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Abstract—Network virtualization introduces two concepts: 
slice (i.e., virtual network), which consists of virtual nodes and 
links, and slice developer, which is the third role in networks. 
Slice developers can introduce new network services by using 
slices. A method for introducing new types of virtual nodes and 
links for new services into the slice-definition language and the 
virtualization infrastructure by evolving physical nodes (i.e., 
“virtualization nodes” or VNodes) is proposed. This evolution 
consists of two stages: the experimental stage and the operational 
stage. In the experimental stage, data and control plug-ins are 
developed and tested by the operator or vendor by using 
experimental sliver definitions. In the operational stage, which is 
focused on in this study, the plug-ins are integrated into original 
components in the infrastructure and are available for slice 
development by using normal sliver definitions. By mapping type 
names to plug-in identifiers and parameters, the proposed 
method enables abstract and simple definitions of slices by slice 
developers and authorization of plug-ins by the operator, but it 
remains the loose integration of the new function, i.e., the plug-in 
architecture used in the experimental stage. Prototyping and 
evaluation demonstrates that this method greatly simplifies both 
slice developers’ tasks and operators’ tasks. 

Index Terms—Slice developer, Network-node evolution, Node 
plug-in architecture, Data plug-in, Control plug-in, Network 
virtualization, Virtualization node, VNode infrastructure, 
Virtual-link type creation, Deep programmability.  

I. INTRODUCTION 

Development of new services generates new business 
chances, stimulates economies, and also stimulates the 
intelligence of users who may devise new ways of life or new 
types of business. To increase the chance of creating new 
communication services, it is important to make it simpler and 
more flexible and to reduce its cost. If this development 
becomes so, more and more people will try to create new 
services and, in doing so, they will increase the chance of 
creating successful new services. 

To enable simple, flexible, and cost-reduced service 
creation, network virtualization will play an important role by 
introducing two concepts: slice and slice developer. As for the 
first concept, network virtualization enables creation of various 
types of virtual networks, which are called slices, on a single 
physical network. Slices not only reduce development and 
maintenance costs of customized networks but also realize 

abstract, simple, and flexibly-customized networks because, if 
the virtualization function satisfies the clean-virtualization 
criteria [7], it enables creation of slices without being 
constrained by the underlying physical network. This means 
that any set of protocols, which is not constrained by the IP or 
Ethernet protocols or any other underlying protocols, can be 
used on slices, and any virtual topology can be created. 
Network virtualization therefore enables creation of new 
services with reduced cost. 

As for the second concept, network virtualization creates a 
new role called slice developer [21]. In the case of 
conventional networks, there are two roles: operator and user. 
Operators (including vendors) develop and operate physical 
networks, and (end) users contract with an operator and use the 
networks. However, because network virtualization generates 
slices, they must be created and managed by the third role, i.e., 
the slice developer. Slice developers develop slices, they (or 
their application programs) operate the slices, and users 
contract with a slice developer and use the slice. In this three-
role model, an operator may be called an infrastructure 
provider, and a slice developer may be called a service 
provider [4]. Slice developers create a slice by selecting types 
of virtual nodes and links that are supported by the network-
virtualization infrastructure, and they are allowed to program 
virtual nodes (and virtual links) if they are programmable.  

The Virtualization Node Project, or VNode Project [17], 
has developed a virtualization infrastructure, called “VNode 
infrastructure”, which makes it possible to create slices that is 
deeply programmable (that means the data-plane of the slices 
is programmable) by slice developers. The slices are defined 
(programmed) and managed by a centralized method, but the 
virtual nodes are programmed and controlled by a decentral-
ized method. The programmed slices enable simple, flexible, 
and reduced-cost new services; that is, each slice developer 
independently, easily, and flexibly creates and manages a slice 
that supports a new service while development cost is reduced.  

In the VNode infrastructure, slice developers can create and 
program any number of virtual nodes of predefined types by 
using a slice-definition language; however, they cannot 
introduce new types and new software/hardware into the 
language and the infrastructure by themselves, so the 
infrastructure should have a method for introducing them. 
Although the infrastructure may sufficiently support various 
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types of virtual nodes at the time of infrastructure development, 
new types of hardware and software, which can be used for 
building a new type of virtual node or link, will become 
available through technical innovations. A method for 
introducing new types of virtual nodes and links by evolving 
the infrastructure should therefore be developed. If such a 
method is available, new types of hardware or software can be 
introduced by operators (or vendors) by using this method, and 
slice developers can use the new node/link types enabled by 
that hardware or software. 

The VNode infrastructure also enables components of a 
VNode to be evolved independently [7], and a methodology to 
evolve the components independently in two stages, i.e. the 
experimental and operational stages, was proposed and 
partially evaluated [11]. In the experimental stage, new types 
of virtual nodes and links are introduced by developing data 
and control plug-ins. In the operational stage, the data plug-ins 
are integrated into original data components, and the control 
plug-ins are integrated into original control and management 
components. In that study, a plug-in architecture and plug-in 
interfaces for the experimental stage were focused on, and 
methods for integrating plug-ins in the operational stage were 
not described. 

In the operational stage, which the present study focuses on, 
the plug-in integration can be tight or loose according to the 
needs and available cost; if the integration is tighter (that is, 
optimal combinations of virtual nodes and links as well as 
hardware and software is selected by the platform), it incurs 
more cost. A tight integration requires specific type-dependent 
tasks. In contrast, if the integration is loose, a plug-in 
architecture can be kept in the operational stage, and a more 
generic method, which is proposed in this study, can be used. 
For the integration, plug-ins to be integrated must be 
authorized by the operator. A method for the authorization 
must therefore be developed. 

The rest of this paper is organized as follows. Section II 
describes operations performed by operators and slice 
developers as well as programmability of a virtualization 
infrastructure and virtual networks in the VNode architecture. 
Section III describes the method for two-stage evolution of 
VNodes by connecting and programming plug-ins for the 
VNode infrastructure. Section IV focuses on the management 
of plug-ins for the operational stage of the VNode evolution. 
Section V first describes prototype plug-ins that implement this 
architecture and then presents the results of an evaluation and a 
discussion of this architecture. Section VI describes related 
work, and Section VII gives a conclusion.  

II. OPERATION AND PROGRAMMABILITY OF VNODE 

ARCHITECTURE 

Network virtualization, the structure of a virtualization 
infrastructure, the structure of the virtual network, and slice 
definition and management methods, which were previously 
proposed, are described here. 

A. Network virtualization 

When many users and systems share a limited amount of 
resources on computers or networks, virtualization technology 

creates the illusion that each user or system owns resources of 
their own. Many programmable virtualization-network 
research projects have been carried out, and many models, 
including PlanetLab [20], VINI [1], GENI [2][5], and Genesis 
[15], have been proposed. Slices are created by network 
virtualization using a virtualization infrastructure (substrate) 
that operates the slices.  

In the VNode Project, network-virtualization technology 
was developed by Nakao et al. [17][18]. This technology 
makes it possible to build programmable virtual-network 
environments in which slices are isolated logically, securely, 
and in terms of performance (QoS) [9]. In these environments, 
new-generation network protocols can be developed on a slice 
without disrupting other slices. 

B. Structure of virtualization infrastructure 

In the VNode Project, it is assumed that a physical network 
consists of one or more domains, which are managed by a 
virtualization network manager (VNet manager) [13]. The 
VNet manager was formerly called the domain controller (DC) 
[18][7]. It receives a slice definition, which is a design diagram 
of a slice, through a Web-based portal and distributes it to 
VNodes in the virtualization infrastructure. The concepts of 
slice and slice definition in this infrastructure are defined in the 
following subsections. Each domain has two types of nodes: 
VNode and gateway (Fig. 1).   

An overlay technology is used in the VNode infrastructure; 
that is, a VNode forwards packets on the infrastructure, and 
each packet contains the contents of a virtual packet in a slice 
as the payload. VNodes are connected by tunnels using a 
protocol such as Generic Routing Encapsulation (GRE) [6], 
and the Internet Protocol (IP) is used in the current version of 
the virtualization infrastructure. If the IP is used in a slice, the 
packet format is very close to that of NVGRE [19]; however, 
non-IP protocols can also be used in a slice. A domain may 
contain conventional routers or switches that do not have 
virtualization functions, and VNodes can be distributed to any 
place connected by the IP. An arbitrary packet format and 
protocol can be used in a slice, so they can be used in a VNode 
anywhere.   

A VNode consists of two data-processing components,  a 
programmer and a redirector, and a control component, a 
VNode manager [13]. The programmer implements virtual 
nodes. It enables “deep” (data-plane) programmability of 
virtual nodes. The redirector implements virtual links between 
virtual nodes by using the overlay technology.  
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C. Structure of slices 

In the VNode infrastructure, a slice is a virtual network that 
consists of the following two components (Fig. 2) [17][18].  
• Node sliver (virtual-node resource) represents computa-

tional resources that exist in a VNode (in a programmer). It 
is used for node control or protocol processing of arbitrary-
format packets. A node sliver, which may be slow-path, i.e., 
a general-CPU-based virtual machine (VM), or fast-path, 
i.e., a specialized high-performance hardware-based virtual 
node that requires a special type of software. Programma-
bility of node slivers is deep; that is, slice developers can 
program not only the control plane but also the data plane.  

• Link sliver (virtual-link resource) represents networking 
resources such as a virtual link that connects two node 
slivers and that any IP or non-IP protocols can be used on. 
A link sliver is mapped on a physical link between two 
VNodes or a VNode and a gateway. A link sliver is 
generated by slicing physical-network resources such as 
bandwidth. 

A slice developer can define a slice by specifying and 
combining these components and by programming and setting 
up node slivers. 

D. Slice definition and management 

A slice developer can create a slice by specifying a slice 
definition by using an XML-based language and sending the 
definition to the VNet manager (through the “northbound 
interface”). A slice definition is a set of specifications of the 
virtual network structure (such as shown in Fig. 2), nodes, and 
links. It may also contain virtual-to-physical node mappings. 
The developer can also manage the slice through the VNet 
manager. When creating a slice, the VNet manager maps the 
node/link slivers to the physical nodes/links [13] and 
distributes the slice definition to each VNode manager (through 
the “southbound interface”), which sends the necessary defi-
nitions to the data-processing components of the VNode (i.e., 
the programmer and the redirector): they receive information 
required for configuring node/link slivers.  

For example, a slice definition may contain a link-sliver 
specification such as the following (i.e., a link sliver with two 
virtual ports, i.e., end points: vport1 and vport2). This type of 
link sliver is GRE (GRE link sliver). 
<linkSliver type="link" subtype="GRE"> 
  <vports> 
    <vport name="vport1" /> 
    <vport name="vport2" /> 
  </vports> 
</linkSliver> 

III. TWO-STAGE EVOLUTION METHOD FOR VNODE 

The method for evolving VNodes in two stages [11] is 
described in the following. The architecture and interfaces used 

in the experimental stage are reviewed and explained more  
first. 

A. Evolution stages 

As for the proposed VNode-evolution method, operators 
(or vendors) can use plug-ins for developing new functions, 
such as creating, operating, or deleting new types of virtual 
node or link for slice developers in two stages (see Fig. 3) 
except the original stage. The experimental stage is mainly for 
the operator or vendors to develop new subcomponents of the 
VNode components as plug-ins, which are experimental 
components of the VNode infrastructure, and connect them to 
the components (Fig. 3(b)). Plug-ins consists of hardware and 
software. The operational stage is to merge the plug-ins into 
the components and to create an evolved VNode.  

An “evolvable” VNode is created for the experimental 
stage and, in this stage, the plug-ins can be updated at any time 
without affecting the operation of the original VNode. Not only 
the data-processing components of the original VNode but also 
the control and management components (i.e., the VNet 
manager and the VNode manager) remain unchanged. They all 
manage the resources and the configuration of the original 
virtualization infrastructure, but they do not manage the 
resources and configurations of plug-ins.  

The resources and configurations of a plug-in with data-
plane functions, which is called a data plug-in, must be 
managed by another plug-in, which is called a control plug-in. 
A data plug-in may contain specialized hardware required for 
high performance, isolation, and QoS of slices. Because the 
resource managers are separated and the original managers do 
not recognize the new resources, such as new types of virtual 
node, virtual link, physical sub-node, and physical link, the 
original resources and the new resources must be completely 
separated.  

If the data-processing components and the control and 
management components of the VNode are designed to 
exclude interference between them and newly introduced plug-
ins, a publicly available infrastructure can be used for 
developing new functions. The original VNode is probably 
placed in places, such as a carrier’s building, that are not easily 
accessible for temporary experimental purposes. However, the 
plug-ins can be placed in private environments for experiments, 
such as university laboratories or offices of vendors.  

The slice-development environment in the experimental 
stage of the VNode evolution is not friendly to slice developers. 
However, early adopters can define and use slices. 
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In the operational stage, an “evolved” VNode is created 
(Fig. 3(c)); that is, the plug-in functions developed in the 
experimental stage are integrated into the core part of the 
infrastructure. The data-plug-in functions are merged into the 
original data-processing component, and the functions of 
control plug-ins are merged into the original control and 
management components. Because the resource managers are 
merged into the core part, the original and new resources are 
also merged. As a result, they may be able to select the best 
method and resource from various methods and resources that 
were originally implemented in the VNode and added to it for 
fulfilling slice developers’ requests. Slice developers can use 
the new function in a similar way as other functions. 

B. Plug-in architecture and interfaces 

The plug-in architecture described here is used in the 
experimental stage. Plug-ins are connected to a VNode by 
using a predefined interface called an open VNode plug-in 
interface (OVPI) [11], which should be built into the data-
processing components of the VNode (i.e., the programmer and 
the redirector) (see Fig. 4).  

The proposed plug-in architecture supports data-plane 
programmability and programmability of decentralized control 
in addition to programmability of centralized control, which is 
also supported by conventional software-defined networking 
(SDN) technologies. The data-plane (D-plane) programma-
bility of a data plug-in and the control-plane (C-plane) 
programmability of a control plug-in are combined to 
implement a new type of virtual node or link. The data-plane 
and control-plane functions are separated but can be flexibly 
integrated; that is, the management interface between a control 
plug-in and a data plug-in may be a private interface, which has 
no predefined specification. Moreover, the plug-in architecture 
supports new functions created by combinations of software 
and hardware. Although new software is focused on in the case 
of future networks, new hardware will also be required.  

There are two types of OVPI: a D-plane interface and a C-
plane interface. The D-plane interface connects data plug-ins 
handling data packets to slow-path or fast-path components 
(and to software and/or hardware components) or to a switch 
(which is a part of the redirector). The C-plane interface 
connects the control plug-ins that manage the data plug-ins and 
the control subcomponents of the data-processing components 
(i.e., programmer manager or the redirector manager). Many 
methods can be used to implement for an OVPI. For the C-

plane interface, command-line interfaces (CLIs) and APIs 
(such as remote procedure calls or XMLs) can be used.  

For a control plug-in, the following identifiers and 
parameters, which are explained more in a previous paper [11], 
must be specified in a control message of an OVPI. The host 
name or address specifies the host that contains the plug-in. In 
usual cases, a domain name or an IP address is used, but a non-
IP address or another type of name may also be used. The plug-
in identifier specifies a plug-in in the host. This identifier may 
be structured; namely, plug-ins may be hierarchical. The 
parameters specify control information including information 
that identifies the slice that the information represents.  

For a data plug-in, the following tag (i.e., identifier) and 
parameters must be specified in a data packet as an OVPI. The 
plug-in channel tag specifies a collection (or a channel) of 
plug-ins. A collection of plug-ins is specified because, in 
contrast to the C-plane interface, there is usually no identifier 
that uniquely specifies a host or a plug-in. The tag may be a 
protocol parameter such as a VLAN identifier. The plug-in 
parameters are specified as protocol parameters.  

The identifiers and parameters in an OVPI (for control or 
data plug-in) must be supplied by the slice definition in the 
experimental stage. Examples of slice definitions are described 
in the next section. 

IV. SLICE DEFINITION AND MANAGEMENT OF NEW TYPES OF 

NODES AND LINKS 

Slice developers can use new types of virtual nodes or links 
(i.e., node slivers or link slivers), which are implemented by 
using plug-ins. In this section, the representations of virtual 
nodes and links in a slice definition (which are implemented in 
VNodes) are described, and the method for creating and man-
aging the nodes and links by the management and control com-
ponents of the VNode infrastructure is explained. The focus of 
this paper is on the operational stage. However, to contrast the 
two stages, the method for the experimental stage, which was 
called “the first step” [11], is also explained here. 

A. Definition and management in experimental stage 

In the experimental stage, to use the new types of virtual 
nodes or links, slice developers must specify the identifiers and 
parameters used in an OVPI in the slice definition. Although 
the plug-ins and their interfaces (OVPIs) can be evolved 
(updated) continuously, the original control components of 
VNodes are kept unmodified. The identifiers and parameters 
must therefore be specified externally, so they are specified by 
the slice definition.  

Two examples of virtual-node and virtual-link definitions 
are shown in Fig. 5. The first example, shown in Fig. 5(a), is a 
virtual node (node sliver) implemented by a set of plug-ins. 
The host name or address is specified by a parameter named 
“ControlPort”, which specifies a CLI (for the control plug-ins). 
The default TCP port number is 23, but a different port may be 
specified as “ControlPort”. The data port, such as a MAC 
address, VLAN ID, or a physical port name that the data plug-
in is connected to, can be specified by “DataPort”. The data 
port is connected to the programmer (slow paths and fast paths) 
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and the control port is connected to the programmer manager. 
Other parameters such as “Command-reserveNodeSliver” are 
command names of the CLI. These commands are called when 
the virtual node is set up, run, and stopped. See the previous 
paper [11] for command-parameter examples. There may be 
other commands such as operation and management (OAM, 
e.g., statistics) commands so more parameters may be specified, 
but they can be omitted here.  

The second example, shown in Fig. 5(b), is a virtual link 
implemented by a set of plug-ins. If the type of virtual link is 
built-in, the definition is the same as shown in Section II-D. 
Because a virtual link connects two virtual nodes in two 
VNodes, two sets of control and data plug-ins are specified. 
The control ports are CPIl1-addr and CPIl2-addr, which are 
connected to the redirector manager, and the data ports are 
DPIl1-port and DPIl2-port, which are connected to the switch 
(a part of the redirector). Because two control plug-ins contain 
the same program, the command names for the OVPI are 
assumed to be the same for both VNodes, namely, ls_setup_1, 
ls_setup_2, and so on.  

Although the slice definition that uses plug-ins are 
complicated, such as shown in Fig. 5, it should ideally be 
abstract as shown in Section II-D. However, in the experi-
mental stage, the original control and management components 
cannot abstract these identifiers and parameters because they 
do not recognize them. Moreover, these detailed specifications 
of identifiers and parameters, such as the domain names or 
addresses of the control plug-ins and physical data ports, such 
as MAC addresses, are convenient for developments in this 
stage. However, in the operational stage, these node/link defi-
nitions are too complicated for slice developers. The slice defi-
nition should therefore be simplified in the operational stage. 

B. Definition and management in operational stage 

In the operational stage, slice developers specify the new 
types of virtual nodes or links in slice definitions in mostly the 
same way as they specify built-in types. The final versions of 
plug-ins developed in the experimental stage are used as sub-
components of the VNode components. The hardware for the 
plug-ins may be moved closer to the VNode or moved inside 
the chassis of the VNode. Although the functions of the plug-
ins and OVPI are not modified, the plug-ins should be 
authorized by the operator and should be authenticated by the 
network management component of the platform (i.e., the 
VNet manager). In this stage, to integrate the plug-ins, the 
original control components are modified, and the authenti-
cation information may have to be introduced to the plug-ins. 
With this method, however, the modification is minimum, and 
the tasks of the operator becomes much easier and less costly.  

By using the plug-in installation method proposed here, 
slice developers can write slice definitions for new types of 
virtual nodes or links, which are mostly the same as slice 
definitions for built-in types. The definitions, however, contain 
the names of the new types. The modified VNet manager and 
node control components (i.e., programmer manager, redirector 
manager, and VNode manager) contain tables to map the type 
names and authenticate the plug-ins and the identifiers and the 
parameters used in the OVPI. Therefore, it can map the names 
to them. The resources of the new types of nodes and links are 
continued to be managed by the plug-ins. However, the 
operator must examine the functions of the plug-ins and 
authorize them by registering the plug-in names and 
authentication information to the table. This integration process 
can be called the installation of the plug-ins. 

Two examples, which use the same plug-ins as those 
described in the previous subsection, are shown in Fig. 6. The 
first example (Fig. 6(a)) is a virtual-node definition. The 
second example (Fig. 6(b)) is a virtual-link definition. The 
syntax of these definitions are the same as those of built-in 
types, so they are abstract, simple, and friendly to slice 
developers. The only difference between predefined and newly 
introduced types is the subtype names, i.e., “node-type-1” and 
“link-type-1” in Fig. 6. These identifiers specify the sets of 
plug-ins indirectly. An updated control component must 
translate these identifiers to the identifiers and the parameters 
of the plug-ins.  

The mapping table shown in Table 1 enables this 
translation and also enables authentication and authorization of 

<nodeSliver> 
  <instance type="…"> 
    <params> 
      <param key="PlugInName" value="virtual-node-1"/> 
      <param key="ControlPort" value="CPIn-addr"/> 
      <param key="DataPort" value="DPIn-port"/> 
      <param key="Command-reserveNodeSliver" 
             value="ns_setup"/> 
      <param key="Command-runNodeSliver" 
             value="ns_run"/> 
      <param key="Command-shutdownNodeSliver" 
             value="ns_stop"/> 
    </params> 
  </instance> 
  <vports> 
    <vport name="vport1"/> 
    … 
    <vport name="vportN"/> 
  </vports> 
</nodeSliver> 

(a) Virtual-node definition 

<linkSliver type="link" …> 
  <vports> 
    <vport name="vport1"> 
      <params> 
        <param key="ControlPort" value="CPIl1-addr"/> 
        <param key="DataPort" value="DPIl1-port"/> 
      </params> 
    </vport> 
    <vport name="vport2"> 
      <params> 
        <param key="ControlPort" value="CPIl2-addr"/> 
        <param key="DataPort" value="DPIl2-port"/> 
      </params> 
    </vport> 
  </vports> 
  <params> 
    <param key="PlugInName" value="virtual-link-1"/> 
    <param key="Command-reserveLinkSliver1" 
           value="ls_setup_1"/> 
    <param key="Command-reserveLinkSliver2" 
           value="ls_setup_2"/> 
    <param key="Command-reserveLinkSliver3" 
           value="ls_setup_3"/> 
    <param key="Command-runSliver" 
           value="ls_run"/> 
    <param key="Command-shutdownSliver" 
           value="ls_stop"/> 
  </params> 
</linkSliver> 

(b) Virtual-link definition 

Fig. 5   A new type of virtual-node/link definitions for experimental stage 



plug-ins. Although all the information concerning this mapping 
is shown in a single table here, the information common to the 
whole platform should be managed by the VNet manager, and 
information on each VNode should be managed by the VNode 
(by the redirector manager and the programmer manager). 
Control plug-in identifiers and authentication information in 
Table 1 are used for authenticating and authorizing plug-ins. 
They are managed by the VNet manager, but they are sent to 
VNodes that contain the plug-ins for the sake of authentication. 
“Commands” in the control plug-in column of this table mean 
a list of command names for the OVPI. The list of VNodes for 
each virtual node or link type (i.e., VNode0, VNode1, and 
VNode2 in Table 1) contains all the VNodes that have the 
plug-in for the type. 

A VNode to be used for each virtual node in this slice is not 
necessarily specified in the slice definition. Virtual nodes are 
mapped by the VNet manager. The control component can thus 
search the table and find the plug-in identifiers and parameters.  

Unlike resources of built-in types of nodes and links, the 
resources of these new types of nodes and links are managed 
by control plug-ins, but not by the VNet manager. The network 
(resources) used by the new type of links must be independent 
from networks managed by the VNet manager. Therefore, the 
operator cannot collect resource information of all the networks 
from the VNet manager, and the VNet manager cannot choose 
resource types or optimize the whole resource usage. These are 
the major drawbacks of the plug-in method compared with a 
method with merging resource management functions 

proposed by the previous paper [11]. However, the advantages 
of this method outweigh these drawbacks. 

C. Control information tunneling for link management 

In both the experimental and operational stages, a technique 
called control information tunneling (CIT ), which was 
mentioned by the previous paper [11], is required for 
implementing a new type of virtual links. By using CIT, 
VNodes exchange virtual link parameters for control plug-ins 
connected to the VNodes. 

To create and manage a new type of link between two 
VNodes, the control plug-ins in the VNodes need to exchange 
link parameters, which cannot be controlled by the original 
control components of the VNodes (see Fig. 7). For example, if 
a GRE-based link type is predefined in the infrastructure, 
control components, must have a negotiation mechanism, 
which exchanges the end-point IP addresses and the GRE key 
used for the virtual link [12]. The exchanged values are sent to 
the control plug-ins as parameters of the OVPI (CLI) com-
mands. However, this mechanism may be unable to exchange 
other types of parameters. CIT is a mechanism that allows any 
types of link parameters to be exchanged. The parameters 
should be passed through the inter-VNode control plane 
without interpreting or testing it. For example, if the new type 
of link is a VLAN-based virtual one, the control plug-ins may 
exchange MAC addresses and a VLAN identifier by using CIT.  

V. PROTOTYPING AND EVALUATION 

A version of the OVPIs was implemented, and a set of 
plug-ins was connected by using the OVPIs and partially 
evaluated. The hardware and software for the OVPIs and the 
plug-ins, the design, implementation, and preliminary results of 
an evaluation of the plug-ins, and the evaluation methods and 
results are described below. 

A. Hardware and software environment for plug-ins 

A preliminary version of the OVPIs was implemented in 
VNodes (in the redirectors) [11]. A CLI was used for the C-
plane interface, and a VLAN-based interface was used for the 
D-plane interface. Data plug-ins were implemented in two sets 
of PCs with CentOS (Linux). Each PC had a PCIe board with a 
network processor, Cavium Octeon® [3]. A hardware-inde-
pendent language called “Phonepl” (portable high-level open 
network-processing language) for network processors [10], 
which was called CSP, was used for developing the plug-in 
programs. Control plug-ins were then implemented in the PCs. 

<nodeSliver> 
  <instance type="…" subtype="node-type-1"> 
    … // No plug-in parameters here 
  </instance> 
  <vports> 
    <vport name="vport1"/> 
    … 
    <vport name="vportN"/> 
  </vports> 
</nodeSliver> 

(a) Virtual-node definition 

<linkSliver type="link" subtype="link-type-1"> 
  <vports> 
    <vport name="vport1"/> 
    <vport name="vport2"/> 
  </vports> 
  // No plug-in parameters here 
</linkSliver> 

(b) Virtual-link definition 

Fig. 6   Definitions of new types of virtual-node/link for operational stage 

Table 1  Plug-in parameter mapping table 

Keys Control plug-in Data plug-in
node-type-1 Control plug-in identifier 

Authorization information
Commands 

Data plug-in identifier
Authentication information

 
 

VNode0 CPIn0-addr DPIn0-port 
VNode1 CPIn1-addr DPIn1-port 
VNode2 CPIn2-addr DPIn2-port 

link-type-1 Control plug-in identifier 
Authorization information
Commands 

Data plug-in identifier
Authentication information

 VNode0 CPIl0-addr DPIl0-port 
VNode1 CPIl1-addr DPIl1-port 
VNode2 CPIl2-addr DPIl2-port 
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Fig. 7  Plug-in and interaction architecture for a new type of virtual links 



B. Implementation of a new type of virtual link 

A prototype of evolving and evolved VNodes (i.e., both in 
the experimental and operational stages), which implements a 
new type of virtual link, was developed. A set of OVPIs and a 
set of plug-ins that implements a new type of virtual link for 
both stages were developed, and a preprocessor for the 
operational stage was developed. GRE-based virtual links were 
the only type available in the current version of VNodes, so 
VLAN-based virtual links were implemented by using the 
plug-ins. The D-plane function of this prototype was described 
previously [11]. 

The control and management components accept slice 
definitions with the same format as in the experimental stage. 
In the present development, these components were not 
modified; instead, the preprocessor in this prototype translates 
slice definitions for the operational stage into those for the 
experimental stage. The preprocessor contains the whole 
mapping table. The preprocessor, which is written in Perl, is 
used before the slice definition is sent to the Web-based portal. 
This implementation method greatly reduces the number of 
tasks performed by the operator.  

A set of OVPIs and the plug-ins were developed as follows. 
The set of OVPIs is a preliminary version of the one described 
in Section IV. The plug-in installation method described in 
Section IV-C has not yet been fully developed; that is, only a 
link-creation function without authentication was developed. 
The control plug-in, which is written in C and runs on CentOS, 
sends a control packet to the data plug-in, which is written in 
Phonepl and consists of both data and control procedures. The 
control procedure, which adds or deletes a virtual link, works 
on a packet-processing core, and receives and processes a 
control packet [12].  

The function of the control plug-in is explained below. As 
described in Section IV-B, to operate a virtual link correctly, 
control plug-ins in two VNodes, which are the end-points of 
the virtual link, must exchange control parameters through the 
inter-VNode C-plane. Because the virtual link to be created is 
VLAN-based, MAC addresses (and a VLAN identifier) must 
be exchanged. However, CIT has not yet been implemented, 
and VNodes currently only have the negotiation function of 
GRE-based virtual links. Therefore, in this preliminary 
implementation of a new type of virtual link, the GRE-based 
link parameters, i.e., IP addresses (and a GRE key), are passed 
to the control plug-ins and are mapped to VLAN-based link 
parameters, i.e., MAC addresses (and a VLAN ID). 

C. Evaluation 

A slice definition that contains two virtual nodes in two 
VNodes and a virtual link between them was evaluated as 
follows. The syntax of the node and link definitions is close to 
those described in Fig. 7. The preprocessor described above, 
which translates the simple definition to a definition that 
contains plug-in parameters, was used in this evaluation.  

The original slice definition (for the operational stage) and 
the translated slice definition (which can be used in the 
experimental stage) are compared in Table 2. The lengths 
(numbers of lines) of the slice definitions and the numbers of 

the implementation-dependent parameters, which should be 
hidden from the slice developer, are listed in this table. 

The slice definition, which is identical to the one generated 
by the preprocessor, was sent to the Web-based portal, and a 
slice was created. Successful IP communication between the 
virtual nodes in this slice, connected by the VLAN virtual-link 
was confirmed by a ping command. Although virtual links in 
VNodes can transmit arbitrary format packets such as IPEC 
packets [8], IP was used because it requires only two OS 
commands (i.e., ifconfig and ping) built into the virtual 
node. The performance of a whole network composed of the 
prototype evolved VNodes was not measured, but the 
throughput of the data plug-in was measured to be 9 Gbps or 
more when the packet size was 900 bytes or larger. Although 
the slice developer must perform an extra step, i.e., 
preprocessing, the proposed VNode evolution method has a 
benefit for the slice developer compared with the previously-
proposed method used in the experimental stage [11].  

VI.  RELATED WORK 

OpenFlow [16] and other SDN technologies enable 
separation of control and data, programmability of the control 
plane, and centralization of network control. Network 
infrastructures including network nodes can be virtualized, and 
the control plane is evolvable by using these technologies. 
However, conventional SDN does not support data-plane 
programmability and programmability of decentralized control. 
These functions are also required in future networks. The plug-
in architecture proposed in this paper also supports these 
functions in combination with programmability of centralized 
control.  

JUNOS® SDK [14] of Juniper Networks supports service 
components as plug-ins. Each plug-in consists of control and 
data components. However, only one instance of a service 
component is created by using JUNOS SDK. This architecture 
is different from the plug-in architecture proposed in this paper, 
which supports creation of a type of virtual nodes or links by 
operators (or vendors) and enables creation of multiple 
instances of components by slice developers. 

VII. CONCLUSION 

A method for introducing new types of virtual nodes and 
links into a network virtualization infrastructure by evolving a 
physical node, which is called a “VNode”, is proposed. This 
evolution consists of two stages, and the operational stage was 
focused on in the present study. By mapping type names to 
plug-in identifiers and parameters, the proposed method 
enables abstract and simple definitions of slices by slice 
developers and authorization of plug-ins by the operator, but it 
remains the loose integration of a new function, i.e., a plug-in 
architecture, which is used in the experimental stage. This 

Table 2  Result of comparing link type definitions 

Link type definition Definition 
length (lines) 

Implementation-
dependent parameters

Original (for experimental stage) 7 0
Translated (for operational stage) 14 4

 



extended VNode architecture supports a combination of 
programmable data-plane and control-plane components (i.e., 
plug-ins) and a combination of a decentralized (node-internal) 
and centralized (network-wide) control of the components. 
Moreover, the plug-in architecture supports new functions 
created by combinations of software and hardware.  

A prototype based on this method was developed using 
VNodes and evaluated. The prototyping and evaluation 
demonstrates that this method greatly simplifies both slice 
developers’ tasks and operators’ tasks; that is, both the slice 
specifications and the processes in the operational stage are 
much simplified and the changing needs of slice developers 
will be satisfied with reduced cost. In addition, because the 
proposed method may have benefits (including security 
benefits) for both the slice developer and the operator, it may 
be better to install and to authorize the plug-ins before they are 
initially used. 

Future work includes developing a method for integrated 
operation and management of plug-ins distributed in a 
virtualization platform. It also includes implementing CIT and 
implementing new types of virtual links and network 
accommodation methods, including non-IP-protocol-based 
ones, by using advanced technologies and methods. It also 
includes applying the VNode-evolution method to VNodes in 
JGN-X testbed. 
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