

Abstract – A previously developed plug-in architecture for net-
work-virtualization nodes allows network operators to introduce
new types of virtual nodes and links and slice developers to use
them in slices (i.e., virtual networks). In this paper, a method for
extending network-virtualization infrastructures by introducing
plug-ins to nodes in the infrastructure and a freely-designed plug-
in-specific packet header, which enable sharing part of packet
contents among the same type of plug-ins distributed in the
infrastructure, is proposed. The header is inserted into every data
packet handled by the nodes, but it is hidden from slices in a
“clean virtualization” infrastructure. This method was applied to
creation of a new type of virtual links with network-delay
measurement function using a hidden timestamp in each packet.
The timestamps do not affect slices; that is, conventional
programs can be used in the slice for the measurement without
modification. The method was evaluated by edge-to-edge delay
measurements and the evaluation results show that it is suitable
for developing new functions, including functions requiring wire-
rate performance, in shared/public networks.

Keywords – Network-node evolution, Network-node plug-in
architecture, Network-delay measurement, Timestamp, Network
virtualization, Virtualization node, VNode, Virtual-link-type
creation, Deep programmability.

I. INTRODUCTION

Development of new communication services will help global
human society to evolve. To enable simple, flexible, and cost-
reduced service creation, network virtualization will play an
important role by introducing two concepts, i.e., “slice” and
“slice developer.” As for the first one, network virtualization
enables creation of various types of virtual networks, which
are called slices, on a single physical network. Slices not only
reduce development and maintenance costs of customized
networks but also realize simpler and flexibly customizable
networks. As for the second concept, network virtualization
creates a new role, called slice developer [Yam 12], in addition
to the two conventional roles of a network: operator and user.
Slice developers develop slices and operate the slices for end
users. In this three-role model, an operator may be called an
infrastructure provider, and a slice developer may be called a
service provider [Cho 09]. Slice developers create a slice by
selecting types of virtual nodes and links that are supported by
the network-virtualization infrastructure, and they can program
virtual nodes (and virtual links) if they are programmable.

However, slice developers cannot introduce new types of
virtual nodes or links as well as new hardware and software
into the network infrastructure by themselves, so a method for
evolving a node was developed [Kan 13c]. Although the infra-
structure may sufficiently support various types of nodes and
links at the time of platform development, new types of
hardware and software, which can be used for building new
types of virtual nodes or links, will become available through
technical innovations. A method that allows the operator (or
the vendor) to introduce new types of virtual nodes and links
by evolving the infrastructure was therefore developed
[Kan 13c][Kan 14]. For this method, first, new types of virtual

nodes and links are introduced by developing data and control
plug-ins. The control plug-ins are then integrated into original
control and management components [Kan 14]. The plug-in
architecture developed in these previous studies was
implemented in the virtualization node (VNode) and VNode
infrastructure [Nak 12][Kan 12], which were developed by the
Virtualization Node Project (VNode Project) [Nak 10].

In the present study, a method for introducing node plug-ins
and a freely-designed plug-in-specific packet header is
proposed because this type of packet header greatly extends
the potential of infrastructure evolution. A data plug-in may be
used for processing predefined packet contents, but it may also
be used for processing content of a newly introduced header.
Such a header, which is inserted into every data packet han-
dled by the plug-ins, can be hidden from slices if the virtual-
ization infrastructure is “cleanly virtualized” [Kan 12]. In
addition, the header is not referenced by the original infrastruc-
ture. The format of the header can therefore be freely designed
according to the requirements for the data plug-in. The data
plug-ins can be distributed to nodes in the virtualization infra-
structure and can share the content of the header; that is, some
plug-ins write content and others read and update it. This
method is applied to measurements of network edge-to-edge
delay by using a hidden timestamp in each packet. The
timestamps do not affect slices; that is, conventional protocol
processing and application programs can be used on the slice
for the measurement without modifying them. In addition, they
do not affect the original infrastructure either.

The rest of this paper is organized as follows. Section II
describes related work. Section III reviews a network-
virtualization infrastructure architecture that can be extended
(evolved) by adding plug-ins. Section IV describes a method
for handling platform-specific or plug-in-specific information
(packet headers) in virtual networks. Section V describes a
method for packet identification in programmable networks.
Section VI proposes a method for plug-in-specific header
handling (including timestamp handling) with the packet
identification method. Section VII evaluates the proposed
packet-handling method, and Section VIII concludes the paper.

II. RELATED WORK

Related work on programmability of network nodes and
networks and network-delay measurements is summarized in
this section.

A. Network-node programmability
OpenFlow [McK 08] and other software-defined networking
(SDN) technologies enable separation of control and data,
control-plane programming, and centralized network control.
Network infrastructures (including network nodes) can be
virtualized, and the control plane can be evolved by using
these technologies. However, conventional SDN does not
support data-plane programmability and programmability of
decentralized control. These functions are also required in

Extending Network-virtualization Platforms by
using a Specialized Packet Header and Node Plug-ins

Yasusi Kanada
Central Research Laboratory, Hitachi, Ltd.

Totsuka-ku Yoshida-cho 292, Yokohama 244-0817, Japan
Yasusi.Kanada.yq@hitachi.com

future networks, so they are supported by the plug-in
architecture proposed in this paper. They can be used for a
combination of new control-plane and data-plane functions,
which are separated but can be flexibly integrated. Moreover,
the plug-in architecture supports new functions realized by
combinations of software and hardware. Although new
software is focused on in regard to future networks, new
hardware will also be required.

Although OpenFlow is designed to handle IP/Ethernet
packets, it can also handle non-standard protocols. However,
OpenFlow cannot be used for stateful processing of packets
with a plug-in-specific packet header, which is focused on in
this paper.

JUNOS® SDK [Kel 09] of Juniper Networks supports
service components as plug-ins. Each plug-in consists of
control and data components. However, in this architecture,
only one instance of a service component is created. This
architecture differs from the plug-in architecture proposed in
this paper, which supports creation of a type of virtual node or
link by network operators (or vendors) and enables creation of
multiple instances of components by slice developers.

B. Delay measurements
It is important to measure network communication delay
between end hosts or a server and a client because delay is an
important measure of QoS. Delay can be measured either
directly, i.e., by using timestamps in packets, or indirectly, i.e.,
by using network tomography or a similar method. In the case
of direct methods, probing packets, such as “ping”, i.e., a type
of packet of ICMP, are used. Although probe packets are
known to normally behave in a similar way to application
packets, sometimes they may behave differently [Che 03].
Especially, even if the behaviors are similar, the delay
distributions may be different.

Several types of application packets may contain
timestamps. For example, in regard to the real-time transport
protocol (RTP), every packet can contain a timestamp. The
timestamp is inserted by the sender application and tested by
the receiver application; it is thus used only for end-to-end
measurements. A more generic (but non-virtualized) method
using timestamps by using OpenFlow is proposed [Adr 14].

Direct methods, however, usually use probe packets unless
a specific application uses a packet format that contains a
timestamp. Application packets are usually not allowed to
contain timestamps because both TCP/IP or UDP/IP protocols
and applications do not handle timestamps and, if timestamps
are inserted, these protocols and applications cannot process
packets correctly. In addition, standard headers, such as
Ethernet MAC headers, IP headers, and GRE headers, can be
added easily by modifying operating-system (OS) con-
figurations; however, non-standard headers, such as those
containing timestamps, cannot easily be added by using OS
functions. A method for using such non-standard headers in a
network is thus proposed in the following.

III. EVOLVABLE NETWORK-VIRTUALIZATION

INFRASTRUCTURE

Network virtualization and the basic VNode architecture,
which enable mutually independent development of
computational and networking components of VNodes
[Nak 12][Kan 12], and an evolving VNode architecture by
using plug-ins [Kan 13c][Kan 14] are reviewed.

A. Network virtualization and VNode
When many users and systems share a limited amount of

resources on computers or networks, virtualization technology
creates the illusion that each user or system owns resources of
their own. Many programmable virtualization-network
research projects have been carried out, and many models,
including PlanetLab [Tur 07], VINI [Bav 06], GENI [Ber 14],
and Genesis [Kou 01], have been proposed. Slices are created
by network virtualization using a virtualization infrastructure
(substrate) that operates the slices.

In the VNode Project, network-virtualization technology
was developed by Nakao et al. [Nak 10] [Nak 12]. This tech-
nology makes it possible to build programmable virtual-
network environments in which slices are isolated logically,
securely, and in terms of performance (QoS) [Kan 13a]. In
these environments, new-generation network protocols can be
developed on a slice without disrupting other slices.

B. Method for node evolution
The method for evolving VNodes [Kan 13c][Kan 14] is
reviewed here. Using this method, operators (or vendors) can
use plug-ins for developing new functions, such as creating,
operating, or deleting new types of virtual node or link, for
slice developers. The operator first develops new subcompo-
nents of the original components of the VNode as plug-ins and
connects them to the original components. Plug-ins consists of
hardware and software. The operator then merges the plug-in
functions into the VNode (original components) to create an
evolved VNode.

This node-evolution method makes it possible to update the
plug-ins (i.e., the VNode can be evolved) at any time without
affecting the operation of the original VNode. As well as the
data-plane components in the VNode, the network managers
and control-plane components of the VNode remain
unchanged. The latter manage the resources and the configura-
tion of the original virtualization infrastructure; however, they
do not manage the resources and configurations of plug-ins.

The resources and configurations of a plug-in with data-
plane functions, which is called a data plug-in, must be
managed by another plug-in, which is called a control plug-in.
A data plug-in may contain specialized hardware required for
assuring high performance, isolation, and QoS of slices. Plug-
ins are connected to a VNode by using a predefined interface
called an open VNode plug-in interface (OVPI) [Kan 13c],
which should be built into the VNode (see Figure 1).

To finalize the VNode evolution, an evolved VNode is cre-
ated (this final stage was called the “second step” in the previ-
ous papers [Kan 13c][Kan 14]); that is, the plug-in functions
are introduced into the core part of the infrastructure. The data-
plug-in functions of the programmer are merged into the data-
plane components and the functions of control plug-ins are
introduced into the control-plane components. Slice developers
can use the new function in a similar way as they use other
functions. A method for finalizing the evolution at reduced
cost was proposed in a previous paper [Kan 14]. By using this
method, a slice developer can use new types of virtual nodes
and links, which are implemented by plug-ins, using the same
syntax as built-in types in a slice definition. In addition, the
plug-ins are registered to the network manager that
authenticates the plug-ins, and the operator authorizes them.

The proposed plug-in architecture supports data-plane
programmability and programmability of decentralized control
in addition to programmability of centralized control, which is
also supported by conventional software-defined networking
(SDN) technologies. The data-plane programmability of a data
plug-in and the control-plane programmability of a control
plug-in are combined to implement a new type of virtual node
or link. The data-plane and control-plane functions are

separated, but they can be flexibly integrated; that is, the
management interface between a control plug-in and a data
plug-in can be a private interface, which has no predefined
specification. Moreover, the plug-in architecture supports new
functions created by combinations of software and hardware.

IV. HANDLING PLATFORM/PLUG-IN SPECIFIC INFORMATION IN
VIRTUAL NETWORKS

In virtualization networks based on an overlay technology,
packets contain a platform header, which contains platform-
specific information such as a slice and virtual-link identifiers.
Platform-specific data can be classified into three categories:
standard-header data, standard addresses, and free-form data.

The standard-header data are contained in a standard
tunneling header. When a tunneling method is used for
virtualization, a tunneling header, such as generic routing
encapsulation [Far 00] over IP (GRE/IP), can be used. For
example, in the network virtualization using Generic Routing
Encapsulation (NVGRE) [Sri 14], a GRE key can be used for
identifying a virtual network. Instead, if a VLAN is used for
virtualization, a VLAN header can be used for identifying it.

The standard addresses are contained in address fields in a
standard header. In addition to a GRE key or a VLAN ID,
additional information may be conveyed by the IP addresses in
an IP header or by the MAC addresses in an Ethernet header.
In a VNode infrastructure, which features clean virtualization,
the IP addresses in an IP header are used for identifying virtual
links in combination with the GRE keys.

The free-form data may be contained in a header with non-
standard form. The platform header can be in any non-standard
format and contain more information than can be contained by
a standard header format such as GRE or VLAN. For example,
a packet may contain a timestamp of any length or other
measurement data. A non-standard format can be used in a
clean virtualization infrastructure because the platform headers
are hidden from slices if they are cleanly virtualized.

A free-form header may be divided into multiple fields, and
if one or more data plug-ins exists, the platform header may
contain plug-in-specific headers, as shown in Figure 2. The
plug-in-specific header may be set and tested by a plug-in at
any location in the virtualization infrastructure. The numbers
of plug-ins and headers may vary, and the orders of headers

and processing may vary, but this variation is
out of scope of this paper.

As shown in Figure 3, plug-ins in entrance
gateways insert a platform header that con-
tains a plug-in-specific header (which may
contain a timestamp), VNodes in the infra-
structure handle the header by the above-
described method, and plug-ins in exit gate-
ways handle (may measure the delays) and
remove the header. In the figure, two termi-
nals communicate with each other via a slice.
The physical network consists of two meas-

urement gateways and two VNodes. Each VNode contains a
virtual node on the slice. The virtual nodes are connected by a
special type of VLAN-based virtual-link that supports a spe-
cialized function such as delay-measurement. The virtual links
between VNodes and gateways are of the same type. In this
infrastructure, each packet has a non-standard platform header.

Although plug-ins can use any packet-header format in the
proposed method, it may be better to use a standard format
such as the network service header [Qui 13] when it is
available. The network service header, which is being
standardized in the IETF, can be added to encapsulated packets
to specify service paths in a network and to carry metadata
used by network devices or services. However, at least in the
case of the delay-measurement applications described in this
paper, service paths are not stored in platform headers.

To virtualize the network “cleanly”, the timestamp must be
removed (or hidden) just before the packet is received by a
virtual-node program on a slice, and it must be added again
just after the packet is sent by the program because the
timestamp may not affect in-slice processing. A method for
cooperatively handling plug-in-specific information in plug-
ins, especially delay measurement, is described in Section VI,
and needs concerning packet identification and a packet-
identification method, which is required for header handling in
programmable networks, are described in the next section.

V. PACKET IDENTIFICATION IN PROGRAMMABLE NETWORKS
To identify input and output packets, either the program or the
developer of the program (i.e., the slice developer) must
specify the method of identifying them. If a virtual node works
only as a router or a switch, which do not absorb, generate, or
duplicate packets, input packets to the node and the output
packets from the node may be easily identified by the
virtualization infrastructure.

These packets, however, cannot be identified if the virtual
node is programmable because the infrastructure does not
know the correspondence between input and output packets
(see Figure 4). A programmable node can absorb input
packets (Figure 4(a)) and generate new packets that do not
correspond to input packets (Figure 4(b)). It can also generate
multiple copies of a packet (Figure 4(c)). In addition, the
formats of input and output packets may be completely
different. The identity of input and output packets depends on
the program on the virtual node, and it cannot be defined
without certain assumptions concerning the program.

To identify the input and output packets, either the program
or the developer of the program must therefore specify the
identity. For example, they can specify a field p. f of packet p,
which contains a value that can identify the packet, or they can
specify a function f (p) that inputs a content of packet p and
outputs its identifier.

If packets must be processed quickly by the infrastructure,
e.g., they must be forwarded at wire rate, the method for

VNode Control-plane
interface

Data-plane
interface

Plug-ins
Extended VNode

Control-plane
component

Data plug-in
(Packet handling

plug-in)

Data-plane
component

(Packet handler)

C-plane
D-plane

Control plug-in

Figure 1. Open VNode plug-in architecture

Base platform
header

Plug-in
header 1

VNode Plug-ins
Data

plug-in 1
Base data-plane

component
Data

plug-in 2
Data

plug-in 3
Data

plug-in 4

Plug-in
header 2

Plug-in
header 3

Plug-in
header 4

Packet on
slice

Platform header

Packet

Extended VNode

Figure 2. Data plug-ins and plug-in-specific headers

Gateway
(exit)

Plug-in

Gateway
(entrance)

Plug-in

VNode

Terminal
(PC)

Virtual-
link

Packet
on slice

Platform
header

Packet
on slice

Packet
on slice

Platform
header

Packet
on slice

VNode

Virtual-
link Terminal

(PC)

Virtual-
link

Platform
header

Packet
on slice

Plug-insPlug-ins Plug-insPlug-ins

Virtual
node

Virtual
node

Figure 1. A virtualization network with a type of plug-ins

packet identification must be simple. The most promising
method is to include a packet identifier in each packet.
Although this method may be restrictive in some situations,
packets can usually be identified by their contents. When this
method is used, the program in a node or the developer must
specify the location and the length of the identifier field in the
packet. For example, if TCP is used, the sequence number can
be used as the identifier.

VI. PLUG-IN-SPECIFIC HEADER HANDLING

The proposed method for processing a plug-in-specific header,
especially a timestamp in the header, by the plug-ins in the
Vnodes is described as follows.

A. Handling a plug-in-specific header in a VNode
Because a VNode must satisfy the clean virtualization criteria,
it must hide plug-in headers by using an appropriate method;
i.e., a method for storing and retrieving plug-in headers must
be developed. It is required that a VNode must hide its plat-
form header from virtual nodes implemented in the VNode.
For example, if a plug-in-specific header contains a timestamp
and the header is hidden from the slice, e.g., they are removed
by the infrastructure before processing by programs on the
slice, conventional protocol processors and applications that do
not handle timestamps work normally on the slice. The VNode
must, therefore, remove the platform header when it sends a
packet to the virtual nodes, and it must add a platform header
when it receives a packet from the virtual nodes. To restore the
packet header, the VNode must identify the packet. As
described in the previous section, the most promising method
for this identification is to use a packet identifier in the packet
(on the slice). The performance of the plug-in to provide these
header-handling functions should be high. A network proces-
sor may thus be used for implementing these functions.

The method for handling a plug-in-specific header differs
from that for handling the base platform header that contains
virtual-network and -link information in the following way. If
the only contents of the packets are virtual-link-related
information, such as virtual-network or -link identifiers, the
input and output platform headers are independent. However,
if they are related, in such a case as delay measurement, the
packet header must be restored when outputting the packet.

B. Handling timestamps in the VNode infrastructure
An application of the proposed method is measurement of
gateway-to-gateway communication delay. Timestamps can be
inserted to a plug-in-specific header and handled by

corresponding plug-ins in all the VNodes and
gateways. They do not affect the protocols
and applications used on slices because they
are hidden from the slice.

An example of the physical network
structure used for this measurement is given
in Figure 3. The timestamp is inserted at the
entrance gateway. Each VNode generates a
packet for the virtual node by removing the
platform header from an incoming packet,
and the VNode restores the timestamp to one

or more outgoing packets that comes from the virtual node and
are identified with a stored incoming packet. The delay of
these removal and restoration functions must be small, and the
throughput of these functions should be high. The timestamp is
tested and deleted at the exit gateway. This gateway calculates
the delay (the average and distribution) between the entrance
and exit gateways. Their clocks must be synchronized as
exactly as possible to measure sub-millisecond-order delay.

VII. EVALUATION

The proposed method was evaluated by developing a measura-
ble VLAN virtual link (MVL), which is a new type of virtual
link with delay-measurement functions. The MVL is added to
the VNode infrastructure by using a plug-in architecture for
VNodes [Kan 13c]. MVL-creation requests are handled by the
management components of VNodes and by the control plug-
in, which is an MVL-specific control program.

The experimental network used for this evaluation is as
follows. In the physical network described in Figure 5, the two
VNodes, which are placed in the same room, and one PC is
used for the two gateways (and terminals) to avoid any
problems with clock synchronization. Terminal PCs com-
municate with each other by using Ethernet (but not
IP/Ethernet) packets, which are switched by the MAC
addresses on the slice in the virtual nodes. An Ethernet switch
program, which is a slow-path program running on Linux
(CentOS), works on a virtual node in each VNode.

The computational and networking environments for the
data plug-ins in the VNodes and the gateways are described as
follows. A network-processor board called WANic-56512
(developed by General Electric) was used for each VNode.
This board contains twelve 750-MHz Cavium Octeon® Plus
cores, which contains the program, and handles both incoming
and outgoing packets. The data plug-in for VNodes was
programmed by a hardware-independent language for network
processing, which is called “Phonepl” (portable high-level
open network-processing language) [Kan 13b]. This program
is handled by a +Net development environment [Kan 13b] that
consists of a Linux (CentOS), a Phonepl compiler, run-time
routines, and a GNU C compiler for Octeon. The “data plug-
in” for gateways was programmed in C and compiled by a
GNU C compiler for Linux (CentOS).

Although the platform header can be modularized as shown
in Figure 2, the base header and the timestamp are handled by
a single program in this implementation. The size of the
platform header and the displacement and size of the

VNode

Virtual
node

No
packet

Packet

 VNode

Virtual
node

No
packet

Packet

 VNode

Virtual
node

Packet
Packet

Packet
(a) Packet absorption (b) Packet generation (c) Packet duplication

Figure 4. Non-corresponding packet generation by a virtual-node program

VNode
Program-

mer

VNode
Program-

mer

Octeon
(NP)

Octeon
(NP)

Measurable
VLAN LS

Measure-
ment GW

Terminal
(program)

Terminal
(program)

Measure-
ment GW

sw sw

Measurable VLAN LS Measurable VLAN LS

PC for measurement

Measurement data handling
and MAC address conversion

Measurement data
(timestamp) insertion/deletion

Measurement data
(timestamp) insertion/deletion

Figure 5. Physical network-structure used for experimentally measuring delay

timestamp are embedded in the plug-in.
The Phonepl program also swaps the VNode-external and

VNode-internal MAC addresses in the platform header. The
reason that swapping MAC addresses is required is explained
in a previous paper [Kan 12], but it is out of scope of this
paper. To swap addresses, the program contains a conversion
table for internal and external MAC addresses and accepts
virtual-link-creation and deletion requests. A creation request
adds an entry to the conversion table. The entry contains a pair
of internal and external MAC addresses.

The gateway-to-gateway delay, the throughput of timestamp
handling and conversion, and the program lengths were meas-
ured. The evaluation results of the delay is 178 μS (σ = 24 μS).
If entrance and exit gateways are separated, it is hard to meas-
ure delay of this order. Table 1 shows the other results. It
compares the performances of the Phonepl program for Octeon
and the C program for 3-GHz Xeon. Although the overhead of
storing and searching for the packet header is not light, the
former performance of the Phonepl program is very close to
10-Gbps wire rate. Although the C program is relatively short
because the conversion-table configuration code is omitted, the
Phonepl program, which contains it, is still much longer.

VIII. CONCLUSION

A method for extending a virtualization network infrastructure
by introducing node plug-ins and a freely-designed plug-in-
specific packet header, which enable sharing part of packet
contents among the same type of VNode plug-ins spread
around the infrastructure, is proposed. This method was
applied to measurements of network edge-to-edge delay by
using a hidden timestamp in each packet. The timestamps for
multiple do not affect slices because the VNode infrastructure
is “cleanly” virtualized; that is, conventional programs can be
used in the slice for the measurements without modifying
them. This method was evaluated on the basis of the delay
measurements, and the evaluation results show that the
throughput of timestamp handling and conversion is 10-Gbps
wire rate and that the latency caused by the measurement is
less than 100 μS. This method is suitable for developing new
functions, including functions requiring wire-rate performance,
in shared/public networks. Future work includes
implementation of other node/link functions and handling
multiple plug-in-specific headers.

ACKNOWLEDGMENTS

Part of the research results is an outcome of “Advanced Net-
work Virtualization Platform Project A” funded by the Nation-
al Institute of Information and Communications Technology
(NICT). The author thanks Akihiro Nakao from the University
of Tokyo, Kazuhisa Yamada from NTT, Toshiaki Tarui from
Hitachi, and other members of the above project for their valu-
able discussions on the proposed packet-header handling and
delay-measurement methods. The author also thanks Yasushi
Kasugai, Kei Shiraishi, Takanori Ariyoshi, and Takeshi
Ishikura from Hitachi for implementing the plug-in interfaces.

REFERENCES
[Adr 14] Adrichem, N. van, Doerr, C., Kuipers, F., “OpenNetMon:

Network Monitoring in OpenFlow Software-Defined Networks”,
IEEE/IFIP NOMS 2014, May 2014.

[Bav 06] Bavier, A., Feamster, N., Huang, M., Peterson, L., and
Rexford, J., “In VINI Veritas: Realistic and Controlled Network
Experimentation”, SIGCOMM 2006, pp. 3–14, September 2006.

[Ber 14] Berman, M., Chase, J. S., Landweber, L., Nakao, A., Ott,
M., Raychaudhuri, D., Ricci, R., and Seskar, I., “GENI: A
Federated Testbed for Innovative Network Experiments”,
Computer Networks, Vol. 58, January 2014.

[Cas 04] Castro, R., Coates, M., Liang, G., Nowak, R., and Yu., B.,
“Network Tomography Recent Developments”, Statistical Science,
Vol. 19, No. 3, pp. 499–517, 2004.

[Cav 10] “OCTEON Programmer’s Guide, The Fundamentals”,
Cavium Networks, 2010, http://university.caviumnetworks.com/-
downloads/Mini_version_of_Prog_Guide_EDU_July_2010.pdf

[Che 03] Chen, Y., Bindel, D., and Katz, R. H., “Tomography-based
Overlay Network Monitoring”, ACM SIGCOMM Conference on
Internet Measurement (IMC’03), October 2003.

[Cho 09] Chowdhury, N. M. M. K. and Boutaba, R., “Network
Virtualization: State of the Art and Research Challenges”, IEEE
Communications Magazine, Vol. 47, No. 7, pp. 20–26, July 2009.

[Far 00] Farinacci, D., Li, T., Hanks, S., Meyer, D., and Traina, P.,
“Generic Routing Encapsulation (GRE)”, RFC 2784, IETF, March
2000.

[Kan 12] Kanada, Y., Shiraishi, K., and Nakao, A., “Network-Vir-
tualization Nodes that Support Mutually Independent Development
and Evolution of Components”, 13th IEEE International Confer-
ence on Communication System (ICCS 2012), October 2012.

[Kan 13a] Kanada, Y., Shiraishi, K., and Nakao, A., “Network-
resource Isolation for Virtualization Nodes”, IEICE Trans.
Commun., Vol. E96-B, No. 1, pp. 20-30, 2013.

[Kan 13b] Kanada, Y., “Open, High-level, and Portable Programming
Environment for Network Processors”, IEICE 7th Meeting of
Network Virtualization SIG, July 2013 (in Japanese).

[Kan 13c] Kanada, Y., “A Node Plug-in Architecture for Evolving
Network Virtualization Nodes”, 2013 Software Defined Networks
for Future Networks and Services (SDN4FNS), November 2013.

[Kan 14] Kanada, Y., “A Method for Evolving Networks by
Introducing New Virtual Node/link Types using Node Plug-ins”,
1st IEEE/IFIP International Workshop on SDN Management and
Orchestration, May 2014.

[Kel 09] Kelly, J., Araujo, W., and Banerjee, K., “Rapid Service
Creation using the JUNOS SDK”, ACM Workshop on
Programmable Routers for Extensible Services of Tomorrow 2009
(PRESTO’09), pp. 7–11, 2009.

[Kou 01] Kounavis, M., Campbell, A., Chou, S., Modoux, F.,
Vicente, J., and Zhuang, H., “The Genesis Kernel: A Programming
System for Spawning Network Architectures”, IEEE J. on Selected
Areas in Commun., vol. 19, no. 3, pp. 511–526, 2001.

[McK 08] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar,
G., Peterson, L., Rexford, J., Shenker, S., and Turner, J.,
“OpenFlow: Enabling Innovation in Campus Networks”, ACM
SIGCOMM Computer Communication Review, pp. 69–74, Vol. 38,
No. 2, April 2008.

[Nak 10] Nakao, A., “Virtual Node Project ― Virtualization
Technology for Building New-Generation Networks”, NICT News,
No. 393, pp. 1–6, June 2010.

[Nak 12] Nakao, A., “VNode: A Deeply Programmable Network
Testbed Through Network Virtualization”, 3rd IEICE Technical
Committee on Network Virtualization, March 2012,
http://www.ieice.org/~nv/05-nv20120302-nakao.pdf

[Qui 14] Quinn, P., Agarwal, P., Manur, R., Fernando, R.,
Guichard, J., Kumar, S., Chauhan, A., Smith, M., Yadav, N., and
McConnell, B., “Network Service Header”, draft-quinn-sfc-nsh,
work in progress, IETF, 2013.

[Sri 14] Sridharan, M., et al., “NVGRE: Network Virtualization
using Generic Routing Encapsulation”, draft-sridharan-
virtualization-nvgre, work in progress, IETF.

[Tur 07] Turner, J., Crowley, P., Dehart, J., Freestone, A., Heller,
B., Kuhms, F., Kumar, S., Lockwood, J., Lu, J.,Wilson, M.,
Wiseman, C., and Zar, D., “Supercharging PlanetLab ― High
Performance, Multi-Application, Overlay Network Platform”,
ACM SIGCOMM Computer Communication Review, Vol. 37, No.
4, pp. 85–96, October 2007.

[Yam 12] Yamamoto, T., Katayama, Y., Yamada, K., and Nakao, A.,
“A Management Model for the Network Virtualization Platform to
Provide Network Programmability”, World Telecommunications
Congress 2012 Workshop “SDN and OpenFlow”, March 2012,
http://www.ieice.org/~wtc2012/Slides/Workshops/WS2-2/-
WS2_2_4.pdf

Table 1. Evaluation results on timestamp (TS) handling and
header conversion

Implementation
Throughput (Gbps)* Program

lines TS insertion TS deletion
Phonepl program 10.0† 9.5† 99‡

C program (Xeon)** 2.3† (4.0††) 2.2† (4.0††) 190‡

*Packet size: 1024 B. ** Promiscuous mode is used. †No packet loss (< 10-6)
†† Packet loss ratio = 10-3 ‡Comment-only lines are not counted.

