
CQR 2002, 02/03/11

1

A Method of Software-Hardware Integration for
QoS Policy Combination in Gigabit Routers

Yasusi Kanada*, Takeki Yazaki†

*†IP Network Research Center, Research & Development Group, Hitachi, Ltd.
*Totsuka-ku Yoshida-cho 292, Yokohama 244-0817, Japan

*kanada@crl.hitachi.co.jp, †yazaki@crl.hitachi.co.jp

Abstract: In policy-based networks, two or more policies often
have to cooperate because combined and customized network func-
tions must be controlled using policies. Two types of policy trans-
formation, policy fusion and policy division, are sometimes required
to implement cooperating policy systems on high-performance
hardware routers. Policy fusion transforms two or more policies
into one, and policy division transforms a policy into two or more
policies. These transformations causes a problem that the original
policies must usually be strongly constrained to allow these trans-
formations. This paper shows a method for resolving restrictions on
the division of QoS policies by a software-hardware integration,
i.e., by implementing virtual flow labels (flow IDs) in hardware and
by dividing a policy and deploying the policies onto two filter
blocks. We have developed a policy agent (PEP) and a gigabit
router integrated by using this method. Both high-performance and
flexibility are achieved by this integration.
Keywords: Policy-based networking, Diffserv (Differentiated serv-
ices), Policy division, Policy fusion, Program transformation, Vir-
tual flow label, Hardware router, Flow aggregation.

1. Introduction
Network services will be demanded to be customizable by both
customers and service providers. Both business customers and
providers require customized services because the difference from
competitors caused by the customization is the key to success in
their business. Customization of networks is realized by using ac-
tive-network and policy-based networking technologies. Novel
functions are added to network devices by active network tech-
nologies, and they are controlled and managed by using policy-
based networking technologies. Active network technologies have
been widely studied and now portions of them are going to be in
standardization process, e.g., proxy services in content delivery
networks (CDN) [Tom 01]. Policy-based networking has also been
widely studied and several new standards for policy-based net-
working are being developed in the IETF (Internet Engineering
Task Force, e.g., the core and QoS policy information models
[Moo 01, Sni 00], COPS (Common Open Policy Services) protocol
[Dur 00], and COPS usage for COPS-PR [Cha 01].

In active networks, new network functions are organized into a
component-based architecture. Components are selected, combined
and added by a provider or customer. So the policies to control
these functions should also be organized into a flexible component-
based architectures [Kan 00a, Kan 00b]. A higher-level policy
should be built by using lower-level policy components. For exam-
ple, to build and to control a Diffserv (Differentiated Services) net-
work [Ber 99], there must be at least two functions; classification
and policing function that classifies and polices (i.e., limited to a
certain bandwidth) packets come from service subscribers at an
edge router, and queuing and scheduling function that queues and
schedules the flow passes through. So a policy for classification
and policing and a policy for queuing and scheduling should be
composed into a higher-level Diffserv policy. If the service is
typical Diffserv, the policy for classification specifies the class or
the DSCP (Diffserv Code Points) [Nic 98] of the flow, and the pol-
icy for queuing/scheduling specifies the testing of the DSCPs to
determine the algorithms and parameters for queuing and scheduling
required by packets in that class. These policies can be regarded as
components of a network-wide QoS policy. Although DSCPs can
be used for implicit cooperation of policies in certain services, other

services may require explicit specification of policy combination. A
higher-level function or policy within a network is applied as a
combination of lower-level functions or component policies.

As policy systems become more and more flexible, it will be in-
creasingly difficult to translate policies at network nodes. The
higher-level (device-independent) policies of the policy system
must be automatically translated into lower-level (possibly device-
dependent) policies that the network nodes can accept. A policy
server, or a proxy that mediates between the policy server and the
network devices, must mechanically translate the policies into
configurations that suit devices from multiple vendors. Policy
servers may thus have to translate multiple component policies that
operate in cooperation into such configurations. Although this pol-
icy translation is comparable to program compilation, the process
may, in fact, be much more complicated. A higher-level policy may
have to be translated into two or more lower-level policies, while
two or more higher-level policies may also have to be translated
into one lower-level policy. For example, a higher-level policy may
contain two (cooperating) functions, but there may be no lower-
level policy that contains both functions. In this case, the policy
must be divided in two; otherwise, its deployment to devices is not
possible. The translation can thus be regarded as a type of program
transformation [Par 83] and an author has discussed this [Kan 01b].

One reason that such non-straightforward correspondences exist
is that the functions of devices, especially core routers, have become
less flexible because they are now built with special-purpose hard-
ware in order to meet performance requirements. In the 1970s,
routers were general-purpose computers. Today, however, high-end
routers include hardware-implemented routing engines and some of
them include hardware-implemented QoS and MPLS (Multi-
Protocol Label Switching) mechanisms. Programming of such
routers is not as flexible as programming of general-purpose com-
puters. Therefore, a complicated transformation algorithm may be
required for such devices.

Sometimes, many restrictions have to be placed on the original
policies to make transformations of the above type possible
[Kan 01b]. In most practical cases, however, restrictions can be
avoided without performance degradation by elaborate hardware
design. In addition, even if it is not possible to avoid a complex
transformation, requirements for the restrictions of high-level poli-
cies so that transformations can be eliminated by introducing virtual
flow labels (VFLs) [Kan 01b]. The introduction of VFLs resolves
indeterminacies of data dependence [Kan 01a] between policy rules.
The VFL can be implemented in software in routers. However, a
software implementation would not result sufficient performance.

 This paper outlines a method of software-hardware integration
for Diffserv policies; i.e., describes QoS architecture with hardware-
implemented VFLs for gigabit routers and the policy transformation
method. Section 2 outlines policy fusion and division. Section 3
explains the restriction of policy division and the method for re-
solving them by using VFLs, which was originally introduced in a
previous paper [Kan 01b]. Section 4 explains an integration method
of router hardware and policy agent software for Diffserv policies.
This method has been implemented in a router. Section 5 shows
performance evaluation results, and Section 6 concludes this paper.

2. Outline of Policy Fusion and Division
This section explains the fusion and division of policies, which were
originally defined in an earlier work by an author [Kan 01b].

CQR 2002, 02/03/11

2

2.1 Definitions
A policy is a list of policy rules, which are if-then rules (condition-
and-action rules). Transformations of two basic types are involved
in translating higher-level policies to lower-level policies.
1. Policy fusion: If two or more higher-level policies are trans-

formed into a lower-level policy, the transformation is called a
policy fusion.

2. Policy division: If a higher-level policy is transformed into two
or more lower-level policies, the transformation is called a policy
division.

A transformation may be a combination of policy division and pol-
icy fusion; i.e., one set of higher-level policies may be transformed
into a set of lower-level policies, while the functions of one of the
higher-level policies are separated into two or more lower-level
policies and the functions of two or more of the higher-level policies
are merged into one lower-level policy.

2.2 An example of policy fusion
An example of policy fusion is given here. The original policies
that police, mark, and queue packets in a flow are as follows:

E1 = { if (Source_IP is 192.168.1.1) {
if (Information_Rate <= 1 Mbps) {

DSCP = "EF"; -- Only 1 Mbps of the
-- traffic is marked as "EF".

} else { absolute_drop;
-- The overflow of traffic is discarded.

}; } },
C1 = { if (DSCP is "EF") {

Scheduling_Algorithm = "Priority";
-- Priority queuing is specified.

Priority = "High"; } }.
Policies E1 and C1 each consist of a single rule for the sake of sim-
plicity. The rule in E1 monitors flow from IP address 192.168.1.1.
When the information rate of the traffic exceeds 1 Mbps, the over-
flow is discarded. The DS fields of the packets that are passed are
marked "EF" (expedited forwarding) [Jac 99]. The single rule in C1
specifies priority queuing as the scheduling algorithm and sets the
priority "High" for traffic marked "EF".

These policies are fused into policy EC1.
EC1 = { if (Source_IP is 192.168.1.1) {

Scheduling_Algorithm = "Priority";
Priority = "High";
if (Information_Rate <= 1 Mbps) {

DSCP = "EF";
} else { absolute_drop; }; } }.

Policy EC1 also consists of a single rule. The function of this pol-
icy is the same as that of E1 and C1 in combination. The major
purpose of this policy fusion is performance improvement. If the
two separate policies that express E1 and C1 are implemented in the
router, and can be sequentially executed, this policy fusion is not
necessary. However, the sequential execution of two policies may
take more time than the execution of the fused policy, and the result
will then be worsened the performance. Policy fusion then maxi-
mizes the performance.

2.3 Examples of policy division
Two examples of policy division are given. The first example is

EC2 = { if (Source_IP is 192.168.1.1) {
DSCP = "EF"; Priority = "High"; },

if (Source_IP is 192.168.1.3) {
DSCP = "BE"; Priority = "Low"; } }.

The first rule in policy EC2 marks "EF" on packets come from IP
address 192.168.1.1 and queues them into a high priority queue.
The second rule marks "BE" on packets come from IP address
192.168.1.3 and queues them into a low priority queue. This policy
can be divided into the following two policies.

E2 = { if (Source_IP is 192.168.1.1) { DSCP = "EF"; },
if (Source_IP is 192.168.1.3) { DSCP = "BE"; } }.

C2 = { if (Source_IP is 192.168.1.1) { Priority = "High"; },
if (Source_IP is 192.168.1.3) { Priority = "Low"; } }.

Policy E2 marks the packets and policy C2 queues them into
high or low priority queues. The list of conditions in a policy forms
a classifier [Ber 99]. In EC2, the classifier is

{Source_IP is 192.168.1.1, Source_IP is 192.168.1.3}.
The classifier in the original policy EC2 is copied exactly to the
policies that result from the division, E2 and C2. This is required to
preserve the semantics of policies [Kan 01b].

The second example is shown. The original policy E2 contains a
single rule that including marking and metering actions:

E3 = { if (Source_IP is 192.168.1.1 ||
 Source_IP is 192.168.1.3) {

-- Two flows from IP address 192.168.1.1 and
-- 192.168.1.3 are aggregated.
if (Information_Rate <= 1 Mbps) {

DSCP = "EF";
} else { absolute_drop; }; } }.

The single rule of this policy detects flows from IP addresses
192.168.1.1 and 192.168.1.3, meters the aggregated traffic, and
marks or drops some of its packets.

A router, especially a hardware router, may require that two rules
be used to detects the flows from the two IP addresses, i.e., it may
not be possible to use a logical-OR in a condition of any single rule.
This policy must then be divided into two policies as follows:

E31 = { if (Source_IP is 192.168.1.1) { DSCP = "EF"; },
if (Source_IP is 192.168.1.3) { DSCP = "EF"; } },

E32 = { if (DSCP is "EF") {
 if (Information_Rate > 1 Mbps) { absolute_drop; };
} }.

Traffic from both IP addresses, 192.168.1.1 and 192.168.1.3, is
marked as "EF". The aggregated traffic is thus detected by the con-
dition “DSCP is "EF"”.1 The classifier is not copied in this trans-
formation. So this transformation can be used only when a certain
condition holds; i.e., the resulted policies do not work correctly if
there is a flow premarked “EF” (see Section 3.1).

A policy division is required here because the flow must be ag-
gregated before the metering. If, in contrast, E3 is translated into
the following rule, the result of metering is different. The following
single policy is an example of incorrect translation:

E31’ = { if (Source_IP is 192.168.1.1) {
if (Information_Rate <= 1 Mbps) {

DSCP = "EF";
} else { absolute_drop; }; },

if (Source_IP is 192.168.1.3) {
if (Information_Rate <= 1 Mbps) {

DSCP = "EF";
} else { absolute_drop; }; } }.

The rules in this policy separately meters the two flows. The me-
tered result is thus different from the result for the original policy.

3. Restrictions on Policy Division and the Use
of VFLs to Resolve Them

This section describes restrictions on policy division, and a method
of resolving restrictions by using VFLs. There are restrictions on
policy fusion too [Kan 01b], but they are not covered in this paper
because its focus is on the usage of VFLs (See Section 3.2).

3.1 Restrictions
The restrictions on policy division are explained here using three
examples. The first example on a restriction on DSCP reference

1 There is a restriction in this transformation explained in Section 3.1.

CQR 2002, 02/03/11

3

and marking follows. In policy division, restrictions may be created
by marking. A policy P is assumed to be divided into P1 and P2,
with P2 applied after P1. For example, P, P1 and P2 may be as
follows:

P = { p1: if (DSCP is 10) { -- Testing premarked traffic.
if (Information_Rate > 1 Mbps) {

absolute_drop; }; },
p2: if (Source_IP is 192.168.2.1) { DSCP = 10; } },

P1 = { p11: if (DSCP is 10) { },
p12: if (Source_IP is 192.168.2.1) { DSCP = 10; } },

P2 = { p21: if (DSCP is 10) {
if (Information_Rate > 1 Mbps) {

absolute_drop; }; },
-- This rule is wrongly applied to traffic
-- that rule p12 has been applied.

P22: if (Source_IP is 192.168.2.1) { } }.
In policy P, p1 detects packets with a DSCP of 10 and polices that
flow. So rule p2 tests whether the source IP address is 192.168.2.1,
and then sets DSCP 10 to packets from that address. The condition
part of rule p1 of P tests a DSCP and the action part of rule p2
marks the same DSCP. Rule p21 of P2, which corresponds to rule
p1, may wrongly passes traffic with DSCPs that were marked by
rule p12. This problem is caused by copying the classifier. The
classifier in P, i.e., {DSCP is 10, Source_IP is 192.168.2.1}, is ex-
actly copied to P1 and P2. However, this causes a conflict with an
action, DSCP = 10, and causes a wrong result.

The second example on a restriction on DSCP reference and re-
marking follows. Policy Q is assumed to be divided into Q1 and
Q2, with Q2 applied after Q1.

Q = { q: if (DSCP is 10) {
DSCP = 14;
if (Information_Rate > 1 Mbps) { absolute_drop; };

} },
Q1 = { q1: if (DSCP is 10) { DSCP = 14; } },

Q2 = { q2: if (DSCP is 10) {
if (Information_Rate > 1 Mbps) { absolute_drop; };

} }.
If rule q of Q tests one DSCP then marks another DSCP, rule q2 of
Q2, which corresponds to rule q, may wrongly not pass traffic with
DSCP 14 by rule q1. The problem is also caused by copying of the
classifier;1 i.e., rules q1 and q2 have exactly the same conditions as
q.

The third example on a flow aggregation restriction is explained
using policy E3 given in Section 2.3. The results of the policy di-
vision are E31 and E32. These policies works correctly when there
is no flow premarked "EF". However, if there is a flow that has
DSCP "EF" and the source IP address is neither 192.168.1.1 nor
192.168.1.3, this flow is wrongly caught by the rule in E32. A flow
that is not caught by any rule in a policy is called a default flow
[Kan 01b]. Nonexistence of default flows is required in this trans-
formation. An easy method that assures nonexistence of default
flows is to add the following rule to the end of the policy:

if (true) { absolute_drop; };
The restrictions described here could be removed by designing

the router hardware so that there would be no need of policy divi-
sion. However, it will complicate the hardware and may reduce the
performance.

3.2 Virtual flow labels and elimination of restrictions
The restrictions are caused because of copying of a classifiers. So
they can be eliminated by developing a method of policy division
that eliminates this copying. Introducing a VFL enables this.

1 One way of solving this problem is to rewrite the DSCP in the condition of
q2 from 10 to 14: if (DSCP is 14) { … }. This works because q1 rewrites
DSCP of packets with a DSCP from 10 to 14. However, this method does
not always generate a correct result.

A virtual flow label (VFL), or virtual label [Kan 00b], is a label
attached to a packet or flow, and is similar to a DSCP, except that
the DSCP is a real label. However, a VFL is external to the packet,
and the number of different VFLs is not restricted. A VFL is not
conveyed by packets themselves, so the policies to cooperate must
exist in the same network node unless the VFL value is conveyed by
some other means, such as wavelength, physical location, and so on.

All the example policies shown in Section 2.3 can be correctly
and systematically divided using VFLs. In the first example, policy
P can be divided as follows:

P1’ = { p11’: if (DSCP is 10) { VFL = "p11"; },
p12’: if (Source_IP is 192.168.2.1) {

DSCP = 10; VFL = "p12"; } },
P2’ = { p21’: if (VFL is "p11") {

if (Information_Rate > 1 Mbps) {
absolute_drop; }; },

p22’: if (VFL is "p12") { } }.
Rules p11’ and p21’ are derived from rule p1, and rules p12’ and
p22’ are derived from rule p2. Rule p21’ catches the traffic passed
through p11’ and rule p22’ catches the traffic passed through p12’
because of VFLs "p11" and "p12".

In the second example, policy Q can be divided as follows:
Q1’ = { q1’: if (DSCP is 10) { DSCP = 14; VFL = "q11"; } },
Q2’ = { q2’: if (VFL is "q11") {

if (Information_Rate > 1 Mbps) {
absolute_drop; }; } }.

Rules q1’ and q2’ are derived from rule q. In rules p21’, p22’, and
q2’ of these policies, the original conditions are replaced by the
testing of the VFL. Rule q2’ catches the traffic passed through q1’
because of VFL "q11".

In the third example, policy E3 can be divided as follows:
E31” = {if (Source_IP is 192.168.1.1) {

DSCP = "EF"; VFL = "ef"; },
if (Source_IP is 192.168.1.3) {

DSCP = "EF"; VFL = "ef"; } },
E32” = {if (VFL is "ef") {

 if (Information_Rate > 1 Mbps) { absolute_drop; };
} }.

The only rule in policy E32” correctly catches the flows passed
through one of the two rules in policy E31”. It never catches a de-
fault flow because no default flow has VFL "ef" (because "ef" is
only marked in the rules in E31”).

The introduction of a VFL not only eliminates the restrictions
but may also reduces the cost of classification. For example, a 32-
bit IP-address is compared in the condition part of rule p22, but this
operation is replaced by a comparison of a VFL "p12" (in rule
p22’), which can be much shorter than 32 bit, and thus the per-
formance can be improved by using high-speed indexing operation
when there are many such rules. However, to use the above policy
division method, VFLs must be implemented in the router either by
software or hardware.

4. Method of Software-Hardware Integration
for Policy-based QoS

This section explains the hardware-software integration method for
applying Diffserv policies to high performance routers.

4.1 Diffserv policies and their deployments in Policy-
Xpert

The Diffserv policies in OpenView PolicyXpert and
JP1/PolicyXpert [HP 00]2 and the method of deploying them to
networks are reviewed here. PolicyXpert currently supports provi-

2 PolicyXpert is a trademark of Hewlett-Packard Company. The second
version of PolicyXpert was developed jointly by Hewlett-Packard Company
and Hitachi, Ltd.

CQR 2002, 02/03/11

4

sioning and RSVP-based QoS policies, including Diffserv policies
of three types: Traffic Classifier Policies (CL Policies), Traffic
Conditioner Policies (TC Policies), and Queue Control Policies (QC
Policies) [Kan 01c, HP 00]. Most Diffserv functions, i.e., flow
classification, marking, policing, queuing, scheduling, shaping, and
so on, and some other QoS function, e.g., Intserv function, can be
represented by using TC and QC Policies. CL Policy adds flexibil-
ity in representation and usage (operation) [Kan 01d]. TC and QC
Policies are natural representation of Diffserv functions as policies,
i.e., collections of condition-action rules. TC Policies represents
edge functions and QC Policies represents core functions. In a
Diffserv network domain, a TC Policy is usually applied to the in-
bound traffic at an edge interface (i.e., an edge router interface to
outside the netwrok), and a QC Policy is usually applied to the out-
bound traffic at core interfaces (i.e., interfaces between routers in
the network). However, TC and QC Policies (and CL Policies too)
can be combined at an interface (usually at a core interface of an
edge/boundary router).

The policies are briefly explained below. The CL Policy
matches a particular flow and places a VFL called a Classifier Iden-
tifier (CID) on the flow. An example of a CL Policy rule is:

if (Source_IP is 192.168.3.1) { CID = "User1"; }.
This rule attaches a CID "User1" to the flow. Because attaching a
CID is the only function of a CL Policy, it is always used as a com-
ponent of a larger policy.

The TC Policy matches and may police (i.e., limit traffic), a flow
and marks the DSCPs on the packets, or absolutely
(unconditionally; i.e., discards all packets in the flow) drops the
traffic. An example of a TC Policy rule is

if (CID is "User1") {
if (Information_Rate <= 1 Mbps) {

DSCP = 10; -- The first 1 Mbps of the traffic
-- is marked with DSCP 10.

} else { absolute_drop; }; -- The rest of the traffic is
}. -- unconditionally dropped.

This rule marks the packets with either of two DSCP values or drops
them with a CID value of "User1".

The QC Policy matches a flow and queues the packets in the
flow. It may schedule and/or shape the traffic, and may algo-
rithmically drop the packets (i.e., drop the packets according to a
random or deterministic algorithm). The scheduling algorithm can
be selected from among strict priority queuing (S-PQ), bounded
priority queuing (B-PQ), aggregate bandwidth scheduling (A-BW),
or per-flow bandwidth scheduling (P-BW). If the algorithm is A-
BW or P-BW, minimum and/or maximum (shaping) rates can be
specified for the traffic flow. An example of a QC Policy rule is:

if (DSCP is [10, 14, 18]) { -- if DSCP is 10, 14, or 18
Scheduling_Algorithm = "S-PQ";
Max_Queue_Size = 200 packets;
Discard_Algorithm = "Deterministic Discard";
if (DSCP is 18) {

Discard_Level = 100%; -- 200 packets
} elsif (DSCP is 14) {

Discard_Level = 70%; -- 140 packets
} else {

Discard_Level = 40%; }; }. -- 80 packets
A QC Policy rule represents a scheduling queue. This rule specifies
deterministic discard as its discard algorithm and specifies three
levels of discard; packets with DSCP 18 are discarded only when
the queue contains its full 200 packets, while packets with DSCP 14
are discarded when the queue contains 140 or more packets, and so
on. This rule can thus be used to provide the AF service of Diff-
serv. Of course, a random method of discard can be specified in-
stead of a deterministic method.

Virtual labels (called Traffic Identifiers or Queue Set Identifiers)
are also used to connect pairs of TC Policy or QC Policy rules.
Complex QoS policies can be expressed in terms of such policies.
The component architecture of PolicyXpert policies has been ex-
plained in other papers [Kan 01c, Kan 01d].

The outline of Poli-
cyXpert architecture is
illustrated in Figure 1.
Policies are defined by
the administrator or
operators using the
console. They are in-
putted to the server
(PDP) and stored into
the policy database.
They are sent to proxy
or embedded policy
agents (PEP) and trans-
formed into network
device configurations
and deployed to the
devices. The server also
manages network inter-
faces of the devices by
using the information
sent by the agents.

4.2 A VFL function implemented in hardware
We have implemented VFLs in a hardware router. Policy division
can be implemented with almost no restrictions by using this router.

The router has multiple logical filter blocks (Figure 2), in which
packet flows can be classified and several packet filtering and QoS
actions can be taken. Each filter block can be programmed by a list
of condition-action rules that may be stored in a hardware table. A
table entry is similar to a microcode instruction. The actions in-
clude packet dropping, marking a DSCP, policing, parameter deter-
mination for queuing, scheduling and shaping. The classifier in the
first filter block can test the six tuples, i.e., the source and destina-
tion addresses, the IP protocol, the source and destination port
(when the IP protocol is TCP or UDP), DSCP, and several other
fields of the packet header. We have developed hardware for
marking of flow IDs (i.e., VFLs) in the first filter block, and hard-
ware for classifying packets by testing the flow ID in addition to the
six tuples in the second filter block.

In typical usage, a flow ID is only assigned in one rule and is
only referred to by one rule. The packets that pass through the as-
signment point are caught at the reference point. However, the
same flow ID value can be assigned in and/or referred to by two or
more rules.

Assume that the condition parts of rules in the filter blocks can-
not be disjunctive (“OR”ed) conditions. Flows must be aggregated
to implement disjunctive conditions. A single flow ID (VFL) is
assigned to multiple flows to be aggregated. For example, the fol-
lowing rules can be used for detecting the condition “Source_IP is
192.168.2.10 || Source_IP is 192.168.2.20”:

if (Source_IP is 192.168.2.10) { VFL = "Aggregated"; },
if (Source_IP is 192.168.2.20) { VFL = "Aggregated"; }.

4.3 Policy transformation
Policies are translated into router configurations by using policy
division and fusion in the agent for the router. Two cases in which
flow IDs are useful are explained. In the first case, flow aggrega-
tion and metering coexist. A policy division is inevitable if a TC or
QC Policy is deployed to an interface, and this policy aggregates
flows, i.e., the condition contains “OR”s, and an action part of the
policy rules contains policing, the both filter blocks must be used.
For example, if the TC Policy is E2 shown in section 2.3, the rule in
E2 can be transformed into the following router configurations
(expressed as low-level policy rules).

[For the first filter block]
if (Source_IP is 192.168.1.1) { Flow_ID = "EF_CID"; },
if (Source_IP is 192.168.1.3) { Flow_ID = "EF_CID"; }.

[For the second filter block]
if (Flow_ID is "EF_CID") {

if (Information_Rate <= 1 Mbps) {

Network Device

Console

PolicyXpert
Server (PDP)

Proxy agent
(PEP)

Network Device

Embedded
agent (PEP)

COPS

COPSCOPS

CLI, etc.

Policies

Policy
DB

Figure 1: Architecture of PolicyXpert

CQR 2002, 02/03/11

5

DSCP = "EF";
} else { absolute_drop; }; }.

The policy must be divided in this way because two
rules are required for the classification but the flows
thus classified must be aggregated before metering.
The flow ID enables this transformation.

The second case is as follows. The rule shown
below does not perform flow aggregation nor meter-
ing but the policy is divided because there is another
rule that performs both flow aggregation and meter-
ing.

if (Source_IP is 192.168.1.1) { DSCP = "EF"; }.
This rule should be divided into the following two
rules.

[For the first filter block]
if (Source_IP is 192.168.1.1) {

Flow_ID = "EF_CID"; }.
[For the second filter block]
if (Flow_ID is "EF_CID") { DSCP = "EF"; }.

This rule division is required for not changing the
semantics of the classifier. If no flow ID is available, the following
rules can be used instead of the above rules.

[For the first filter block]
if (Source_IP is 192.168.1.1) { }.
[For the second filter block]
if (Source_IP is 192.168.1.1) { DSCP = "EF"; }.

The first rule is required even if the action part of this rule is empty
in general because, if this rule is removed, a rule below this rule
may catch a flow that must be caught by this rule and the semantics
of this policy may be destroyed.

If the condition does not contain a DSCP, this division does not
change the semantics. However, the evaluation of the condition
may take more time than the condition that only contains a flow ID.

5. Evaluation
We measured the performance and confirmed that an introduction of
VFLs does not degrade the performance. The measurement method
was as follows. Two policies, F and S, were set to the hardware
table of the router. Five flows that had different source IP address
and that had the same bit rate (284 kpps, 64-byte packet)1 are gen-
erated by Smartbit 6000B. The flows, whose total rate was 1.42
Mpps, were inputted to the router by a Gigabit Ethernet line, and the
output was returned to the Smartbit by another Gigabit Ethernet
line. The total traffic was slightly below the rate limit of Gigabit
Ethernet (1 Gbps). Policy F had 100 rules, and the flows hit the
10th, 30th, 50th, 70th and 90th rules. Policy S had five rules, and
five VFLs connect rules in F and S. The total input and output rates
were both measured to be 1.42 Mpps, i.e., no performance degrada-
tion occurred.

6. Conclusion
Policies should cooperate for programmable and customizable pol-
icy-based networking, and policy fusion and division, which cause
restrictions on the form of the policies, are sometimes required to
implement the policies on high-performance hardware routers. We
have developed a method of software-hardware integration of poli-
cies; i.e., a router architecture that supports VFLs (flow IDs) in
hardware and developed a method of policy division for this archi-
tecture. The restrictions on the policies have been minimized by
this method. We are developing a policy agent (PEP) and a gigabit
router integrated by using this method to support the Diffserv poli-
cies of PolicyXpert. Preliminary evaluation results shows that both
high-performance and flexibility are achieved by this integration.

1 The size of each packet is 84 bytes including the overhead.

Acknowledgment
We thank Toshio Shimojou,
Yuuji Isezaki, and Hiromasa
Okamoto of the Enterprise Server
Division, Hitachi, Ltd., and Brian
O’Keefe from Hewlett-Packard
Company for discussing policy
division and fusion and similar
problems in PolicyXpert with us.
We also thank Takao Nara, who
measured the performance of the
hardware.

References
[Ber 99] Bernet, Y., Binder, J.,

Blake, S., Carlson, M., Car-
penter, B. E., Keshav, S.,
Ohlman, B, Verma, D., Wang,
Z., and Weiss, W., “A Frame-
work for Differentiated Serv-
ices”, draft-ietf-diffserv-

framework-02.txt, Internet Draft, IETF, February 1999.
[Cha 01] Chan, K. H., Durham, D., Gai, S., Herzog, S., McClogh-

rie, K., Reichmeyer, F., Seligson, J., Smith, A., and Yavatkar, R.,
“COPS Usage for Policy Provisioning (COPS-PR)”, RFC 3084,
IETF, March 2001.

[Dur 00] Durham, D. (ed.), Boyle, J., Cohen, R., Herzog, S., Ra-
jan, R., and Sastry, A., “The COPS (Common Open Policy
Service) Protocol”, RFC 2741, IETF, January 2000.

[HP 00] HP OpenView PolicyXpert 2.0 — Users Guide, Edition
1, Hewlett-Packard, October 2000.

[Jac 99] Jacobson, V., Nichols, K., and Poduri, K.: An Expedited
Forwarding PHB, RFC 2598, IETF, June 1999.

[Kan 00a] Kanada, Y., “A Representation of Network Node QoS
Control Policies Using Rule-based Building Blocks”, Interna-
tional Workshop on Quality of Service 2000 (IWQoS 2000), pp.
161–163, June 2000.

[Kan 00b] Kanada, Y., “Two Rule-based Building-block Architec-
tures for Policy-based Network Control”, 2nd International
Working Conference on Active Networks (IWAN 2000), pp. 195–
210, October 2000.

[Kan 01a] Kanada, Y., “Taxonomy and Description of Policy Com-
bination Methods”, Workshop on Policies for Distributed Sys-
tems and Networks (Policy 2001), Lecture Notes in Computer
Science, No. 1995, pp. 171–184, Springer, January 2001.

[Kan 01b] Kanada, Y., “Policy Division and Fusion: Examples and
A Method – or, Multiple Classifiers Considered Harmful –”, 7th
IFIP/IEEE International Symposium on Integrated Network
Management (IM 2001), pp. 545–560, IEEE, May 2001.

[Kan 01c] Kanada, Y., and O’Keefe, B. J., “Diffserv Policies and
Their Combination in OpenView/JP1 PolicyXpert”, 5th Asia-
Pacific Network Operations and Management Symposium
(APNOMS 2001), p. 501, September 2001.

[Kan 01d] Kanada, Y., “Diffserv Policies and Their Combinations
in a Policy Server Called PolicyXpert”, SIG Information Net-
works & SIG Network Systems, IEICE, March 2002.

[Moo 01] Moore, B., Ellesson, E., Strassner, J., and Westerinen, A.,
“Policy Framework Core Information Model — Version 1
Specification”, RFC 3060, IETF, February 2001.

[Nic 98] Nichols, K., Blake, S., Baker, F., and Black, D.,
“Definition of the Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers”, RFC 2474, IETF, December 1998.

[Par 83] Partsch, H., and Steinbruggen, R., “Program Transfor-
mation Systems”, Computing Surveys, Vol. 15, No. 3, pp. 199–
236, Association for Computing Machinery, 1983.

[Sni 00] Snir, Y., Ramberg, Y., Strassner, J., and Cohen, R.,
“Policy Framework QoS Information Model”, draft-ietf-policy-
qos-info-model-02.txt, Internet Draft, IETF, November 2000.

[Tom 01] Tomlinson, G., Orman, H., Condry, M., Kempf, J., and
Farber, D., “Extensible Proxy Services Framework”, draft-
tomlinson-epsfw-00.txt, Internet Draft, IETF, July 13, 2000.

Flow
classifi-
cation

Actions
1

Flow
classifi-
cation

Actions
2

Flow
classifi
-cation

Actions
1

Flow
classifi
-cation

Actions
2

Filter
block 1

Filter
block 2

Filter
block 1

Filter
block 2

Input packet

Output packet

Packet and Flow ID (VFL)

Crossbar switch

Packet and Flow ID (VFL)

Router

Figure 2: Filter modules in a router

