 5 821 0
AND(Asano, Soichiro (総一郎))** 9 16 423 0.0165
AND(Asano, Naganori (長矩))** 12 44 546 0.0586
AND(Pre (プレ)，Sley (スリー))** 45 49 2803 0.0014
AND(Tokugawa, Yoshinobu)** 58 129 5512 0.0129
AND(Art (アール)，Nuvo (ヌーボー))** 69 132 7786 0.0081
AND(Computer, Communication (通信))** 155 516 20600 0.0175
AND(Life, Philosophy)** 190 225 10233 0.0034
AND(Tokugawa, Ieyasu)** 769 1337 53574 0.0106
AND(Japan (日本), America)** 4859 13315 377248 0.0224
AND(Ame，Rica)** 9807 23609 710462 0.0194
AND(Asano, Soichiro, Bank (銀行))** 4 7 79 0.0380
AND(Cocoa, Chokolate, Japan)** 4 13 128 0.0703
AND(Computer, Media (メディア), Economy (経済))** 22 3* 193 –0.0984
AND(Art, Nuvo, Painting (絵画))** 27 30 2439 0.0012
AND(Tokugawa, Ieyasu, Hidetada (秀忠))** 108 198 3560 0.0253
AND(Japan, America, Treaty)** 527 1262 38027 0.0193

* These ANDs are interpreted as AND5 in the atom-document searches. That means that N is counted only when all the
search strings occur within five atoms in conjunctive searches.

** Because these ANDs are interpreted as AND5 in the atom-document searches, n > N may hold.

1998-12 (Partially updated on 2009-7)

 14

Table 3. Search time in two implementations of the fine-grained search (Unit: second)

Query

Atom-addressing
method**

Atom-document
method†

Document full-text
search method†

CPU time Elapsed
time

CPU time Elapsed
time

CPU time Elapsed
time

Shikarami-soshi (しからみ草紙) 12.30 13 1.8 4.6 1.2 4.5
Presley (プレスリー) 2.03 2 1.1 4.5 0.9 4.2
Iridium (イリジウム) 1.11 1 1.2 3.2 0.7 3.1
Cocoa (ココア) 0.62 1 1.0 2.3 0.6 1.7
Yoshinobu (慶喜) 0.49 1 0.7 1.4 0.1* 0.5
Chocolate (チョコレート) 1.94 2 1.1 2.5 0.7 1.9
Asano (浅野) 0.66 1 0.7 1.2 0.1* 0.8
Computer (コンピュータ) 5.43 6 1.3 2.8 0.9 2.7
Life (生命) 2.49 3 0.9 1.8 0.1* 1.2
Tokugawa (徳川) 2.23 2 1.0 2.5 0.1* 0.6
Philosophy (哲学) 5.16 5 1.1 2.1 0.1* 0.8
America (アメリカ) 30.99 31 2.2 2.7 0.6 2.9
AND(Elvis, Presley) †† - - 2.0 3.9 1.1 2.5
AND(Cocoa, Chocolate) †† - - 1.9 3.8 0.9 5.0
AND(Asano, Soichiro (総一郎)) †† - - 1.4 2.3 0.3 2.2
AND(Asano, Naganori (長矩)) †† - - 1.3 3.1 0.1* 1.0
AND(Pre (プレ)，Sley (スリー)) †† - - 2.1 5.0 0.9 3.4
AND(Tokugawa, Yoshinobu) †† - - 1.2 1.8 0.1* 0.9
AND(Art (アール)，Nuvo (ヌーボー)) †† - - 2.0 2.4 1.2 2.4
AND(Computer, Communication (通信)) †† - - 1.9 3.4 0.9 3.2
AND(Life, Philosophy) †† - - 1.5 2.3 0.3 1.8
AND(Tokugawa, Ieyasu) †† - - 1.4 2.1 0.1* 1.4
AND(Japan (日本), America) †† - - 3.2 4.0 0.9 2.9
AND(Ame，Rica) †† - - 3.2 4.0 0.7 2.4
AND(Asano, Soichiro, Bank (銀行)) †† - - 1.5 2.5 0.4 2.5
AND(Cocoa, Chokolate, Japan) †† - - 2.5 5.0 1.2 5.9
AND(Computer, Media (メディア), Economy (経済)) †† - - 2.1 4.7 1.1 4.7
AND(Art, Nuvo, Painting (絵画)) †† - - 2.4 3.3 1.2 3.7
AND(Tokugawa, Ieyasu, Hidetada (秀忠)) †† - - 1.5 2.6 0.1* 2.6
AND(Japan, America, Treaty) †† - - 2.9 7.5 0.9 4.8
* Below the measurable limit.
** The server used for these measurements had a Pentium Pro 200 MHz CPU, 192 MB main memory, and an UltraWide 7200 rpm

hard disk. Both CPU and elapsed time were measured on the server-side.
† The computer used for these measurements had an AMD K6 233 MHz CPU, 128 MB main memory, and an EIDE 5400 rpm hard

disk. The CPU time could not be measured directly. So the elapsed time from the beginning of the search to the beginning of the
results display was measured for both when the index is loaded on the cache and when it was not loaded, and the former was re-
garded as the CPU time and the latter was regarded as the elapsed time.

†† These ANDs are interpreted as AND5 in the atom-document searches.

The atom-addressing and atom-document search methods were compared here. On average, the
CPU time of the former was 2.7 times longer, and the elapsed time was 1.2 times longer than the
latter. In some queries, though, the CPU time was much longer. However, the performance of the
atom-addressing method in terms of elapsed time is sufficient for practical searches, in spite of the
interpreter overhead.

1998-12 (Partially updated on 2009-7)

 15

5 Related Work
The conceptual index by W. A. Woods [Woo 97] is a method for retrieving “concepts” that the user
specified, where the hyperlinks to the occurrence positions of the concepts in the document col-
lection are retrieved. This method can be regarded as a type of fine-grained search. However, there
is no propagation-like mechanism in the conceptual index method.

6 Conclusion
This paper contributes to the development of information retrieval, both in modeling and in practice,
as follows.

• A model of a new search method called the fine-grained search method, has been proposed. In
this method, each text to be searched is a sequence of atoms, and hyperlinks connect the atoms.
The relationship between atoms are represented by a unified mechanism, i.e., score propagation.

• Two methods of fine-grained searching have been developed: the atom-addressing search and
the atom-document search methods. These methods can be implemented by using a conven-
tional full-text search engine as is or with only a small modification. These methods are com-
pared and the latter is better in several criteria. Both have been implemented and shown to be
practical.

• A search model of fine-grained searching was described, and the user cost in the search model
was measured. Retrievals can be performed with less cost (faster) by using the fine-grained
search rather than the conventional full-text search.

However, although the user cost has been decreased by introducing the fine-grained search
method, this method is not sufficient for searching the huge text collections that can be supplied by
the Internet, DVD-ROM, and other media. Search methods with a function to organize search re-
sults will be required. The axis-specified search [Kan 98a] [Kan 98b] is a candidate for this.
However, a more general framework and/or a range of organizing search methods should be de-
veloped.

Acknowledgment
I am grateful to Yasufumi Fujii and others at the Hitachi Digital Heibonsha Company for allowing
use of the text of the World Encyclopædia.

References
[Cut 92] Cutting, D. R., Karger, D. R., Pedersen, J. O., and Tukey, J. W.: Scatter/Gather: a clus-

ter-based approach to browsing large document collections, 15th Int’l ACM SIGIR conference
on Research and Development in Information Retrieval, 318–329, 1992.

[Cut 93] Cutting, D. R., Karger, D. R., and Pedersen, J. O.: Constant interaction-time scat-
ter/gather browsing of very large document collections, 16th Int’l ACM SIGIR conference on
Research and Development in Information Retrieval, 126–134, 1993.

[Fra 92] Frakes, W., and Baeza-Yates, R., ed.: Information Retrieval: Data Structures & Algo-
rithms, Prentice Hall, 1992.

1998-12 (Partially updated on 2009-7)

 16

[HDH 98] DVD/CD-ROM World Encyclopædia, version 2, Hitachi Digital Heibonsha, 1998.
[Kan 98a] Kanada, Y.: Axis-specified Search: A New Full-text Search Method for Gathering and

Structuring Excerpts, 3rd Int’l ACM Conf. on Digital Libraries, 108–117.
[Kan 98b] Kanada, Y.: Axis-specified Search: A Method for Searching and Ordering Excerpts

from A Document Collection, Information Processing and Management, submitted.
[Mor 68] Morrison, D. R.: PATRICIA — Practical Algorithm to Retrieve Information Coded in

Alphanumeric, Journal of the ACM, 15:4, 514–534, 1968.
[Mor 95] Morohashi, M., and Takeda, K.: Information Outlining — Filling the Gap between Vi-

sualization and Navigation in Digital Libraries, Int’l Symp. on Research, Development and
Practice in Digital Libraries 1995, pp. 151–158, Univ. of Library and Information Science,
1995.

[Woo 97] Woods, W. A.: Conceptual Indexing: A Better Way to Organize Knowledge, SML
Technical Report, Sun Microsystems Laboratories, 1997.

