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Abstract 
Network processors (NPs) are widely used for programmable and high-performance networks; 
however, the programs for NPs are less portable, the number of NP program developers is small, 
and the development cost is high. To solve these problems, this paper proposes an open, high-level, 
and portable programming language called “Phonepl”, which is independent from vendor-specific 
proprietary hardware and software but can be translated into an NP program with high perfor-
mance especially in the memory use. A common NP hardware feature is that a whole packet is 
stored in DRAM, but the header is cached in SRAM. Phonepl has a hardware-independent abstrac-
tion of this feature so that it allows programmers mostly unconscious of this hardware feature. To 
implement the abstraction, four representations of packet data type that cover all the packet op-
erations (including substring, concatenation, input, and output) are introduced. Phonepl have 
been implemented on Octeon NPs used in plug-ins for a network-virtualization environment called 
the VNode Infrastructure, and several packet-handling programs were evaluated. As for the eval-
uation result, the conversion throughput is close to the wire rate, i.e., 10 Gbps, and no packet loss 
(by cache miss) occurs when the packet size is 256 bytes or larger. 
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1. Introduction 
To enable programmability for networking and in-network processing, especially for new network-layer pro-
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gramming for clean-slate virtual-networks [1], network processors (NPs) have been used [2] and will be more 
widely used in the near future. NPs, which were developed for software-based high-performance networking 
solutions, make it possible to quickly develop arbitrary protocol and functions in the case of hardware-based so-
lutions as well. 

However, there are three problems that make using NPs for such functions difficult. The first problem is lack 
of portability. Because low-level languages that are similar to assembly languages must be used for developing 
NP programs, the programs are not portable. Although extended versions of C can usually be used for develop-
ing NP programs, essential libraries depend on vendor-specific proprietary hardware and software, and proprie-
tary rights on NP programs are protected by non-disclosure agreements (NDAs) preventing programs and doc-
uments concerning an NP being ported. The second problem is high development cost and that the availability 
of NP program developers is limited. NP program developments require special skills, and the knowledge they 
require is not widely available; thus, only a limited number of developers have the ability to develop NP pro-
grams. In addition, vendor-specific information is required in NP-program development. Consequently, the 
learning curve of NP-program development is very gentle, the development takes a very long time, and its cost 
is very high. The third problem is restriction on publishing developed programs, papers, and documents con-
cerning an NP. This is a serious problem for network researchers. 

The three above-described problems can be solved by successfully designing and implementing a high-level- 
language, which can translate programs into NP machine code or a vendor-dependent C program. Programs 
written in this language must be translated into NP-dependent object programs; however, to solve the problems, 
the language must be hardware- and vendor-independent. 

An important common NP feature concerning high-performance packet processing (to avoid packet drops 
caused by cache misses) is to use static random-access memory (SRAM) and dynamic random-access memory 
(DRAM) by different methods with explicit awareness by the programmer, making programming difficult and 
time-consuming. Although memory allocation is not the only issue that causes the above three problems, this is 
the most important and serious issue because NPs are optimized for wire-rate processing and memory abuse 
immediately prevents it and severely reduces the performance. In particular, whole packets are stored in DRAM, 
and only the headers, which must be modified, removed, or added, are cached in SRAM because if data stored in 
DRAM is accessed by a CPU core, access takes an excessively long time, and wire-rate processing is impossible. 
The rest of the packets are just forwarded to the next network node without modification in the NP. This is 
common because it is necessary for NPs to store packets in memory while processing them, but the size of 
SRAM is limited, so whole packets cannot be stored in short-access-time memory, i.e., SRAM. 

When programming a packet-processing program for NPs, programmers must use an assembly language or C 
with assembly-level features, and must be very careful to get high performance. When using general-purpose 
CPUs, programmers can use high-level language and do not have to distinguish SRAM (or cache) and DRAM 
because they are automatically selected when programs load and store data. However, NP programmers must 
usually know whether the packet to be processed is on SRAM or DRAM (or both) because this knowledge is 
critical for attaining stable (i.e., mishit-less) wire-rate processing. Two types of NP architectures are available. 
In one of them, such as Intel IXP, the SRAM and the DRAM are different classes of memory with different ad-
dresses. In the other type, such as Cavium Octeon®, the SRAM can be accessed as cache or registers, in a similar 
manner to general-purpose CPUs, but programmers must still be aware of the SRAM/DRAM distinction be-
cause the NP handles them in different ways. These cases are explained in more detail in Section 2. 

Although it is a promising approach to design a new open and portable high-level language and to implement 
a high-performance language processor, i.e., a compiler and run-time routines, it is still very hard to solve the 
above three problems because of the wide semantic gap between the language and the object program. 

However, this paper describes the successful first step toward this goal. Hardware features such as those de-
scribed above can be abstracted to common high-level language features that do not make programmers con-
scious of the low-level hardware features. To enable this type of abstraction, a high-level language called “Pho-
nepl” (portable high-level open network processing language) is proposed, and a method for compiling packet- 
handling programs in Phonepl into high-performance programs that can fully utilize hardware while distin-
guishing SRAM and DRAM is proposed. Here, “open” means that network processors can be programmed 
without NDAs. Especially, packet headers are automatically cached, the language processor is aware that the 
data being handled is stored in either SRAM or DRAM (or both) and manages data transmission between them, 
and programmers do not have to pay attention to this distinction, so the programming cost can be decreased. 
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Phonepl does not depend on vendor-specific NP hardware and software, and thus the programs in Phonepl can 
be portable among various NPs. 

The rest of this paper is organized as follows. Section 2 describes related work. Section 3 describes Phonepl. 
Section 4 describes a method for implementing Phonepl for NPs, especially four representations of packet type 
and a method for handling them. Section 5 describes a prototype implementation of Phonepl for plug-ins for a 
network-virtualization environment called the VNode Infrastructure, and Section 6 evaluates it by using several 
applications. Section 7 concludes this paper. 

2. Related Work 
This section focuses on previous studies on NPs and languages for packet processing because, although there are 
many studies on memory-related optimizations concerning high-performance computing, such as Sequoia [3], 
they focus on array processing and the requirements for packet-stream processing are quite different from them. 

2.1. Selection of SRAM/DRAM in NPs 
The IXP series of NPs developed by Intel [4] does not have cache, and its SRAM and DRAM have different 
memory spaces. The developers at Intel reported that cache is not effective in the case of NPs, so this type of 
memory architecture is good for network processing. However, it is difficult to program IXP processors because 
programmers, who are not even aware of the difference between SRAM and DRAM, must use them with dif-
ferent methods. 

In contrast, the architectures of NPs developed later, for example, Cavium Octeon® [5] and Tilera® Tile Pro-
cessors [6], are more similar to those of general-purpose CPUs with cache. However, because a cache miss may 
disable wire-rate transmission of packets, there are several devices that can be applied to avoid cache miss. That 
is, data to be processed at wire rate must be stored in SRAM. However, because an NP cannot usually have suf-
ficient quantity of SRAM to store all the processing packets, it only stores descriptors and headers of packets in 
SRAM, and the rest or whole packets must be stored in DRAM. Various different types of packet-processing 
hardware and software behave in a similar way. In addition, to process packets at wire rate, NPs distribute pack-
ets to many cores for parallel processing, and they sort the resulting packets by hardware in input order and 
queue them for output or the next processing. 

2.2. Selection of SRAM/DRAM with a Packet-Processing Language 
In an NP program-development environment called Shangri-La [7], which was developed by Intel and several 
universities, a high-level language called Baker [4] was developed for IXP. By assuming that packet bodies are 
stored in DRAM and descriptors are stored in SRAM, Baker enabled programmers to handle packet data without 
having to consider whether they are on DRAM or SRAM. The data structure on SRAM, however, must be de-
signed by programmers, so it depends on NP architecture. In addition, programmers must describe data trans-
mission between DRAM and SRAM, so they must explicitly describe caching operations. 

Unlike Octeon or Tilera, Baker does not have a mechanism for supporting automatic distinguished use of 
SRAM and DRAM. It is therefore difficult to process packets at wire rate by using Baker. 

2.3. Packet-Stream and Data-Stream Languages 
Click [8] is software architecture for describing routers modularly. Two-level description is used in Click. The 
lower level, or component level, is described by C, and the higher level is described by a domain-specific lan-
guage, which connects modules in several ways. Click programs can be portable, but it is difficult to get high 
performance from portable Click programs. NP-Click [2] is a specialized implementation of Click for IXP NPs. 
Modules in NP-Click are written in IXP-specific C language; there-fore, the programs are not portable. 

Frenetic [9] is a language for controlling a collection of OpenFlow [10] switches. It is embedded in Python 
but is based on SQL. It is a declarative language and processes collections (streams) of packets instead of 
processing individual packets procedurally in the manner of Phonepl. Because Frenetic processes packet streams, 
it is very similar to CQL (Continuous Query Language) [11]. Unlike Phonepl, Frenetic can only be used to pro-
gram the control plane; it cannot handle the data plane. 

NetCore [12] is a rule-based language for controlling OpenFlow switches. Rules in NetCore are condition- 
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action rules; that is, rules that match incoming packets are activated. 

3. Packet-Processing Language 
A high-level language called Phonepl, which solves the three problems described in the introduction, is outlined. 

3.1. Basic Design of Phonepl 
Phonepl is designed for wire-rate (low-level) packet-processing of any format, such as a non-IP and/or non- 
Ethernet format, as well as designed to be as close as a conventional programming language, i.e., Java, because 
it should be easy to handle by Java and C++ programmers. 

The reason why a new language, which is open, portable, and easy to use, is designed is explained as follows. 
Although it is close to conventional languages, a new language is required because it is very hard to compile a 
general-purpose program to high-performance object program for NPs, which very optimized hardware-usage, 
especially memory usage, is required for. Phonepl may thus be considered as a very restricted and extended ver-
sion of Java. 

Two major design goals of Phonepl are as follows. First, Phonepl must be high-level; that is, it must be de-
signed for the programmer not to be aware of proprietary hardware and software. Second, Phonepl must be able 
to express high-performance packet-processing programs. Especially, processing at wire-rate, i.e., 10 Gbps or 
more, without packet drops is required. In an NP, input packets may be partially cached, that is, the header of the 
packet is stored in SRAM and the rest or whole packet is stored in DRAM, but a DRAM access may disable 
wire-rate processing and cache miss easily cause packet-drops. However, this goal must be achieved without 
abandoning the first goal, i.e., high-level programmability. 

To achieve these design goals, data structures, especially Packet and String, which are the most important data 
structures in Phonepl, must be carefully designed and the method for processing them must be developed. Espe-
cially, packets are designed to be immutable byte strings in Phonepl and they are distinguished from non-packet 
strings. 

There are five language features concerning this design. The first feature is that packets are byte strings be-
cause packets with arbitrary formats should be able to be handled in uniform methods. Packets have variable 
length, so they can be handled as byte strings (similar to character strings). A packet in Phonepl is not a encap-
sulated object. This decision makes low-level and cross-layer optimization of packets easier. The proto-
col-handling method written in Phonepl is thus completely different from that written in Java. 

The second feature is that packets are immutable. Packets are handled as immutable (non-rewritable) objects, 
which are similar to character strings in Java or other languages; that is, packet contents cannot be rewritten. 
This immutability enables memory areas, especially DRAM areas, to be shared by packets before and after an 
operation. 

The third feature is that types of packets, i.e., Packet, and non-packet strings, i.e., String, are different in Pho-
nepl. They are incompatible for two reasons. First, although they can be logically identical, they must be imple-
mented by using quite different methods and this distinction makes implementation more efficient and easier. 
Operations such as subpacket and substring described below utilize this difference. Second, programmers can 
easily distinguish them. Non-packet strings are used for temporary data, e.g., packet fragments, but packets are 
used for I/O data; that is, packets and packet fragments (non-packets) are different for programmers. 

Two assumptions are made in regard to implementation of these data types. The first assumption is that whole 
String objects are stored in cacheable memory, i.e., in SRAM, but can be stored in DRAM if needed. If they are 
in cache, purging the cache may have to be inhibited. The second assumption is that only the head of a packet is 
cached, and the tail is stored only in DRAM. However, a short packet may be wholly cached and may be stored 
only in SRAM. 

The fourth feature is that packet and non-packet byte-substring operations are different in Phonepl because the 
types of the operation results are different. A new packet can be generated by removing part of another packet 
using a subpacket operation, and a non-packet byte string can be generated by extracting part of a packet using a 
substring operation. These operations can have the same name i.e., a substring, but are distinguished. 

The fifth feature is that packet- and byte-concatenation operations are specialized. A byte string can be gener-
ated by concatenating two or more byte strings by a concat operation, and a packet can be generated by conca-
tenating one or more byte strings and a packet by a packet constructor called “new Packet”. Although a packet 
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can logically be generated by concatenating multiple packets, such concatenation seems to be practically less 
useful and difficult to implement, so no such operation is included (See Section 4.2.3 for more explanations). 

3.2. Program Example and Packet Operations 
To outline Phonepl and to explain several data structures and important packet operations, a program that per-
forms MAC-header addition/removal, which cannot be performed by conventional non-programmable network 
nodes, is shown in Figure 1. The program in this figure defines class AddRemMAC. It has two functions that 
handle two bidirectional packet streams, i.e., NetStream1 and NetStream2 (lines 001 - 002), which are bound to 
physical network interfaces outside this program. One function inputs packets from NetStream1, generates new 
packets with a new MAC header (i.e., adds a new MAC header at the front) for each packet, and outputs them to 
NetStream2. The other function inputs packets from NetStream2, removes the MAC header in front, and outputs 
it to NetStream1. The program is much simplified because it is sufficient to show the functionality and basic 
implementation of the language; that is, no validation test is performed before the header is added or removed. 
However, it is easy to add check code to this program. 

Packet flows are handled as “streams” in Phonepl. Method of stream handling is described using the con-
structor of class AddRemMAC here. The parameter declarations of AddRemMAC (lines 006 - 007) specify that 
input packets to parameter port1 pass to method process1 and input packets to parameter port2 pass to method 
process2. This type of parameter declaration is Phonepl specific; that is, Java grammar is modified for the sake 
of stream processing. The parameter values (packet streams) are assigned to instance variables out1 and out2 to 
make them available in the newly created object. Methods process1 and process2 receive one packet at a time. 
(One of these methods is executed once on only one core for each packet.) Because Phonepl handles input pack-
ets by these methods only, there is no specific method or statement for packet input. 

Examples of a substring operation (which is used for accessing packet components), a packet constructor 
(which is used for packet composition), and a packet-stream output using “put” method can be seen in method  
 

 

001 import NetStream1; 
002 import NetStream2; 
 
003 class AddRemMAC { 
004    NetStream out1; 
005    NetStream out2; 
 
006    public AddRemMAC(NetStream port1 > process1,  
007     NetStream port2 > process2 ){ 
008  out1 = port1; 
009  out2 = port2; 
010    } 
 
011    void process1(Packet i) { 
         //Port 1 to 2 (no VLAN -> no VLAN) 
012  Packet o = new Packet(i.substring(0,14),i); 
     // MAC header of original packet (i: Original packet) 
013  out2.put(o); 
014    } 
 
015    void process2(Packet i) { 
         // Port 2 to 1 (no VLAN -> no VLAN) 
016  Packet o = i.subpacket(14); 
    // remove MAC header (no VLAN) 
017  out1.put(o); 
018    } 
 
019    void main() { 
020  new AddRemMAC(new NetStream1(), 
021     new NetStream2()); 
022    } 
023 } 

 
Figure 1. Simple MAC-header addition/removal program. 
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process1 (line 011). This method handles a packet that comes from NetStream1, generates a byte string from the 
first 14 bytes of input packet i (it is assumed that the size of MAC header is 14 bytes) by i.substring(0,14), ge-
nerates a packet by concatenating this byte string and the original packet by new Packet(···,i), and outputs the 
resulting packet to NetStream2(out2). 

An example of subpacket operation, which generates packets from an existing packet, can be seen in me-
thod process2 (line 015). This method handles a packet that comes from NetStream2, generates a packet by 
removing the first 14 bytes of input packet i by i.subpacket(14), and outputs the resulting packet to Net-
Stream1 (out1). 

Finally, an example of stream initialization is seen in function main() (line 019). When class AddRemMAC is 
initialized, this function is executed. It logically runs only once, but each processor core may execute it once 
unless there are side-effects. It generates an instance (a singleton) of class AddRemMAC, which runs forever 
and processes packets repeatedly unless it is externally terminated. Two packet streams are generated and passed 
as arguments of AddRemMAC. They start to operate (input and/or output packets) when instances are generat-
ed. 

4. Implementation Method 
To implement semantics close to conventional programming languages such as Java, a special method of han-
dling data (object) is required for Phonepl. The key feature of Phonepl implementation is the four representa-
tions of packets and operations among them. 

4.1. Four Representations of Packets 
In Phonepl, multiple packet data-representations used in NPs are unified as a single data type called Packet. Four 
different representations shown in Figure 2(a) (explained below) are therefore used for Packet. These represen-
tations are required because of the following two reasons concerning high-performance packet-processing and 
NP hardware. First, in most packet-processing in network nodes, packet headers are added, removed, or up-
dated, but packet tails, i.e., payloads, are not touched unless very deep packet-inspection is required. So the 
packet headers must be stored in SRAM (or scratchpad memory) but the packet tails can be stored in DRAM 
as described in the introduction and in the previous section. It is usually not possible to cache whole packet. 
Second, NPs are designed to handle input and/or output packets by specialized hardware. The hardware is opti-
mized for the packet-processing requirements described above, but some hardware-specific restrictions apply in 
addition. 

An example of hardware-specific data representation that matches the abstract representation is shown here. 
In some NPs, there are input-specific and output-specific packet formats using a special descriptor format. Short 
packets may be fully stored in SRAM but packet heads may be stored in both SRAM and DRAM for longer 
packets. The four abstract representations are designed to generalize various concrete representations, such as 
shown in Figure 2(b), used in NPs. Although the descriptor format is specialized, it can be abstracted as shown 
in Figure 2(a). If vendor-specific C language is used, these representations are handled separately; however, 
Phonepl, handles them uniformly. Even for cases that the NP has a cache, it is probably useful to distinguish 
multiple representations because cache miss must be avoided. 

The four representations are explained in the following. 
• Cached: The whole packet data is stored in SRAM. It is not assumed that a copy of the data is stored in 

DRAM. 
• Mixed: The head of a packet (the number of bytes depends on implementation) is stored in SRAM, and 

whole packet data is stored in DRAM. 
• Gathered: A packet consists of multiple fragments. Each fragment is stored in a memory area (i.e., DRAM 

or SRAM). A gathered packet can be represented by an array or a linked list of fragments. 
• Uncached: The whole packet is stored in DRAM. It is not assumed that a copy of the data is stored in 

SRAM. 
Packets inputted to NPs are usually in cached or mixed representation; that is, short packets may be 

represented by cached representation but mixed representation is required for long packets. All four representa-
tions are used for expressing operation results and may be used for output. However, reasoning of mixed, ga-
thered, and uncached representations are explained more. 
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(a) 

 

 

 

 
(b) 

Figure 2. Four representations of packet type. (a) Abstract representations; 
(b) Examples of more detailed representations. 

 
Mixed representation is required because, in packet processing, only the packet head (containing headers) is 

usually modified, headers are added or deleted, and the packet tail is kept unchanged. Good performance can 
therefore be obtained by caching only the head to SRAM and storing the tail only in DRAM. Data accessed by 
cores must be stored in SRAM because if data stored in DRAM is accessed, it takes excessively long time, and 
wire-rate processing becomes impossible. 

Gathered representation is required when generating a packet from multiple pieces of data stored in DRAM or 
SRAM. In such a case, if all the pieces are copied to a contiguous area (of DRAM), copy from DRAM to 
DRAM is required and wire-rate processing becomes impossible. This representation is closely related to the 
immutability of packets, which enables sharing part of a string. 

Uncached representation is required when a packet is generated from a tail of another packet with gathered 
representation by an operation such as a header deletion. 
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Because the four representations may have to be distinguished at run time, a tag must be supplied. The tags 
should be in packet-data pointers. However, because packet data are handled by hardware in NPs, the data re-
presentation and handling methods in the case of a high-level language must be very carefully designed and im-
plemented. If the address space is sufficiently large, a part of the address can be used for a tag. This representa-
tion is close to widely used methods for dynamically-typed languages, such as Python or Lisp. 

4.2. Packet Operations and Four Representations 
Because there are four packet-data representations and each packet data has a tag, packet operations must be im-
plemented for all these representations, and sometimes run-time tag check is required. 

4.2.1. Run-Time Tag Check 
Because there are multiple representations in Packet type, they must be distinguished dynamically (by the 
run-time routines in the NP) or statically (by the Phonepl compiler). In terms of efficiency, it is better for the re-
presentation to be statically distinguished. However, it is impossible to distinguish every representation of a 
packet statically, so run-time tag-check is, at least sometimes, necessary. Especially, if a non-optimizing compi-
ler is used, tag check is always necessary at run time. Such a run-time check causes overhead, but it does not 
usually prevent wire-rate processing because the tags are in cached pointers and a tag can be added and removed 
with very small cost. 

4.2.2. Packet I/O 
Some NP hardware creates a descriptor when receiving a packet. The descriptor is in SRAM, and whole packet 
data may be stored in DRAM. The input packet format, thus, is close to mixed representation (or cached repre-
sentation in the case of a short packet); however, a tag must be added when run-time tag-check is required. The 
run-time routine should thus decide which representation is to be used and insert the tag value. This means that 
the language processor must fill the gap (i.e., convert) between data representations in the hardware and in Pho-
nepl. If the gap is wide, significant CPU time is required to fill it, and performance may decrease. An appropri-
ate representation design is therefore important. 

An output packet format must be prepared for some NPs when sending a packet. One of the four representa-
tions should be close to the output format; however, the tag must be removed before passing the data to the 
packet output hardware. For example, the output format may be close to gathered representation, but the tag 
value “gathered” must be cleared. The hardware concatenates the fragments pointed to by the gathered repre-
sentation and outputs the result. 

4.2.3. Subpacket 
Each representation requires different implementations of an operation to achieve a subpacket operation. In all 
the cases described below, the operations are executed using data stored in SRAM, and DRAM is not accessed. 

If the packet has a cached representation, a subpacket of the packet is in a cached format. The original packet 
can be stored in the allocated SRAM area. The resulting subpacket may share the original packet data or may be 
a copy of the original data. In this case, because both the original and copied data are stored in SRAM, this copy 
operation probably does not prevent wire-rate processing. 

If the packet has a mixed representation, a subpacket of the packet may be in a mixed or uncached format. 
That is, there are two cases. Firstly, if the resulting packet contains both head data stored in SRAM and tail data 
stored in DRAM, the result is mixed format. Secondly, if the resulting packet only contains tail data, the result is 
uncached format. In general, the resulting representation is not known at compile time because the range speci-
fied in subpacket operation might not be known at compile time. In both cases, a new descriptor is generated in 
SRAM by using the original descriptor, but no packet data stored in DRAM is accessed. 

If the packet has a gathered representation, a substring of the packet is usually in a gathered format. The orig-
inal and resulting packets may share the array of fragments (i.e., only a packet-type pointer is generated) or the 
resulting pointer may point to a new array copied from the original array. An array copy probably does not pre-
vent wire-rate processing because both arrays are stored in SRAM. 

If the packet has an uncached representation, a substring of the packet is in an uncached format. Both the 
original and resulting packet data are stored in DRAM and shared. The address and the length of the resulting 
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packet are stored in a packet-type pointer. No packet data stored in DRAM are accessed. 

4.2.4. Concatenation 
When a packet is generated by concatenating one or more byte strings (such as new headers and a packet con-
tent), a constructor, “new Packet()”, is used. In the current implementation method, this constructor generates a 
gathered-format packet. That means, the parameter values of the constructors are the elements of the array in the 
gathered format. However, a more optimized method, which uses other representations, may be developed. 

The last element of the constructor may be a packet of any representation. If this element has a mixed format, 
the DRAM part (which represents the whole packet) becomes an element of the array. If this element has a ga-
thered format, each input array element becomes an element of the array of the output gathered format. 

4.2.5. Generating Packet without Using Input Packet 
A packet can be created without using a pre-existing packet by using a packet constructor. The generated packet 
is in cached or gathered format. If the constructor has only one argument that contains a byte string, the resulting 
packet is in cached format, and if it has two or more arguments, the resulting packet is in gathered format. 

4.3. Several Miscellaneous Issues 
Two issues related to the proposed packet-handling method are explained in the following. The first issue is 
memory deallocation. Sharing part of packets and strings makes memory deallocation difficult. Garbage collec-
tion or reference counting can solve this problem completely, but the overhead is large. In the current imple-
mentation, strings that are (potentially) assigned to global (instance) variables are not deallocated. However, the 
current deallocation policy may cause memory leak. A more precise method should be devised in future work. 

The second issue is adaptation to hardware-based memory allocation. Some NPs allocate and deallocate 
packet memory automatically to avoid software-memory-management overhead. When a packet arrives, the 
SRAM and DRAM required for the packet is allocated. However, it is difficult for NP hardware to decide when 
the packet memory can be deallocated. A Phonepl compiler must therefore generate code for deallocate it. 

5. Prototyping 
The above-described implementation method has been applied to a programming environment called +Net, 
which contains a Phonepl processor called +Net Phonepl. +Net Phonepl is used for programming physical nodes 
with a network-virtualization function and NPs. 

5.1. Platform 
The prototype compiles a Phonepl program and runs it on a “virtualization node” (VNode) [1] [13]. A virtuali-
zation platform called VNode Infrastructure, which supports multiple slices (i.e., virtual networks) using a single 
network infrastructure, and a high-performance fully functional virtualization testbed were developed. The 
components of a VNode contain NPs. The prototype is a replacement of one or more NPs in this environment. 
The program has packet I/O streams as described in Section 3. 

A source program is compiled according to the following procedure. First, an intermediate language program 
(ILP) is generated by using a Phonepl syntax/token analyzer. The syntax analyzer was generated using “Yet 
Another Perl Parser” (YAPP) compiler, which has similar functions as those of YACC (Yet Another Compiler 
Compiler) or Bison parser-generators but is written in and generates Perl code. The ILP is translated by using a 
Phonepl translator into a specialized C program. A GNU C compiler for Octeon compiles this C program and 
generates object code for an Octeon board called WANic-56512 developed by General Electric Company. A 
run-time library is linked to the object program. The main components of this library are an initializer, packet 
processors, and a packet-output routine. 

5.2. Compiled Code of +Net-Phonepl Compiler 
To outline the object-code structure and the compilation (or program transformation), an example of compiled 
code is explained here. The C program generated by the Phonepl compiler from the MAC-header addition/removal 
program (in Figure 1) is shown in Figure 3. 
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Figure 3. Compiled code of MAC-header insertion/deletion program. 

Tag insertion

// Translated Code for Octeon 58XX (WANic 56582) by Phonpl Translator

#include <stdio.h>
#include <string.h>
#include "runtime.h"
#include "cvmx-helper.h"

// Packet handler vector:
void (*__packetHandler[17])(__Packetp p);

// Stream data type for packets:
typedef int NetStream;

// Method NetStream.put(uint64_t port, Packet outp)
extern int NetStream_put(uint64_t port, __Packetp outp);

// Omitted
// Instance variables of the singleton instance (Singleton assumed!)
typedef struct {

NetStream out1;
NetStream out2;

} AddRemMAC;

AddRemMAC __self;

AddRemMAC* AddRemMAC_new(NetStream port1, NetStream port2);

// Method AddRemMAC.process1
void AddRemMAC_process1(__Packetp i) {
__Packetp o = _Packet_concat2(_Packet_substring(i, 0, 14), i);
NetStream_put(__self.out2, o);
}

// Method AddRemMAC.process2
void AddRemMAC_process2(__Packetp i) {
__Packetp o = _Packet_subpacket(i, 14);
NetStream_put(__self.out1, o);
}

// Constructor AddRemMAC
AddRemMAC* AddRemMAC_new(NetStream port1, NetStream port2) {
int __i;
for (__i = 0; __i < 17; __i++) {

__packetHandler[__i] = 0;
}
__packetHandler[port2] = &AddRemMAC_process2;
__packetHandler[port1] = &AddRemMAC_process1;
__self.out1 = port1;
__self.out2 = port2;
return &__self;
}

// Main loop (Scheduler)
int __mainLoop(int no_ipd_wptr) {

cvmx_wqe_t *wqe = NULL;

// Omitted
wait_for_link_up();

// Omitted
AddRemMAC_new(0, 16);

for (;;) {
wqe = get_input_packet();
if (wqe != NULL) {

// Omitted
__Packetp __wqep;
__wqep.u64 = 0;
__wqep.s.pool = CVMX_FPA_WQE_POOL;
__wqep.s.size = wqe->len;
if (wqe->word2.s.bufs == 0) {

/* if no buffered data (no data in DRAM) */
__wqep.s.addr = cvmx_ptr_to_phys(wqe->packet_data);
// *** IPv4/v6 cases? ***
Set_packet_representation(__wqep, CSP_CACHED);

} else { /* if data both in DRAM and in cache */
__wqep.s.addr = cvmx_ptr_to_phys(wqe);
Set_packet_representation(__wqep, CSP_MIXED);

}

if (__packetHandler[wqe->ipprt]) {
(*__packetHandler[wqe->ipprt])(__wqep);

}

}
}
return 0;

}

(5) Derived f rom void main()
(scheduler)

(4) Derived f rom the constructor 
(Public AddRemMAC(…))

(3) Derived f rom void process2(…)

(2) Derived f rom void process1(…)

(1) Derived f rom instance variable
(out1, out2) declaration

Phonepl packet-pointer creation

Repeating the following process 
for each packet (in wqe)

AddRemMAC object creation

Processing a packet by calling 
AddRemMAC_process1 or 
AddRemMAC_process2

Generating a method table
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This program is explained instead of describing detailed compilation process because the process is too much 
complicated and the program structure can probably be used for other types of NPs. A compilation technique 
specialized for a singleton (i.e., single-instance class) is applied to this program. Cores in an Octeon processor 
execute this program in parallel; that is, each core processes a packet. The program consists of five parts: part 1 
derived from instance-variable declaration, parts 2 and 3 derived from methods process1 and process2, part 4 
derived from the constructor, and part 5 derived from the main program. 

In part 1, AddRemMAC type, which corresponds to instance of class AddRemMAC in Phonepl, is declared. 
Because a compiled object of class AddRemMAC has two objects of NetStream type, the corresponding struc-
ture components are declared. In parts 2 and 3, i.e., method definitions, the element names in the source program 
are replaced by the element names in the run-time library. The run-time routines may be expanded in-line; 
however, they are not expanded in this example program. In part 4, i.e., the constructor of class AddRemMAC, 
methods process1 and process2 are initialized. Assignment statements that correspond to the assignment state-
ments in the source program are included in this part. In part 5, i.e., the main program, the above constructor is 
called, and every time it receives a packet, one of the above two methods are called. Because NetStream type is 
an abstraction of a packet stream, the stream elements are handled one by one, and the scheduler for this process 
occupies the main part of part 5. When the function get_input_packet() is called, a packet is received, and the 
data representation of this packet is converted to that of +Net Phonepl by adding a tag, i.e., cached 
(CSP_CACHED) or mixed (CSP_MIXED). 

6. Evaluation 
Both the programmability, especially ease of language use, and the performance of the implementation should 
be evaluated; however, because Phonepl is being improved, performance is focused in this evaluation. Two 
Phonepl programs for network-layer packet handling were written. Prototypes with these object programs were 
used for extending VNode, and the traffic was measured. 

6.1. MAC-Header Addition/Deletion Program 
The first program performs MAC-header addition/removal. It is a modified version of the program shown in 
Figure 1, and similar programs are used for extending virtualization-node (VNode) functions by using the node 
plug-in architecture [14]-[16]. Instead of duplicating the MAC header, the Phonepl program inserts a constant 
MAC header that contains fixed source and destination MAC addresses and a TEB type value (i.e., transparent 
Ethernet bridge, x6558). 

As shown in Figure 4, the above program was used in an extended VNode, which is a gateway between slices 
and external networks and is called NACE or NC [17]. This network consists of the VNode and two personal 
computers, PC1 and PC2. PC1 simulates a terminal or a virtual node in a slice. PC2 is in an external physical 
network. The VNode connects the slice and the external network, and it must convert the packet format, i.e., 
convert from the internal to external protocols, and vice versa, but the base component of the VNode does not 
have this conversion function. The VNode is experimentally extended by the node plug-in architecture with the 

 

 
Figure 4. Extended VNode environment for experiments. 
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+Net environment, which consists of a PC with a Phonepl compiler, run-time routines, a GNU C compiler for 
Octeon, and WANic-56512 with twelve-core 750-MHz Octeon. By using conversion programs written in Pho-
nepl, the VNode can adapt to various types of external networks. 

Maximum performance of the test program was measured by using a network-measurement-tool suite called 
IXIA. Both operations, i.e., MAC-header addition and deletion, were measured, and compared with a pass- 
through program, which is also written in Phonepl. The measurement results are shown in Figure 5. In this ex-
periment, the input packet representation is mixed or cached, and the output packet representation is mixed or 
cached for header deletion and it is gathered for header addition. Uncached format is not used here because not 
whole cached data is removed by the header deletion. The maximum throughput (input rate) that can be passed 
with almost no packet drop is over 7.5 Gbps when the packet size is 256 bytes or larger. This throughput is close 
to the wire rate. The throughputs of two programs are mostly the same, indicating that the major overhead lies in 
the hardware or the initialization/finalization code, namely, not in the compiled code or the packet/string run- 
time routines. 

Table 1 compares the performance of the Phonepl program on the Octeon and a sequential C program on 
eight-core 3-GHz Intel Xeon processors. Although the performance of the former is much higher, it is mainly 
caused by the number of used cores. If all the cores are used, the throughput of Xeon may be better; however, it 
is very hard to use multiple cores and to preserve the order of packets in Xeon. As shown in Table 1, the Pho-
nepl program is much shorter even when compared with the C program. 

Moreover, Table 1 suggests an important difference between the two implementations; that is, the packet loss 
ratio is slowly increasing in the Xeon implementation because cache miss is slowly increasing, but packets are 
almost never lost if the input ratio is 9.2 Gbps or less in the Phonepl implementation because the memory usage 
is completely controlled. 

6.2. Timestamp Handler for Network Virtualization Platform 
The second program, which is described in detail in another paper [18], is a program for measuring communica-
tion delay between two points in the virtualization network. In this evaluation, NPs and the program was used 
only in VNodes, and a slow-path program was used in the gateways. 

 

 
Figure 5. Performance of MAC-header addition/deletion. 
 
Table 1. Results of MAC header addition/deletion. 

Implementation 
Throughput (Gbps)* 

Program lines 
Header addition Header deletion 

Phonepl program 9.2† 9.2† 26‡ 

C program (Xeon, single core)** 2.3† (4.0††) 1.7† (4.0††) 161‡ 
*Packet size: 1024 B; **Promiscuous mode is used; †No packet loss (ratio < 10−6); ††Packet loss ratio = 10−3; 
‡Comment-only lines are not counted. 
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A VNode platform can support delay measurement function without adding programs and data (i.e., packet 
format) for measurement to programs in virtual nodes. This function is useful when slice developers want to 
measure delay of a high-bandwidth application with certain intelligent functions in relaying nodes. A special 
type of virtual links between nodes, which is called measurable VLAN virtual link (MVL) type and developed 
by using the VNode plug-in architecture, is used to implement this function. MVLs are implemented by using 
timestamp insertion/deletion programs in the nodes. A VNode removes the platform header, which includes a 
GRE/IP or VLAN header and the timestamp, from an incoming packet and adds one to an outgoing packet, so 
programs that handles packets on a slice never see the platform header. 

The virtualization-network structure used for this experiment is drawn in Figure 6. Two terminals communi-
cate using a slice. The physical network contains two VNodes. Each VNode contains a virtual node, which are 
connected by an MVL. In the platform, each packet has a platform header with a timestamp. 

The communication and measurement methods used for this experiment is as follows. The timestamp is in-
serted at the entrance gateway. Each VNode generates a packet for the virtual node by removing the platform 
header from an incoming packet and restores the timestamp to outgoing packets that comes from the virtual 
node and are identified with a stored incoming packet. The timestamp is tested and deleted at the exit gateway, 
which calculates the delay between the entrance and exit gateways. In the network described in Figure 6, the 
two VNodes and one PC is used for the two gateways (and terminals) to avoid the difficult synchronization 
problem. Terminal PCs communicate each other by using Ethernet packets, which are switched by the MAC ad-
dresses in the virtual nodes. A WANic-56512 that contains the program handles both incoming and outgoing 
packets. An Ethernet switch program, which is a slow-path program, works on a virtual node in a VNode. 

The NP also swaps the external and internal MAC addresses in the platform header [1]. To swap addresses, 
the program contains a conversion table for these MAC addresses, which is implemented using a string array, 
and accepts virtual-link-creation and deletion requests. A creation request adds an entry to the conversion table. 

The results show the gateway-to-gateway delay is 178 μS (σ = 24 μS). Table 2 compares the performance of 
the 750 MHz Octeon and the 3-GHz Xeon. The performance is very close to wire rate. The C program is rela-
tively short because this program does not contain conversion-table configuration code but the Phonepl program 
contains it. However, the former is still much longer. 

7. Concluding Remarks 
An open, portal, and high-level language, called Phonepl, is proposed. By using Phonepl, a programmer can de-
velop a program that uses SRAM and DRAM appropriately without having to be aware of a distinction between 
SRAM and DRAM. To handle packets appropriately in this environment, four packet data-representations and 
packet-operation methods are proposed. A prototype using Octeon NP was developed and evaluated. The  
 

 
Figure 6. Virtualization-network structure for time-stamp handling. 

 
Table 2. Results of timestamp handling and conversion. 

Implementation 
Throughput (Gbps)* 

Program lines 
Header addition Header deletion 

Phonepl program 10.0† 9.5† 99‡ 

C program (Xeon, single core)** 2.3† (4.0††) 2.2† (4.0††) 190‡ 
*Packet size: 1024 B; **Promiscuous mode is used; †No packet loss (ratio < 10−6); †Packet loss ratio = 10−3; 
‡Comment-only lines are not counted. 
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throughput of the prototype system is close to the wire rate, i.e., 10 Gbps, when the packet size is 256 bytes or 
larger, in several packet-conversion applications. Although this is a preliminary result, it proves the proposed 
method is promising in achieving our objectives, i.e., popularity among developers, reduced cost in programma-
bility, and portability. 

Future work includes evaluation of Phonepl language and processor by human programmers and improve-
ment of the language design and implementation according to the evaluation result. Although Phonepl and the 
language processor inevitably have limitations, they should be acceptable and, if possible, natural to program-
mers. Future work also includes implementation of Phonepl for other types of NPs to prove the portability. 
Moreover, the memory allocation and deallocation mechanism must be improved to reduce memory leak caused 
by global variable assignments and the performance of the Phonepl language processor should be improved. 
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