Dynamically Extensible Policy Server and Agent

Yasusi Kanada
IP Network Research Center, Research & Development Group, Hitachi, Ltd.
E-mail: kanada@crl.hitachi.co.jp

Abstract: This paper proposes a method, called the policy-
extension-by-policy method, for quickly and dynamically adding
policy classes with new functionality to policy servers and agents.
In this method, users can add a new policy class to the policy
server by using policy-definition (PD) policies, and they can define
a method to translate a policy of the new class and to send to net-
work nodes of different vendors through various types of device
interfaces, such as CLI, MIBs, PIBs, APIs or hardware tables, by
using policy-embedding (PE) policies. A PE policy also enables
translating a policy of an existing class and sending the result to a
new type of network node. PE policies contain command templates
and methods for filling the templates. A program interpreter is
embedded in policy agents to make flexible policy-to-configuration
translation possible. A prototype system and example policies, i.e.,
access control, Diffserv, and VPN policies, were developed.

Keywords: Policy-based networking, Open programmable Net-
working, Extensible language, Macro processor.

1. Introduction

In computer networks, a network node function can be extended by
adding or replacing software or hardware of the node. Software
can be added or replaced by code injection by using active packets
(or “capsules”) [Ale 98] or API [Bis 98], e.g., sending Java byte-
code, and hardware can be added or replaced by inserting/replacing
a network node or a board in a node with a new function. Both
software and hardware may be added or replaced dynamically
while the node is running. If the network is controlled/managed by
policies and the network function is added or replaced, new classes
of policies (new types of policy actions) must be added. Because a
function can be dynamically added, the corresponding policy class
also has to be added dynamically.

However, conventional policy-based systems do not allow dy-
namic extension. For example, COPS-PR (Common Open Policy
Service for PRovisioning) [Cha 01] is a widely-accepted IETF
standard protocol for policy provisioning. Policies with a specific
range of functionality can be stored in a PIB (policy information
base) in this framework. Thus, if COPS-PR is used, a new PIB
must be developed in order to add a novel function. If a standard-
based approach is taken, the vendor has to wait for standardization
of the new or modified PIB. Vendors can add novel functions
more easily if they use a private PIB, but they still need some time
to develop the PIB, so a function cannot be added dynamically.

To add new classes of policies (i.e., to add novel functions)
rapidly by using current technologies, plug-in architectures are
good candidates. A C++ plug-in can be dynamically linked to the
network node software, or a Java plug-in can be dynamically in-
jected into the network node. However, plugging-in a general-
purpose code is not very safe and most network nodes do not allow
this type of extension. It is also a laborious task to define policies
by using a general-purpose language.

To solve these problems, we have developed a method called
the policy-extension-by-policy (PXP) method, for adding new
policy classes. In this method, a new policy class is defined by
using policy definition and embedding (PD/PE) policy rules. A
PD policy rule contains a device-independent policy definition,
and a PE policy rule contains a device-dependent method for
translation of policies into device configurations.

2. Outline of the PXP Method

Dynamically extensible policies can be applied to both provision-
ing and on-demand policies. Provisioning policies allow the net-
work operators to deploy QoS or other policies according to their
usage predictions, and on-demand policies allow the network users
or applications to request bandwidth or other network resources
just before they use the network. Both types of policies can be
handled by using the PXP method. However, for simplicity, only
provisioning policies are explained in this paper.

This system architecture for the PXP method consists of the

following software components (Figure 1): User interface (Ul),
Policy manager (PM), Policy database (DB), and Policy agents
(PAs). All these components can be in a workstation or PC, or
each component can be in a separate box. Especially, PAs can be
embedded in network nodes. As a usual policy system, users, e.g.,
an administrator or operators, can input and edit policies using this
system architecture, and can deploy them onto network nodes
through the Ul. The UI can send the policies and deployment
commands to the PM, and can retrieve previously inputted policies
from the PM. The PM can store the policies in the DB and retrieve
them from the DB. The PM can deploy policies onto or undeploy
policies from network nodes through PAs. Standardized interfaces
can be used between these components. For example, LDAP can
be used between PM and DB; COPS-PR can be used between the
PM (PDP) and PAs (PEPs). However, the data formats, e.g., PIBs
for COPS-PR, must be extensible.

Initially, at least the following policies exist: policy definition
(PD) policies and policy embedding (PE) policies. Figure 2 illus-
trates these policies and their relationship to user-defined policies.
A user or an application describes PD and PE policies. PD poli-
cies define all user-defined (UD) policy classes; i.e., PD policies
work as meta policies. Each PD policy rule defines a user-defined
policy class, e.g., a QoS or a VPN policy class. Each PD policy
rule introduces a novel management function into the PM. PE
policies must define the method for translating the device-
independent user-defined policies into device-dependent network
node configurations. They introduce a novel management function
into existing network nodes or they translate an existing policy for
a new type of node. The PM may only know PD and PE policy
classes, and PAs may only know PE policy classes; they initially
might not know other classes of policies. These policies are to be
defined and embedded by using PD and PE policy rules.

To define and to embed user-defined policy classes (i.e., QoS,
etc.), the network administrator must input a PD policy that con-
tains the definition of the user-defined policy classes, i.e., PD pol-
icy rules; and must also input a PE policy that contains the
translation method of the user-defined policy classes, i.e., PE pol-
icy rules. The PD policy is deployed onto the policy manager it-
self, so it will neither be distributed to policy agents nor network
nodes.! The PE policy is deployed onto the policy agents but it
will not be distributed to network nodes.

The deployed PD policy in the PM takes effects when the user
inputs or edits a user-defined policy (instance). The PM checks the
validity of the user-defined policy using the information contained
in the PD policy. The syntax and semantics of the user-defined

User/application
interface

4 policies (PD, PE

v and UD policies)

policies Policy PD policies
manager | work here
lici policies (PE and
policies UD policies)

PE policies Policy Policy PE policies
work here agent agent work here
configu- configu-
rations rations
Network | | Network Network | | Network
node node node node

Figure 1. A dynamically extensible policy system architecture

1 However, instead of deploying PD policies to the PM, they can be de-
ployed onto PAs and the PAs can test the validity of the PD policies. This

= Policy definition
Meta policy definition Policy 2
User Meta policy deployment : Ydeploymem Networllisilrode
PD policy for PM UD policy classes QoS po licy (UD policy 1) MA configurations
Deﬁsniti(in of | QoSpolicy | AT P UDmule12 | H Translation method »| QoS commands
QT [Taetme T elass | aininee (T of QoS aeion _ [[f] ey, | (Command i)}
PD rule 1 VPN polic% (UD policy 2) PE rule 1
— P PP Translation method Hf » VPN commands
?/eg\rlnf)lglrilc(;/f — > VPI;;)S(;IICY czizt—ii(r:rsltse}llrilég \@—’: of VPN action [N (Command list 2)
class €hne ~ I —_—
RS . PE rule 2
PD rule 2 ~ _VPN policy (UD policy 3
glass— N VPN commands
;gls;?ir(l;es hi;A (Command list 3)

policy are checked, and error reports are returned to the UT if it
contains errors.! User-defined policies should be device-
independent. So the information for the validity check (i.e., syntax
and semantics descriptions) are usually also device-independent.
PD policies are, thus, also device-independent.

The deployed PE policy in a PA works when the PM installs the
user-defined policy through the PA. The PA translates the user-
defined policy into device-dependent configurations, e.g., a se-
quence of commands by using the information contained in the PE
policy. PAs for different devices translate a user-defined policy
mnto different configurations. The node may be configured by us-
ing a CLI (command-line interface), MIBs, PIBs, APIs, or hard-
ware tables, so there may have to be two or more classes of PE
policies that contain a rule corresponding to a PD policy rule (i.e.,
corresponding to a user-defined policy). A PE policy class is thus
dependent on the configuration method and/or the device.

Policy translation methods can be described in PE policies in
many ways. However, the following two means are used here:
command template and template fillers. A command template is a
pattern. A command is generated from the pattern by filling the
unfinished portions by using template fillers. For example, if the
node interface is a CLI, the following template, which contains
only one pattern, and four fillers can be used.

Template: access-list %s permit %s %s %s.

Fillers: N+ 1, protocol || 'ip’, source_address || ‘any’,
destination_address || 'any'.

Here, “%s” in the template shows a place to be filled by a filler.
N, protocol, source_address and destination_address are
variables, and 'ip' and 'any' are literals. Variables protocol,
source_address, and destination_address can be specified in
the condition part of user-defined policy rules. N is a work vari-
able of the PA. If the value of N is 2, if protocol is 'tcp’, and if
source_address is 192.168.1.1 (but no destination_address is
specified in the rule), then the following command is generated.

access-list 3 permit tcp 192.168.1.1 any

Filler “x || y” means that, if variable (or expression) x is valued
(i.e., has a defined value) then the result is its value, but if x is not
valued then the result is the value of y.

If the interface between a PA and nodes is different from a CLI,
e.g., a MIB, hardware table, etc.; the syntax of template and fillers
must be different. However, the same framework, i.e., the tem-
plate-and-fillers framework, can be used.

A program interpreter is built into each PA and used for evalu-
ating fillers. If the task of a filler is only to fetch a policy condition
or action parameter value (e.g., source_address or scheduling_-
priority) and to fill the template with the value, there is no elabo-
rate algorithm required in PAs. However, if an expression such as
“N+ 17 is specified, this expression must be interpreted. An inter-

method is used in the prototype system. (See Section 3.)

! Instead of deploying the PD policy onto the PM, where the PM checks
the validity, the policy can be deployed onto the Ul, which can check the
validity and return a more rapid response to the user.

Figure 2. PD and PE policies and their relationship to UD policies

preter is thus required. This interpreter is unnecessary if the ex-
pression is compiled before sending it to a PA. However, if no
native code can be dynamically linked to the PA and/or the inter-
face between the PM and the PA is not suitable for sending a pro-
gram, i.e., the only available interfaces are a CLI, MIBs, PIBs, or
high-level APIs such as Java APIs (which no native code can be
sent through), the interpreter is required. It enables policy exten-
sion through preexisting device interfaces.

3. Prototype System
3.1 Outline

The author has developed a PXP-based prototype of a dynamically
extensible policy system called DEPS. His purpose was not to
develop a system that can be used in a real network but to develop
a system for testing and refining the ideas about the extensible
policy system architecture and methods. Three classes of PD/PE
policies are predefined.

The components of DEPS are a Ul, a PM, a DB, and PAs. The
UI, PM, and PAs are implemented by Perl scripts. The Ul is im-
plemented by using a common gateway interface (CGI), a conven-
tional Web technology. The DB is implemented by using a GNU
Database Manager (GDBM). There are currently two types of
PAs: the Hitachi router agent and the Cisco router agent. These
PAs generate CLI commands.

3.2 Basic policy information-model

The grammar of the policies in DEPS follows the policy core in-
formation-model extension (PCIMe) [Moo 01] developed by the
IETF Policy Framework WG. In PCIMe, a policy rule consists of
conditions and actions, and each condition or action contains
variable-value pairs. Our model is a subset of PCIMe. For exam-
ple, a rule that marks DSCP to a flow can be described as follows.?

if (source_address = 192.168.1.1 &&
protocol = 'tcp') { DSCP = 46 }
Here, source_address, protocol, and DSCP are policy vari-
ables, and 192.168.1.1, 'tcp', and 46 are their values. Struc-
tured values such as address range or list can also be used:

source_address [192.168.1.1 ... 192.168.1.30],
source_address [192.168.1.1, 192.168.1.3].

Values have types; e.g., the type of 192.168.1.1 is IP address,
that of 46 is integer, that of [192.168.1.1
192.168.1.30] is IP address range, and so on.

A policy is a list of policy rules. Each policy belongs to a pol-
icy class. The policy class name must be specified in each policy
(instance). This means that a policy may not contain two or more
different types of rules, i.e., all the rules in a policy must have the
same type of functionality. For example, if a policy class is de-
fined to have access-control functions, a policy of this class may
not contain a rule that modifies the packet content. The translation
method described in Section 3.3.2.3 demands this constraint.

2 The syntax used in this paper is different from that used in DEPS. Poli-
cies can be inputted to DEPS by the GUI or by the Perl data syntax.

if (name = policy class name)
Action part 1: Policy variable declarations
condition variables =
action_variables =

Action part 2: Policy prologue/epilogue translators
policy initialization = {work variable = initial value, ...},
policy_pre_deploy_commands = [[template, filler, filler, ...1,
policy post deploy commands = [[template, filler, filler, ...1,
policy pre_ undeploy_ commands = [[template, filler, filler, ...]
policy post undeploy commands = [I[template, filler, filler,
Action part 3: Policy rule translators
rule_initialization =
rule_deploy commands =
rule_undeploy_commands =

[(template, filler, filler, ...1, ...1,
[[template, filler, filler, ...1, ...]

Figure 3. Abstract syntax of PolicyToTelnet policy

3.3 PD/PE policy design
3.3.1 Three policy classes

Three classes of PD/PE policies are predefined in DEPS: PolicyTo-
Telnet, PolicyVariableDefinition, and PolicyValueTranslation.
User-defined policies are checked and translated in the following
three steps (but not necessarily in this order).

1. Each variable-value pair is checked so an allowed type of value
is assigned to the policy variable. A PolicyVariableDefinition
policy rule is used for this purpose.

2. A value in each variable-value pair is checked and translated to
a parameter value used in configuration commands. A Policy-
ValueTranslation policy rule is used for this purpose.

3. A user-defined policy is translated to a sequence of commands
by using a PolicyToTelnet policy rule. The translated command
parameters are used here.

Each policy class is explained below.

3.3.2 PolicyToTelnet policy

PolicyToTelnet policy class, which is an amalgam of PD and PE
policy classes, is the most important in DEPS. This policy is ap-
plied when translating a user-defined policy. Each rule in this
class of policy (instance) defines a user-defined policy class and
the method of translating a policy of this class into telnet (CLI)
commands. The abstract syntax of PolicyToTelnet policy rule is
shown in Figure 3. This rule also consists of a condition and an
action, which both consist of variable-value pairs.

3.3.2.1 Condition

The condition part of a PolicyToTelnet policy rule should contain
only one variable-value pair on the policy class name: name and its
value. (See the first line of Figure 3.) This name is used for se-
lecting a rule from the PolicyToTelnet policy. This class of policy
is applied when a user-defined policy is inputted to a PM or a PA.
The rule to be used is uniquely identified by using the policy class
name specified in the user-defined policy.

3.3.2.2 Policy variable declarations

The variable-value pairs in the action part are classified as policy
variable declarations, policy-prologue/epilogue translators, or pol-
icy-rule translators. Each type of variable-value pairs are gathered

{variable name options, variable _name options, ...},
{variable_name options, variable name options, ...},

{work_variable = policy bytecode program, ...},

in Figure 3. However, the pairs can actually be de-
scribed in an arbitrary order.

In part 1 (policy variable declaration), the value of
the condition variables variable is a list of pol-
icy variable names that can appear in a condition of
the user-defined policy. Options can be attached to

]] each variable name. This allows the PM (or PA) to

T check the semantics of the user-defined policy rule
T conditions. The user cannot use any other policy
variable names in rules of the user-defined policy.

The value of the action_variables variable is a
list of policy variable names that can appear in an
action of the user-defined policy. This allows the PM
(or PA) to check the semantics of the user-defined
policy rule actions. Options can be added too.

3.3.2.3 Outline of command generation

To explain the variable-value pairs in parts 2 and 3 in Figure 3, the
process of command generation in DEPS is explained first. Fig-
ure 4 shows the order of generating commands from a user-defined
policy when deploying (or undeploying) it. First, the environment
for this generation must be initialized by “Policy initialization”.
Next, a command list called prologue is generated. Then, com-
mand lists that corresponds to rules are generated. “Rule initiali-
zation” is done before generation of each command list for a rule.
Finally, the command list called epilogue is generated.

A prologue is not for a specific policy rule but for whole policy.
It may be required, for example, if the user-defined policy is a QoS
packet queuing policy. In this case, the queues for all the queuing
policy rules may have to be configured before generating the com-
mands for the first rule. So the commands for queue configuration
should be generated in the prologue. The commands to be gener-
ated in a prologue depend on the type of the rule function. Thus, if
rules that have different function types coexist in a policy, the
prologue will be very complicated. This is the reason why the
functionality of a policy is restricted by specifying a policy class.

An epilogue is for whole policy too. It may be required, for
example, if the user-defined policy is an access-control policy. In
this case, the access-control lists defined in the commands for each
rule may have to be assigned to a network interface of the node
after generating the commands for the last rule. This type of in-
terface binding is required in Cisco routers. The commands to be
generated in an epilogue also depends on the type of rule function.

3.3.2.4 Policy-rule translators
In part 3 (policy rule translators), the rule-command generation
environment is initialized by using the value of the rule -
initialization variable. This policy variable contains work
variable names of the PA and their initial values. The commands
for installing a rule are generated by using the rule deploy -
commands variable. This policy variable contains a template and
fillers. They are organized in the form of “printf” in C; i.e., the
first element of each value is the template, and the following ele-
ments are fillers. An interpreter is required for evaluating the fill-
ers such as “N +1”. A bytecode interpreter, which was function-
ally much smaller than that of Java or Perl, was built into PAs.
A user-defined policy or policy rule is removed from the node
when the user undeploys it. The commands for removing the
configuration cannot be generated by using the template
and fillers for policy deployment in general. Thus, ones

Policy initialization

for the rule, i.e., the values of the rule undeploy -

Prologue (generated from policy pre (un)deploy commands)
Example:

ueue_size = 100, scheduling_algorithm = fair gqueuin

Rule initialization

commands variable, must also be specified in the rule.

3.3.2.5 Policy-prologue/epilogue translators
In part2 (policy-prologue/epilogue translators), the

Example: bandwidth(first queue) = 256 kbps

Commands from the first rule (generated from rule_(un)deploy_commands)

| method of generating prologue or epilogue is almost the

Rule initialization

same as that for policy rule translators.

Example: bandwidth(second queue) = 128 kbps

Commands from the second rule (generated from rule_(un)deploy_commands)

The policy-command-generation environment is ini-
tialized by using the value of the policy initializa-

Generation order

Rule initialization

tion variable. This policy variable contains work vari-
able names of the PA (work variable) and their initial

Example: bandwidth(last queue) = 64 kbps

Commands from the last rule (generated from rule (un)deploy commands)

| values (initial_value) used in this command generation.
The prologue for a policy deployment is generated by

using the policy pre deploy commands variable.

Epilogue (generated from policy post (un)deploy commands)
7 Example: none (no epilogue)

| This policy variable contains a template and fillers for the
prologue. The epilogue is generated by using the pol-

Figure 4. Telnet command generation order in a PolicyToTelnet policy

icy post deploy commands variable. This policy

variable also contains a template and fillers.

A prologue or epilogue may be required when a policy is un-
deployed. Templates and fillers in the prologue and epilogue for
policy undeployment, i.e., the values of the policy pre unde-
ploy commands and policy post undeploy commands
variables, also have to be specified in the rule if necessary.

3.3.3 PolicyVariableDefinition policy

A PolicyVariableDefinition policy is a PD policy, which is device-
independent. This class of policy specifies the syntax and the se-
mantics of variables used in user-defined policies. Each rule in
this class of policy defines the set of allowed value types for a con-
dition (or an action) variable. For example, value types ip_port
and ip port_range are allowed for condition variable source_ -

port. An example of a rule in this class of policy is given as:
if (name =
value_ type =

'source port') {
["ip port', 'ip port range'] }.
The condition of a PolicyVariableDefinition policy rule contains
only one variable-value pair under the condition (or action) vari-
able name: name and its value, i.e., ' source port' in the above
example. This name is used for selecting a rule from the policy.
The action contains a variable-value pair on the set of allowed
value types: value_ type and its value, i.e., a list of 'ip port'
and 'ip port_range' in the above example. The value types
(their syntax and semantics) are specified in a PolicyValue-
Translation policy described in the next subsection.

3.3.4 PolicyValueTranslation policy

A PolicyValueTranslation policy is an amalgame of PD and PE
policies. So it may contain device-independent rules and device-
dependent rules, and there may be a device-independent Policy-
ValueTranslation policy. This class of policy checks the syntax
and/or range of a policy variable value and specifies the method for
translating the value into a configuration-command parameter, i.e.,
specifies the semantics operationally. For example, an IP address
range can be defined as a value type and its syntax is specified in a
rule of this class of policy, and an IP address range can be speci-
fied in a user-defined policy rule and its syntax can be checked.
The bytecode interpreter is used for this translation.
An example of a PolicyValueTranslation policy rule is given:

if (name = 'ip address range') ({
mapping = ' _',
syntax = ['\d+\.\d+\.\d+\.\d+"',

"\d+\.\d+\.\d+\.\d+'] }
This rule specifies the method of translating an IP address range
value in a user-defined policy into a command parameter. The
syntax variable specifies the syntax of the address-range value
that consists of two addresses by using regular expressions. The
mapping variable specifies the bytecode program that translates
the parameter into hyphen-connected form.

3.4 Router agents

The three types of PD/PE policies explained in Section 3.3 are
predefined both in the Hitachi and the Cisco router agents, and no
other policies are predefined. The PM stores the policies received
from the Ul into the DB and sends them to the PAs. In DEPS, the
PM does not check the validity of the policies, but PAs do it in-
stead.

Usually, if the network nodes have different types of interfaces
and/or different command systems or control data formats, such as
MIBs or PIBs, different agents are required. For example, the
following two differences may exist.

o Differences of command handling: Most routers have a CLI.
However, the command prompt and the method of error han-
dling in these interfaces vary. The communication method
should be customized for each device type.

e Network-interface information: Different devices have different
methods for obtaining interface information, such as interface
names or media types. Such information is used for handling
the policy targets and for policy installation/removal.

Thus, initially, two separate agents for Cisco routers and Hi-
tachi routers were developed. However, the functions of these
agents were found to be very close, and they could share 85% of
the program (i.e., Perl code).

4. Experiments Using the DEPS Prototype

Preliminary experimental results are summarized here. Three sets
of user-detined policy classes, i.e., an access-control policy class,
two Diffserv policy classes, and two VPN policy classes, were
described by using Perl syntax, and sample policies of these classes
were deployed to two small networks. One network consisted of
Hitachi GR2000-20H routers, and the other consists of Cisco
7204VXR routers. The same set of user-defined policy classes
were described for both Hitachi and Cisco routers. The number of
rules and lines of the user-defined policies are measured. The
number of lines required for generating a user-defined policy rule
was 43 to 120, and approximately one third of rules are shared
among Cisco and Hitachi agents.

5. Related Work

It takes much time to develop node-management interfaces for new
functionality by using conventional types of interface. Kato and
Shiba [Kat 00] developed a method for adding a new policy-based
management interface by using active-networking technology.
New PDPs can be introduced to nodes and packets, and new
manageable functions can be introduced much easier by their
method. Their method and the PXP method can be combined to
develop a rapidly extensible policy system.

DEPS can be regarded as a type of macro processor [Bro 74]. It
expands a “macro”, i.e., a policy, into a command list. Macros
were widely-used in assembly languages in 1950s and ’60s, and
are still used in languages such as C. Assembly language macros
and “macros” in DEPS are similar because both generate certain
types of command sequence. However, “macros” in DEPS are
specialized for a rule-based policy language. Although assembly
languages have become less popular, Lassila [Las 96] used one for
embedded special-purpose processors, in which they were still
useful. The retargetable macro language in Lassila’s method was
machine-independent, similar to the policy language in DEPS.
However, Lassila did not intend to use the macro for extending the
high-level interface, i.e., the macro language.

6. Conclusion

In the proposed PXP method, preexisting interface types for policy
deployment, such as CLI, MIBs, PIBs, APIs or hardware tables,
can be reused for policy extension. Moreover, policy classes with
new functionality can be defined by users or upper-layer applica-
tions much easier than conventional methods by using templates
and fillers in a form similar to “printf” in C. The amount of text
required for describing user-defined policies can be significantly
reduced compared with conventional methods. Our future work
includes refinement of the policy design in the prototype system,
introduction of means for managing the policy dependence or to
avoid policy conflicts, finding a concise and sufficient set of inter-
preter functions, and quantitative evaluation of the prototype.

References

[Ale 98] Alexander, S., et al.: “The SwitchWare Activenetwork
Architecture”, IEEE Network, Vol. 12, No. 3, pp. 29-36, IEEE,
July 1998.

[Bis 98] Biswas, J., et al.: “The IEEE P1520 Standards Initiative
for Programmable Network Interfaces”, IEEE Communications
Magazine, Vol. 36, pp. 64-72, IEEE, October 1998.

[Bro 74] Brown, P. J.: “Macro Processors and Techniques for
Portable Software”, John Wiley & Sons, 1974.

[Cha 01] Chan, K. H., et al.: “COPS Usage for Policy Provisioning
(COPS-PR)”, RFC 3084, IETF, March 2001.

[Kat 00] Kato, K., and Shiba, S.: “Designing Policy Networking
System Using Active Networks”, 2nd International Working
Conference on Active Networks (IWAN 2000), Lecture Notes in
Computer Science, No. 1942, pp. 316325, Springer, 2000.

[Las 96] Lassila, E.: “A Macro Expansion Approach to Embedded
Processor Code Generation”, Workshop on Interaction between
Compilers and Computer Architectures (EUROMICRO °96),
pp. 136-142, IEEE Computer Society Press, February 1996.

[Moo 01]Moore, B., et al.: “Policy Core Information Model Ex-
tensions”, draft-ietf-policy-pcim-ext-05.txt, Internet Draft,
IETF, October 2001.

