
1

Two Rule-based Building-block Architectures
for Policy-based Network Control

Yasusi Kanada
Central Research Laboratory, Hitachi, Ltd.

Higashi-Koigakubo 1-280, Kokubunji, Tokyo 185-8601, Japan
kanada@crl.hitachi.co.jp

Abstract. Policy-based networks can be customized by users by injecting programs called policies into
the network nodes. So if general-purpose functions can be specified in a policy-based network, the
network can be regarded as an active network in the wider sense. In a policy-based network, two or
more policies must often cooperate to provide a high-level function or policy. To support such build-
ing-block policies, two architectures for modeling a set of policies have been developed: pipe-
connection architecture and label-connection architecture. It is shown that rule-based building blocks
are better for policy-based network control and that the label-connection architecture is currently better.
However, the pipe-connection architecture is better in regards to parallelism, which is very important in
network environments.

1. Introduction
Active networks are networks that are customizable by
users, and their behavior can be modified by injecting
programs. An appropriate first step toward active
networks is to build an extensible policy-based net-
work, because such a network can be customizable by
users by deploying policies and because programs,
which are called policies, can be injected into the
nodes in a policy-based network. For example, QoS
(Quality of Service) policies, which may be device-
dependent, can be deployed to QoS-ready routers, so
the network is customized to each user. Each user can
have their own virtual network with customized QoS
parameters such as a specific bandwidth or delay. The
function of policies has been limited to a certain area,
e.g., QoS or security, but it can be extended. If it is
extended and the policy-based network becomes gen-
eral-purpose, it becomes an active network.

In policy-based networks, two or more policies
must often work together. For example, in Diffserv, a
policy for marking a DSCP (Diffserv Code Point) and
a policy for queue control, which operates on the same
packets, must cooperate. They must cooperate be-
cause the latter tests the DSCP that the former marks.
This is a simplest case of cooperation, but there are
probably more complicated cases. A higher-level
function or policy of the network is provided by a
combination of lower-level functions or building-
block policies.

To build a building-block-based policy system, Ka-
nada proposed the first version of a rule-based com-
ponent architecture as a MIB [Kan 99][Kan 00a], and
he also developed an architecture based on a logic
programming language [Kan 00b]. In these architec-
tures, a policy is constructed using rule-based building
blocks, or small policies, which are connected by vir-

tual flow labels [Kan 99] or logical variables
[Kan 00b]. The first architecture was restricted to a
QoS domain and the building blocks were built-in
there, but the second architecture was general-purpose
and building blocks could be created by combining
preexisting building blocks.

In the current work, two new building-block archi-
tectures based on the above two architectures have
been developed. One is a pipe-connection architec-
ture, which is a refinement of the second architecture,
and the other is a label-connection architecture, which
is a generalized version of the first architecture. In
Section 2, the technical requirements for policy-based
networking are investigated and the reason such ar-
chitectures are required is explained. The two build-
ing-block architectures are described in Section 3.
Examples of DiffServ configuration for routers are
given in Section 4. The two architectures are com-
pared in Section 5.

2. Why Rule-based Building Blocks?
Policy-based networks are originally developed for
reducing the complexity in configurations of a net-
work and its nodes. Policies are replacements of ven-
dor- and device-dependent configuration commands,
and they will soon be standardized by the IETF
(Internet Engineering Task Force) Policy Framework
Working Group. Policies are derived from SLSs
(service-level specifications). An SLS is a specifica-
tion regarding the behavior of the network and it is
derived from an SLA (service-level agreement), which
is a contract between a network operator and a user or
between two or more network operators.

There are five technical requirements regarding
policy-based (active) networks. The first requirement
is that an SLS should be translated into policies easily
by hand or mechanically if the SLS is simple. An SLS
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is described declaratively, but not procedurally, by
using a natural language or a formal language. If a
policy depends on the specific procedure that imple-
ments the required function, it is not easily generated
from the SLS. So the policy should be declarative. In
particular, a policy is usually considered as a collec-
tion of if-then rules such as

if (condition) action;

because it is usually considered easier to translate an
SLS into if-then rules.

The second requirement is that a policy must be
executable. A policy is not just data but a program
because it changes the behavior of a network or net-
work nodes. So when copies of the policy are de-
ployed to network nodes, they must be executable.

The third requirement is that dynamic modification
of a policy must be possible. Because the network
never stops, a policy is often modified while it is be-
ing used. So a policy must be modular. If a policy
consists of mutually independent rules, a rule can be
added, modified, or removed without affecting other
rules.

The fourth requirement is that, even if the SLS is
complicated, translating the SLS into policies must be
possible. A complicated SLS should be expressed in a
structured form, so the policies that are derived from
the SLS should also be structured. Thus, there should
be means that structure the policies. This means a
policy should be constructed from components or
building blocks.

The fifth requirement is that an optimized policy
should be expressible by using the same architecture.
A naïvely expressed policy may be inefficient. Such a
policy should be optimized automatically or by hand.
Both the original policy and the optimized policy must
be represented by the same language. Otherwise, it is
difficult to prove they are semantically equivalent.

A method that meets these requirements is to rep-
resent policies by a rule-based building-block archi-
tecture. A possible translation process from SLS to
device configurations through rule-based building
blocks is illustrated in Fig. 1.

The first three requirements can be satisfied by us-
ing rule-based models or languages that are similar to
Prolog or OPS5 [For 81]. Defining a policy declara-
tively and translating it into an executable program is
difficult if the policy is complicated. However, such
translation is easier if the policy representation is
properly selected. In the field of artificial intelligence,
knowledge representations were extensively studied in
the 1970s and 1980s, and rule-based programming
languages, especially logic programming languages
(such as Prolog) and languages for developing pro-
duction-system-based expert systems (such as OPS5),
were developed. These languages are declarative and
executable at the same time. We can apply the results
of such research to policy-based networking. In the
languages, rules can be written as mutually inde-
pendent rules; i.e., rules can be defined such that only
one rule can be applied in any specific situation even
if the order of rules is changed.

The fourth and fifth requirements can be satisfied
by using a component-based architecture. A compli-
cated policy can be expressed by using building
blocks. Complexity can be reduced by defining a
larger building block as a collection of building
blocks. Both primitive and composed building blocks
are rule-based and follow the same semantics if a
logic programming language is used. A policy can be
optimized by program transformations. If the opti-
mization is local, it is done by replacing a set of
building blocks by another set of building blocks.

3. Two Building-Block Model
Architectures

3.1 Structure of Building Blocks
In both architectures, a policy or policy rule consists
of building blocks and connections between them. A
building block is a rule or a set of rules. The structure
of a building block is roughly similar to that of a pol-
icy in the policy information model [Moo 00], and the
structure of a rule is also similar to that of a policy
rule. A building block is executed as follows. A rule
is selected if the input packet matches the condition

Pipe-connection
model

SLS

Label-connection
model

MIB

PIB

CLI

Manual or
automatic
translation

Automatic
translation

…

Service-level Network-level Device-level

Declarative Declarative and can be translated
into executable program

Executable

Fig. 1. Service- to device-level policy-translation process
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specified in the rule. Then the action specified in the
rule is executed and an output packet is generated. If
no condition in the rule set matches the input packet,
no action is taken and no packet is outputted. So a
building block inputs a stream of packets, or a flow,
filters it, and maybe splits it into multiple flows or
merges multiple flows into one.

A network node can be modeled as a building block
or a collection of building blocks. A building block
has input ports and output ports. Building blocks are
connected by connecting each input port and output
port. So the function of the network node can be rep-
resented by a DAG in which the vertices represent the
building blocks. The whole network can also be
modeled by a building-block model. Each function in
the network domain can be represented by a DAG.
The task of a policy server is to decompose this DAG
into subgraphs and to deploy each subgraph to each
router in the domain. The edges between the sub-
graphs are mapped to the lines between the routers.

3.2 Pipe-connection Architecture
The pipe-connection architecture is explained in
Fig. 2. In this architecture, each building block has a
fixed number of input ports and output ports. Each
input or output port has a port identifier. Port identi-
fiers can be numbers or alphanumeric identifiers, but
they are assumed to be ordinal numbers here. The
example used in Fig. 2 is a Diffserv router configura-
tion, which will be explained more in the next section.

Building blocks are connected by pipes. The be-
ginning of a pipe is connected to an output port of a
building block. The end of the pipe is connected to an
input port of another building block. A packet stream
flows in each pipe. When a packet flows into a
building block, one (or zero) packet flows out from
the building block. Pipes are uniquely identified by
their tags. Packets come into a building block through
an input port and go out through an output port. Usu-
ally, a packet is outputted to only one of the output
ports, i.e., packets are not duplicated implicitly, and
two packets that come from the same or different input
ports are never merged into one packet.

In Fig. 2, six building blocks are given: Classifica-
tion, Metering, Marking1, Discarding, Marking2, and

Scheduling. The Classification and Metering building
blocks contain two sub-blocks, or rules. Other build-
ing blocks can contain only one sub-block. The Clas-
sification and Metering building blocks are connected
by a pipe named C1, and C1 connects the output port
1 to the input port 1. The Classification building
block has two output ports. Each packet that flows
into this building block flows out from only one of
these output ports. A Discarding building block has
no output ports. So packets that flow into a discarding
building block never flow out. The Scheduling
building block has two input ports, but other building
blocks have one input port in Fig. 2.

This architecture can be properly represented by
using a backward-chaining predicate-logic-based
language similar to GHC [Ued 85], Concurrent Prolog
[Sha 86], or Parlog [Cla 86]. These languages are
suited to describing data stream processing. So the
pipe-connection models can be expressed directly. A
language for this architecture, which is called SNAP
(Structured Network programming by And-Parallel
language), was defined by Kanada [Kan 00b]. In
SNAP, each building block is represented by a predi-
cate, and a predicate consists of clauses (i.e., rules).
Building blocks are connected by logical variables.
So a logical variable is used as a pipe. The model in
Fig. 2 can be expressed in SNAP as follows:

ef_ingress(Si, So) :– // Building block ef_ingress
// inputs stream Si and outputs stream So.

or(filter[Source_IP = 192.168.1.*](Si, C1) |
// Packets (in Si) whose source IP subnet
// is 192.168.1.* are outputted to C1.

or( meter[Average_rate_max = 1Mbps](C1, P1) |
// Packets (in C1) within the bandwidth
// limit are outputted to P1.

mark[DSCP = 46](P1, M1)
// Packets in P1 are marked and
// outputted to M1.

; otherwise(C1, P2) |
// Packets (in C1) that do not meet
// other (only one here) conditions in
// the case structure are outputted to P2.

discard(P2)
// All the packets in P2 are discarded.

)
; otherwise(Si, C2) |

// Packets (in Si) that do not meet other conditions
// in the case structure are outputted to C2.

MeteringClassification

otherwise ?
Discarding

Scheduling

Algorithm=priority

high
low

or

Source_ip ==
192.168.1.* ?

Marking1
DSCP = 46

or

C1 P1

P2

M1

Marking2
DSCP = 0

C2
M2

Average_rate
<= 1Mbps ?

otherwise ?

1 1

2

1 1

2

1

1

1 1

2

1

1

1

Fig. 2. A model using the pipe-connection architecture
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mark[DSCP = 0](C2, M2)
// Packets in C2 are marked and outputted to M2.

),
schedule[Algorithm = priority](M1, M2, So).

// Streams M1 and M2 are merged into So.
// A queue is assigned to M1,
// and another queue is assigned to M2.
// They are scheduled by a priority
// scheduler. The priority of M1, which is
// the first argument, is higher.

This program defines a building block calld
ef_ingress, which has one input port and one output
port. This example will not be explained further here,
but an explanation of a very similar program can be
found in Kanada [Kan 00b].

3.3 Label-connection Architecture
The label-connection architecture is explained in
Fig. 3. In this architecture, each building block has
only one input port and one output port. Building
blocks contain one or more rules. For example, both
the Classification and Metering building blocks have
two rules. The execution order of building blocks is
constrained. The order constraints are represented by
a directed graph. In Fig. 3, six building blocks are
connected by directed edges. For example, the Classi-
fication building block is connected to the Metering
and Marking2 building blocks. So the Metering and
Marking2 building blocks will be executed just after
executing the Classification building block. Whether
the Metering or Marking2 building block is executed
depends on the conditions of the rules in the Metering
and Marking2 building blocks and the value of the
packet. If the packet matches a condition in the Me-
tering building block, this building block is executed.

Each rule attaches a tag called a label, which con-
tains an integral value, to each packet in a flow or to a
packet flow. There are two types of label. One type
is a real label that may be inside the packet, for ex-
ample, as a DSCP or an MPLS label. The other type
is a virtual label or VFL (virtual flow label, named
“Label” in Fig. 3) (Fig. 4). The value of the VFL is
not put on the packet and the VFL can be regarded as
a tag put outside of the packets (Fig. 4). Only one
VFL can be attached to a flow or packet. In Fig. 3,

the rules in the Classification and Metering building
blocks assign a VFL, and the Marking1 and Marking2
building blocks assign a DSCP as the label. The ini-
tial value of a VFL is “undefined” (a specific value).

A flow or a packet may have two or more tags. In
Fig. 3, Marking1 and Marking2 building blocks assign
a value to a tag named “Priority”. Tags except the
label are called attributes. The priority attribute is
used for the priority scheduling in Scheduling building
block.

The order of execution can be uniquely defined by
defining and referring to VFL values appropriately.
For example, the first rule in the Classification build-
ing block assigns value C1 to the VFL, and the second
rule assigns value C2. The rules in the Metering
building block assumes the VFL value is C1. So these
rules can be executed only after executing the first
rule in the Classification building block. The only
rule in the Marking2 building block assumes the VFL
value is C2. So this rule can be executed only after
executing the second rule in the Classification build-
ing block.

46
DS field

1000

(a) DSCP (a real label) (b) A VFL

Packet Packet

Fig. 4. DSCP and Virtual flow label

Label-connection architecture can be properly rep-
resented by using a language for production systems
similar to OPS5 or other forward-chaining rule-based
languages for developing expert systems. In such a
language, each rule is an if-then rule; i.e., each rule
has a condition and actions. This rule structure is very
similar to that of a policy rule in the policy informa-
tion models [Moo 00][Sni 00]. However, conven-
tional languages for production systems have no
method for structuring rules (i.e., building blocks) as
sets, and for giving a partial order to them. So we

MeteringClassification

if Label == C1 &&
Average_rate
> 1 Mbps then
Label = P2

Discarding

Scheduling
Algorithm=priority

or

if Source_ip ==
192.168.1.* then
Label = C1

Marking1

or

Marking2

if Label == C1 &&
Average_rate
<= 1Mbps then
Label = P1

otherwise
Label = C2

if Label == C2 then
Label = dscp(0)
Priority = low

if Label == P1 then
Label = dscp(46)
Priority = high

if Label == P2 then
Discard

Fig. 3. A label-connection model
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should define a new language to represent this archi-
tecture. The model in Fig. 3 can be expressed by us-
ing such a language as follows:

MODULE ef_ingress IS
RULE SET Classification, Metering, Marking1, Dis-

carding, Marking2,
Scheduling;

RULE SET ORDER
Classification –> Metering, Marking2;
Metering –> Marking1, Discarding;
Marking1, Discarding, Marking2 –> Scheduling;

RULE SET Classification IS
IF Source_ip == 192.168.1.* THEN

Label = C1;
OTHERWISE

Label = C2;
…

RULE SET Scheduling IS
IF true THEN// This scheduler is always used.

Algorithm = priority;
END ef_ingress;

This program defines a building block called
ef_ingress. Ef_ingress contains six rule sets, their
execution order is defined by RULE SET ORDER
definition, which is followed by RULE SET defini-
tions. The execution order can be regarded as a defi-
nition of a directed graph. Because the contents of
RULE SET definitions are the same as shown in
Fig. 3, most of them are omitted here.

4. Differentiated Services Using the
Building-Block Models

4.1 Brief Introduction to Diffserv
In the IETF, many working groups (WGs) are con-
cerned with Internet QoS. In particular, the Integrated
Services (IntServ) WG specified guaranteed per-flow
QoS [Wro 97][She 97], and the Differentiated Serv-
ices (Diffserv) WG have been working on class-based
QoS assurance [Ber 99]. “Per-flow” means that each
flow of packets between a source end-point and a des-
tination end-point is treated individually. “Class-
based” means that flows are classified into
service classes, and flows in the same service
class are treated in the same way. Per-flow
control enables more accurate QoS control,
but requires much more network node re-
sources. Because the resources are limited,
the class-based approach, i.e., DiffServ,
seems more practical for the Internet.

A network domain, which will usually be
an autonomous system (AS), can be modeled
as shown in Fig. 5. In DiffServ, the domain
is a part of networks in which the same set of
PHBs (per-hop behaviors) [Bla 98] is used.
A DSCP (differentiated services code point)
[Nic 98] is assigned to each PHB in this do-
main. The network consists of network

nodes, such as routers, and the lines between them.
The network interfaces of the routers that are con-

nected to computers are called edge interfaces, and
the interfaces that are connected between routers are
called core interfaces. Edge interfaces that are con-
nected to packet sources are called ingress interfaces,
and those connected to packet destinations are called
egress interfaces. Because communication lines are
usually bidirectional, edge interfaces usually work as
both ingress and egress interfaces. An interface may
also be used as both an edge and a core interface.

In a Diffserv network, IP (Internet protocol) pack-
ets are classified at ingress interfaces and are marked
in their DS (differentiated services) field [Nic 98].
The value in the DS field is called the DSCP and in-
dicates the service class that the packet belongs to. At
core interfaces, the QoS conditions of the packets are
controlled according to the DSCP.

IP packets are classified by using a classifier. A
classifier uses a set of filtering conditions, and each
condition corresponds to an action. A combination of
a condition and a corresponding action can be re-
garded as an if-then rule. This rule works for each
packet. The behavior of an interface can be specified
by using a set of if-then rules. Classifiers used at in-
gress interfaces are called MF (multifield) classifiers.
An MF classifier mainly checks the following five
items: source and destination IP address, IP protocol,
source and destination IP ports. The action taken as
the result of MF classification is usually marking,
which means assigning a DSCP to the DS field of the
packets. Classifiers are also used at core and egress
interfaces in DiffServ, but in a different way. They
are called BA (basic aggregate) classifiers. A BA
classifier checks the DSCP. A resulting action may be
to assign a priority to the queue used for the packets.

4.2 Building Blocks for DiffServ
Six types of primitive building blocks for DiffServ are
defined: filtering, metering, marking, discarding,
scheduling, and merging rules. A previous version of
these building blocks was described by Kanada

DiffServ
Domain

Edge interfaces
(ingress interfaces)

Source

Source

Destination

Destination

Core interfaces Edge interface
(egress interface)

Fig. 5. A Diffserv network
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[Kan 00b]. The building blocks defined here are simi-
lar to objects defined in Diffserv MIB [Bak 00], Diff-
serv PIB [Fin 00], or QoS Information Model
[Sni 00]. However, the models described in this sub-
section is different from Diffserv MIB and PIB be-
cause it is rule-based, and the building blocks in the
models are more fine-grained than those in the infor-
mation model. Most of these building blocks can be
used as is, can be enhanced for services other than
DiffServ, or can be used with other types of building
blocks.

Filtering, marking, and discarding rule sets are ap-
plied to a packet stream only once because repetitive
application of these rules is unnecessary. Metering,
merging, and scheduling rules can be applied to a
packet stream two or more times because repetitive
applications of these rules are sometimes necessary.

Rules are described using the following syntax:
ruleTypeName[parameters].

Filtering rules represent a part of an MF or BA
classifier. A filtering rule tests the IP packet header of
each packet. This means it tests one or all of the
DSCP, source and destination IP addresses, IP pro-
tocol, source and destination IP ports, and so on.
These values are specified as parameters in the filter-
ing rule. If a packet meets the condition in the rule, it
is outputted to the stream. Otherwise it is dropped.
Examples of filtering rules are

filter[Source_IP = 192.168.1.*].
// A part of an MF classifier.

filter[DSCP = 46]. // A part of a BA classifier.

In a pipe-connection model, filtering rules have only
one input port and one output port, and the names of
pipes that are connected to the input and output ports
of the rules must be specified. If the input pipe name
is Si and the output pipe name is So, the rule can be
described as

filter[Source_IP = 192.168.1.*](Si, So).

Metering rules only pass the traffic that is confor-
mant to the profile contracted by an SLS (service-
level agreement). Metering rules can be implemented
by using a token-bucket meter or some other type of
meter. The average maximum information rate and
the bucket size can be specified as parameters. An
example of a metering rule is

meter[Average_rate_max = 1Mbps].

In a pipe-connection model, metering rules have only
one input port and one output port.

Marking rules write a DSCP into the DS field of the
packets in the input stream. All the packets are out-
putted to the output stream. The only parameter for
marking rules is the DSCP. An example is

mark[DSCP = 46].

In a pipe-connection model, marking rules have only
one input port and one output port.

Discarding rules discard all the packets in a stream.
There are two types of discarding rules in a label-
connection model: an absolute discarding rule and
random discarding rules. The absolute discarding rule
discards all the packets. Random discarding rules
discard packets by using a weighted random-early-
discard (WRED) algorithm. The function of random
discarding rules is included in scheduling rules in a
pipe-connection model, so they do not exist. There
are no parameters to be specified for the absolute
discarding rule,

absoluteDiscard.

In a pipe-connection model, the absolute discard rule
has only one input port and no output port. An exam-
ple of random discarding rule is

randomDiscard
[QMin = 10kB, QMax = 20kB, PMax = 0.1].

Scheduling rules are used for merging streams
through scheduling. The parameters of a scheduling
rule specify the method and parameters for enqueuing
and dequeuing control. The scheduling algorithm and
its parameters can be specified in scheduling rules,
which can also be used for shaping control. The
maximum and minimum output rate (or both) can be
specified. Examples are

schedule. // Input packets are queued until they can
// go out. The queue size is default.

schedule[Algorithm = priority].
// Input packets are scheduled using a priority

scheduling algorithm.
// Input packets should have a priority
// attribute (See Fig. 3).

In a pipe-connection model, merging packet flows
must be explicitly specified. Merging rules are used
to merge, without buffering, two or more flows.1

merge(Si1, Si2, Si3, So).
// Flows through pipes Si1, Si2, and Si3
// are merged into So.

A merging rule is not specific to Diffserv, and is usu-
ally required for the pipe-connection architecture. On
the contrary, streams can be implicitly merged and no
merging rules are necessary in a label-connection
model. No scheduling functions are used for the flows
inputted to a merging rule, because merging without
buffers is required here. If buffering is required,
scheduling rules must be used for the merging flows.

In a label-connection model, the execution order
must be specified. The order for Diffserv is described
in Fig. 6. Metering rules can be repeated because a
flow can be policed with two or more conditions, and
two or more out-profile traffic streams can be handled
differently. Scheduling rules can be repeated because
a hierarchical scheduler or shaper is sometimes re-

1 A merging rule is necessary for this architecture because
of the single-assignment constraint.
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quired.

4.3 Expedited Forwarding Service Configurations
Expedited forwarding (EF) service [Jac 99] is a

virtual-leased-line service. Each microflow is policed
and aggregated into a flow at the ingress edge inter-
faces. Packets with this DSCP are forwarded in high
priority in core interfaces.

An example of an SLS for an EF service is as fol-
lows:

IF the flow is from user A (the Source IP address
is 192.168.1.*) THEN
IF the information rate is within 1Mbps THEN

Treat the flow as an EF traffic;
OTHERWISE

Drop the packets;
OHERWISE
Treat the flow as a best effort traffic;

The configuration for this service can be represented
by the pipe-connection model in Fig. 2 and by the
label-connection model in Fig. 3. The copies of the
classifier, meter, markers, and discarder are deployed
to the ingress edge interface, and the copies of the
scheduler are deployed to each core interface. In the
pipe-connection model, Merging and (BA) Classifica-
tion building blocks must be added to split the pro-
gram into an edge and a core interface as shown in
Fig. 7, because a tagged pipe cannot be used between
these interfaces. No more building blocks are needed
in the label-connection model.

4.4 Assured Forwarding Service Configurations
Assured forwarding (AF) services [Hei 99] can be
used for a wide range of services. An example is an
Olympic service. There are gold, silver, and bronze
classes of services in an Olympic service. The gold
class gets the highest priority, the silver the second,
and the bronze the third. The bronze service gets even
higher priority than the best effort service. In each AF
class, there may be three different subclasses of traffic
that share the same queue in each network node but
have different queue depths or different parameters for
WRED. There are three subclasses for each class,
AFn1 to AFn3, assigned for AF services in RFC2597
[Hei 99].

An example of core interface configuration for an
AF service is shown in Fig. 8. Only the core con-
figuration for AF1 is shown here. The input stream is
forked into four, AF11, AF12, AF13, and other
streams, by a BA classifier. Streams AF11 to AF13
are merged using a scheduler with only one queue but
three different discarding thresholds. Packets in
stream AF11, i.e., the first argument for “schedule”,
are discarded only when the queue is full, i.e., when
the queue is filled with 100 kB of data. Packets in
stream AF12, i.e., the second argument, are discarded
when the queue is filled with 80 kB of data. Packets
in stream AF13; i.e., the third argument, are discarded
when the queue is filled with 60 kB of data. Packets
in AF streams and those in other (best effort) streams
are merged by using a weighted round robin (WRR)
scheduler.

Filter

Meter Marker

Absolute
Discarder

SchedulerRandom
Discarder

Fig. 6. Execution order of building blocks in the label-connection model
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Discard-
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ing2
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Merging

Classifi-
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DSCP ==
46 ?

otherwise ?

Fig. 7. Ingress edge and core interface configurations for an EF service in the pipe-connection

model
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Scheduling1 and Scheduling2, which correspond to
queues, enter packets into queues, and Scheduling3,
which corresponds to a packet scheduler, pulls off
packets from Scheduling1 and Scheduling2 according
to the scheduling algorithm. Scheduling1 and Sched-
uling2 in the label-connection model contain no other
actions than replacing labels. However, they are de-
scribed here because they represent necessary queues.

5. Comparisons
Five major differences between the two building block
architectures are explained below.

1. Rule structures: A rule in the label-connection
architecture consists of if-then rules, but a rule in
the pipe-connection architecture does not necessar-
ily consist of if-then rules. If-then rules can be
simulated by using the pipe-connection architec-
ture, but the syntax of a rule is different: it consists
of building blocks instead of a condition and an ac-
tion. A building block in SNAP consists of a guard
and a body, and a guard is similar to a condition
and a body is similar to an action. However, their
semantics are different. Thus, if the pipe-
connection architecture is to be used, a method that
makes policy development easier must be devel-
oped.

2. Control-flow specification: Explicit control flow is
not necessarily specified in the pipe-connection ar-

chitecture because the control flow is derived from
the dataflow that is specified by pipes. However,
the label-connection architecture needs a loose con-
trol-flow specification because the control flow is
not uniquely specified by tags on packets. Thus,
the execution order of policies must be explicitly
specified in the label-connection architecture.

3. Multiple I/O ports and modularity: In the pipe-
connection architecture, building blocks with mul-
tiple input or multiple output ports are required, but
in the label-connection architecture, only an input
and an output ports are required. In the former, if
there are two or more inputs/outputs with different
roles, they must be distinguished by ports. Thus,
multiple ports are necessary. On the contrary, in
the latter, different roles are not distinguished by
ports but are distinguished by flow labels. aThis
difference in roles causes the difference in the
modularity of schedulers or mergers. A scheduler
(for Diffserv) usually input packets from two or
more rules. In a pipe-connection model, each out-
put port of the rules must be connected to an input
port of the scheduler by a pipe. Thus, the number
of input ports must be incremented when a rule is
added. However, in a label-connection model, the
number of input ports is always one. Thus, there is
no need to modify the scheduling rule. A merger is
only used in pipe-connection models. The number

Scheduling2

Classification

DSCP==12 ?

or

1 1 AF11

2 AF12

otherwise ?

DSCP==14 ?

DSCP==16 ?
3 AF13

4 BE

Scheduling1
DropAlgorithm=

WRED
Qmax=100kB

Qmax=80kB

Qmax=60kB

1

2

3

4

1
Scheduling3

1 Algorithm= WRR

2 2

(a) A pipe-connection model

Classification

if DSCP==12 then
Label = D1

if DSCP==14 then
Label = D2

if DSCP==16 then
Label = D3

otherwise
Label = S2

Scheduling1

Scheduling2

Scheduling3

if Label == S1 then
Label = S2
Enqueue

if Label == S2 then
Enqueue

if Label == S2 then
Algorithm = WRR

RandomDiscarder
if Label == D1 then

Label = S1
DropAlg=WRED
Qmax = 100kB

if Label == D2 then
Label = S1
DropAlg=WRED
Qmax = 80kB

if Label == D3 then
Label = S1
DropAlg=WRED
Qmax = 60kB

(b) A label-connection model

Fig. 8. Core interface configuration for an AF service
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of input ports must be incremented when a rule is
added too. On the contrary, flows are merged im-
plicitly in a label-connection model.

4. Tag usage: There are two differences in tag usage
in the two architectures. One difference is that
each pipe must have a unique tag in the pipe-
connection architecture, but the same labels and
tags can be used multiple times in the label-

connection architecture.1 Thus, DSCPs can be
used as flow labels. After marking, DSCPs are
usually not changed within a Diffserv domain. So
they are not unique in a set of policies. For the
same reason, MPLS EXPs or labels may also be
used as flow labels.

The other difference in the usage of tags is that
multiple tags can be attached to a flow or packet in
the label-connection architecture, but only one tag
can be attached to a pipe in the pipe-connection ar-
chitecture. If different parameters are applied to
different flows, the flows must be inputted to dif-
ferent input ports. This condition causes the differ-
ence in schedulers in the Diffserv examples.
Parameters for schedulers, such as a WRED pa-
rameter (e.g., QMax = 100 kB) or scheduling prior-
ity (e.g., Priority = high in Fig. 3) must be defined
in the scheduling rule (not in the queuing rule) in
the pipe-connection architecture. On the contrary,
in the label-connection architecture, such parame-
ters can be given as different tags. So a set of
WRED parameters can be specified by a random
discarder (See Fig. 8) instead of embedding them
into a scheduler. Thus, the building blocks can be
smaller and the design of building blocks is more
flexible in the label-connection architecture.

5. Parallelism: Constraints on parallelism should be
as few as possible in network environments. A
pipe-connection model can be executed in parallel
unless the order of packets must be preserved be-
fore scheduling, but a label-connection model is a
sequential execution model and paralellization has
two difficulties. One is that the order of label and
attribute assignments must not be reordered be-
cause reordering them may change the semantics.
The other difficulty is that the execution order of
rule sets is specified in a label-connection model,
and this specification constrains the parallel execu-

1 If flow labels are unique, all the rules can be put in a rule
set and there is no need to specify the control flow. Then,
the label-connection model is very similar to a pipe-
connection model.

tion. (This constraint is caused by the second dif-
ference.) SNAP, the language for the pipe-
connection architecture, is based on parallel logic
programming languages for describing parallel
processing programs.

Differences 1, 3, 4 indicate that the label-
connection architecture is superior. It is easier and
advantageous to move from a conventional policy-
based architecture to the label-connection architecture
to make the policy-based system more general-
purpose. However, difference 5 indicates that the
pipe-connection architecture is superior. Although it
is not very easy to move from the conventional archi-
tecture to the pipe-connection architecture, the author
believes there is reasons to do so: parallelism is nec-
essary and the parallel execution semantics must be
clear.

6. Conclusion
Two rule-based building-block architectures for mod-
eling a set of policies — the pipe-connection architec-
ture and the label-connection architecture — have
been developed and it was found that the label-
connection architecture is currently preferable, but the
pipe-connection architecture is better in regards to
parallelism, which is very important. Thus, the label-
connection architecture is the solution that can be used
right now, but the pipe-connection architecture will
become more useful. That is, if the disadvantages can
be eliminated by further study, the pipe-connection
architecture may become the right solution.
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