Optimizing Neural-network Learning Rate by Using a Genetic Algorithm with Per-epoch Mutations

> Yasusi Kanada Hitachi, Ltd.

IJCNN 2016 2016-7-26 Yasusi Kanada, Hitachi, CTI

Contents

Introduction

Proposed learning method (LOG-BP)

Two application results

- Pedestrian recognition (Caltech benchmark)
- Hand-written digit recognition (MNIST benchmark)

Conclusion and future work

Introduction

Two difficult problems concerning BP (back propagation)

Decision (or scheduling) of learning rate

- Constant or prescheduled learning rates not adaptive
- Adaptive scheduling methods have sensitive hyper parameters difficult to be tuned.

To control locality of search properly

- The gradient descent algorithm, including SGD, does not search the space globally.
- To find a better solution efficiently, multiple trials are required.

Introduction (cont'd)

- Proposal: LOG-BP (the learning-rate optimizing genetic back-propagation) learning method
 - A method of new combination of BP and GA (genetic algorithm)
 - Multiple neural networks run in parallel.
 - Per-epoch genetic operations are used.

Outline of LOG-BP

- Multiple "individuals" (neural networks) learn and search for a best network in parallel in LOG-BP.
- Each individual contains a chromosome *c*.
 - c = (η; w11, w12, ..., w1n1, b1; w21, w22, ..., w2n2, b2; ...; wN1, wN2, ..., wNnN, bN)
 η: learning rate,
 wij (1 ≤ j ≤ ni): weights of *i*-th layer of the network,
 bias of *i*-th layer.

► A mutation-only GA is applied to these chromosomes.

Learning algorithm of LOG-BP

Application to Pedestrian Recognition

Caltech Pedestrian Dataset

- A famous pedestrian detection benchmark that contains videos with more than 190,000 "small" pedestrians.
- Sets of training data and test data, both of which are 24×48- and 32×64-pixel images were generated.

Network: CNN2 and CNN3

 Convolutional neural networks (CNNs) with two/three convolution layers

Environment for computation

- Deep learning environment: Theano
- GPU: NVIDIA GeForce GTX TITAN X

Pedestrian: Change of Learning Rate

► Example: CNN2

(a) A trial with 12 individuals (filters = [16, 26]) (b) A trial with 12 individuals (filters = [16, 32])

Pedestrian: Change of Learning Rate (cont'd)

► Example: CNN3

(a) A trial with 12 individuals (mutation rate = 8.3% (1/12))

(b) A trial with 24 individuals (mutation rate = 4.2% (1/24))

Application to MNIST (Character Recognition)

MNIST benchmark

A set of hand-written digit images (28×28) containing a training set with 60,000 samples and a test set with 10,000 samples.

Adaptive learning rate is not required!

- The learning rate during the whole learning process of LOG-BP was around 0.1.
- Summary: LOG-BP may still have benefits in terms of parallel-search performance.

MNIST: Performance (CNN3, Examples)

MNIST: Performance (CNN3, Statistics)

Convergence time and final error rate

Mutation rate	Average convergence time (std. dev., s)	Final error rate (std. dev., %)
4%	2.6×10 ³ (0.5×10 ³)	0.82 (0.01)
2%	4.9×10 ³ (2.6×10 ³)	0.84 (0.07)
0%	5.6×10 ³ (0.9×10 ³)	0.86 (0.03)

Conclusion

- LOG-BP that combines BP and a GA by a new manner is proposed.
- ► LOG-BP solves two problems concerning BP.
 - Scheduling of learning rate
 - Controlling locality of search

► Two benchmarks show high performance of LOG-BP.

- The MNIST benchmarking suggests advantages of LOG-BP over conventional SGD algorithms.
- LOG-BP will make machine learning less dependent to properties of various applications.