
For ICPP ’95 95.1.9 7:20 PM

1

Parallel Processing Method of Combinatorial Problem Solving Based on
Implicit Stochastic Divide-and-Conquer*

Yasusi Kanada
Tsukuba Research Center, Real World Computing Partnership

Takezono 1-6-1, Tsukuba, Ibaraki 305, Japan
E-mail: kanada@trc.rwcp.or.jp , WWW: http://www.rwcp.or.jp/people/yk/

Abstract
A method of solving combinatorial problems, such as

the N queens problem or graph coloring problems using
independent parallel processes, is proposed. This method
is stochastic (or randomized). Problems are decomposed
for parallel processing implicitly and stochastically. This
method is based on CCM, which is a computational model
proposed by the author. A program consists of production
rules and local evaluation functions in CCM. Each pro-
cess uses the same set of rules and functions, and it may
use the same set of initial data. However, the performance
is approximately in proportion to the number of processors
in average in certain cases. The theoretical reason of this
linear acceleration is explained, and several results of
experiments are also shown.

Keywords
Combinatorial problem solving, Randomized algo-

rithms, Emergent computation, Stochastic computation,
Divide-and-conquer method

1. Introduction
Most of conventional methods of solving complex prob-
lems have, as we believe, two major problems. The one
problem is that these methods rely on explicit problem
decomposition, or divide-and-conquer method. Problems
are asserted to be able to be divided into sub-problems by
humans, which can be solved mostly independently. For
example, to search a solution of a combinatorial problem, a
search tree is built for the problem decomposition, or to
solve a problem in conventional parallel processing
method, the problem must be divided by human into sub-
problems that do not have strong mutual data dependence.
However, complex problems are not easy to be divided
into independent sub-problems, and problems in real world
are often impossible to be divided because of their non-
reductionistic or holistic [Koe 78, Kan 94] nature.

* A preliminary summary (in Japanese) of this paper was pre-
sented at the 49th National Conference of the Information
Processing Society of Japan.

The other problem of conventional methods is that they
are very weak for unexpected situations because they are
deterministic and explicitly designed, and thus, they cannot
go beyond the human planner’s explicit knowledge.
Artificial systems in real world, such as on-line banking
systems, are open to natural systems, i.e., human society or
nature. Natural systems are autonomous and nondetermin-
istic and thus their behavior is often unpredictable. Thus,
artificial systems should be ready to process such unex-
pected situations, or at least they must be able to use
implicit knowledge that the human planners do not know
explicitly. However, deterministic and explicitly designed
systems can, we believe, only process expected situations.

Thus, we should develop methods of problem solving
which are not based on strict divide-and-conquer method
and which are stochastic, or randomized, and thus, not
deterministic. Not all methods that satisfy these conditions
are acceptable, of course. However, the methods that we
should develop are, as we believe, among the methods that
satisfies these two conditions, and not among the methods
that are deterministic or based on strict divide-and-conquer
method.

Kanada [Kan 92, Kan 94] proposed a computational
model called CCM (Chemical Casting Model), which is a
model of stochastic and local- or partial-information-based
computation. Local-information-based computation seems
to have a chance to process unexpected situations using
implicit knowledge that is emerged from interaction
between local computation processes. Solving combinato-
rial problems, such as the N queens problem [Kan 94],
graph or map coloring problem [Kan 93b, Kan 95b], travel-
ing salesperson problems [Kan 93a], or fuzzy coloring
problem [Kan 95a] has been experienced. However, it has
been tested on sequential computers.

A method of parallel processing of solving combinato-
rial problems using CCM is proposed in the present paper.
A problem is solved using multiple independent processes
in this method. The word, “independent,” means that the
processes do not communicate each other. This method is
stochastic or randomized. This method is not based on
divide-and-conquer method in the conventional sense. No

For ICPP ’95 95.1.9 7:20 PM

2

3

12

10

4

2

1

5

7

8

3

14

10

4

1

5

7

8A working
memory

Reactions

An atom
(atomic data) A molecule

Reaction
rules and LODs

A link

2

Figure 1. The elements of CCM

search tree is built in this method. This method can be
regarded as a problem-solving method based on implicit
and stochastic divide-and-conquer. It is not yet certain that
this method lead to a problem solving method that is holis-
tic and adaptive to natural systems. However, there is pos-
sibility.

The computational model, CCM, is briefly explained in
Section 2. A method of combinatorial problem solving
using CCM is explained in Section 3. A probabilistic
model of CCM-based computation, which is called the
Markov chain model, is explained in Section 4. The
method of independent parallel processing using CCM is
explained in Section 5. The results of experiments on this
method are shown and analyzed in Section 6. Related
work is mentioned in Section 7. Finally, conclusions are
given in Section 8.

2. Computational Model CCM
CCM (the chemical casting model) [Kan 92, Kan 94] is
explained briefly in the present section.

CCM has been developed for emergent computation
[For 91][Lan 89–94], which is computation based on local
and partial information. CCM is based on a production
system. Production systems are often used for developing
expert systems or modeling human brains. However, CCM
is different from conventional production systems. Firstly,
evaluation functions, which are evaluated using local infor-
mation only, are used. Secondly, stochastic control, or
randomized ordering of rule applications, is used.
Production rules are also applied only using local informa-
tion.

The system components in CCM are shown in
Figure 1 . The set of data to which the rules apply is called
the working memory. A unit of data in the working mem-
ory is called an atom . An atom has a type and an internal
state, and may be connected to other atoms by links . Links
are similar to chemical bonding, but the difference is that
links may have directions. Any discrete data structures
such as lists, trees, graphs or networks can be represented
using atoms and links.

The state of the working memory is changed locally by
reaction rules. “Locally” means that the number of atoms
referred by a reaction rule is small.1 The reaction rules are
written as forward-chaining production rules, such as rules
in expert systems. However, reaction rules are at a lower
level, or more primitive, than rules in expert systems. So,
the reaction rules are more similar to reaction formulae in
chemical reactions, and thus, this model is called the
chemical cast ing model. The syntax of reaction rules is as

1 Because (physical) distance is not a factor in CCM unlike sys-
tems such as a chemical reaction system, “locally” does not mean
the distance is small.

follows:

LHS → RHS.

The left-hand side (LHS) and the right-hand side (RHS)
are sequences of patterns.

For example, the following reaction rule, which is a
rough sketch, simulates the generation of water from oxy-
gen and hydrogen:

H-H, O-? → H-O-H, ?

(This approximately means H2 +
1
2 O2 → H2O).

There are four patterns both in the LHS and RHS: two H’s,
an O, and “?” (an unknown atom). Each pattern matches
an atom of type oxygen or type hydrogen in the working
memory.

The reaction rule can be activated when there is a set of
atoms that matches the LHS patterns. If the reaction rule is
activated, the matched atoms vanish and new atoms that
match the RHS patterns are generated. A single reaction
rule is enough for solving a simpler optimization or con-
straint satisfaction problem like the graph vertex coloring
problem, which is described later, or the 0–1 integer pro-
gramming problem. Two or more reaction rules are
needed in more complex systems, in which there are two or
more ways of changing atoms.

Local order degrees (LODs) are a type of evaluation
functions. LODs express the degrees of local “organiza-
tion” or “order.” They are defined by the user to take a
larger value when the local state of the working memory is
better. An LOD may be regarded as a negated energy. For
example, it is analogous to bonding energy in chemical
reaction systems.

A reaction takes place when the following two condi-
tions are satisfied. First, there exists an atom that matches
each pattern in the LHS. Second, the sum of the LODs of
all the atoms concerned in the reaction, i.e., the atoms that
appear on either side of the reaction rule, does not decrease
as a result of the reaction. Reactions repeatedly occur
while the above two conditions are satisfied by a combina-
tion of any rule and atoms. The system stops, i.e., becomes

For ICPP ’95 95.1.9 7:20 PM

3

c2, r2

c3, r3

c3, r2

c2, r3

Queen1:

Queen2:

Queen3:

Queen2:

Queen3:

■ Local order degree (mutual order degree)

■ Reaction rule

rule Swap

 o(x, y) = 0 if x.column – y.column = x.row – y.row or
 x.column – y.column = y.row – x.row,
 1 otherwise .

The local order degree is defined between two queens.

Queen1:

rowcolumn

Figure 2. A rule and LOD of the N queens problem

r2

c3

r3

c2

Q

Q

Q

Q

Q

Q

Q

Q

Swapping
queens

Figure 3. The meaning of the N queens rule

a stationary state, when such a combination is exhausted.
However, reactions may occur again if the working mem-
ory is modified because of changes in the problem or the
environment. Thus, open and dynamic problems as men-
tioned beforehand can probably be handled properly using
CCM.

Typically, there are two or more combinations that sat-
isfy the two conditions at the same time. There are two
possible causes that generates multiple combinations. One
cause is that there are two or more collections of atoms that
satisfy the LHS of a reaction rule. The other cause is that
there are two or more reaction rules containing atoms that
match the patterns in the LHS. In each case, the order of
the reactions, or the order of selection of such combina-
tions, and whether they occur in parallel or sequentially is
determined stochastically or randomly. Therefore,
although the microscopic behavior of CCM, i.e., a
reaction, may be deterministic in a sense, the macroscopic
behavior is nondeterministic or random.

3. Combinatorial Problem Solving Using CCM
The N queens system, an CCM-based system for finding a
solution to the N queens problem, is briefly explained in
the present section. The N queens system is explained
more detailed by Kanada [Kan 94].

The N queens problem is an extension of the eight
queens problem. The LOD and the rule in a visual form
for the N queens system are shown in Figure 2 . This sys-
tem contains only one rule and a definition of the mutual
order degree, o(x, y), i.e., an LOD defined between two
queens. This rule swaps the rows of two queens (Queen2
and Queen3 in Figure 2). See Figure 3 . Queen1, which
can be called a catalyst , remains unchanged by the swap-
ping. The role of the catalyst is explained later. No link is
used in this rule. The value of LOD o(x, y) is defined to be
higher (i.e., 1) when queens x and y are not diagonally ori-
ented, and lower (i.e., 0) when they are diagonally ori-
ented.

However, the rule shown in Figure 2 contains three pat-
terns for queens both in LHS and RHS. The third pattern
(i.e., Queen1 in Figure 2) does not change the contents of
the working memory, but it affects the computation of
order degrees. A reaction takes place when the following
condition holds:

Ob(Q1, Q2) + Ob(Q1, Q3) + Ob(Q2, Q3) ≤
Oa(Q1, Q2) + Oa(Q1, Q3) + Oa(Q2, Q3),

where Q1, Q2 and Q3 are the queens that matched patterns
Queen1, Queen2 and Queen3, and Ob and Oa denote the
LOD before and after the reaction. A pattern that does not
change the data is called a catalyst. The catalyst in the rule
in Figure 2 drives the system toward a solution. The effect
of catalysts is explained by Kanada [Kan 94].

If the rule is executed with an appropriate initial state,
the system repeats the selection of three queens and reac-
tion of the instance. The initial state must satisfy the fol-
lowing condition: there is only one queen in each row and
each column. The easiest layout that satisfies this condi-
tion is to put all queens on a diagonal line. If this condition
holds, it holds at any time in the system because the reac-
tion preserves the condition. The system stops when a
solution of the N queens problem is found.

A mean value of LOD is called a mean order degree
(MOD). An MOD can be local or global, i.e., a mean of
either small or large number of data can be computed. An
MOD changes continually while solving a problem. A
sample path of MOD time sequence is shown in Figure 4 .
The MOD shown in this figure is the mean value of the
LODs of the eight (i.e., all the) queens. The value of MOD
changes stochastically, but it increases in average and
becomes the maximum value, i.e., 1, when the number of

For ICPP ’95 95.1.9 7:20 PM

4

0 20 40 60 80 100

Number of reactions (t)

0

0.2

0.4

0.6

0.8

1
M

O
D

Figure 4. A sample of MOD time sequence in the eight
queens problem solving

reactions is 88 in this case. This means that the system
found a solution. The system becomes stationary when it
finds a solution.

Other constraint satisfaction problems can be solved in
the similar method as the N queens problem, if all the con-
straints are expressed as a relation between two objects
[Kan 93b]. The values of LODs can be defined to be 0 or
1. Thus, the values of MODs are between 0 and 1. The
values of MODs become 1 when the problem has been
solved.

4. Markov Chain Model of CCM-based
Computation

It is shown that the distribution of execution time is close
to an exponential distribution under certain conditions in
the present section.

Time sequences of MODs can be approximated by a
Markov chain in the processes of solving several problems,
including the N queens problem and graph/map coloring
problems, experimentally [Kan 93b]. MODs are asserted
to take discrete values, o0, o1, …, oI (0 = o0 < o1 < … <
oI = 1), here.1 Time is measured by the number of reac-
tions from the beginning. The value of MOD at time t ,
O(t), is a random variable. The probability that O(t) is
equal to oi is described as p(O(t) = oi), where the following
condition holds:

p(0 ≤ O(t) ≤ 1) = ∑
i = 0

I
 p(O(t) = oi) = 1

A vector, whose elements are p(O(t) = oi) (i = 0, 1, …,
I), is denoted by pt . Then, the following relation approxi-
mately holds.

1 Kanada [Kan 93a] shows a method of constructing a Markov
chain model when the MOD takes continuous values.

pt+1 = T pt .

The transition matrix, T , has I rows and I columns. The
values of elements of T are asserted not to depend on time.

If the eigen values of T are denoted by λ 0, λ 1, …, λ I
( λ0 ≥  λ1 ≥ … ≥  λI), then λ 0 = 1. Tt can be
expressed as the following well-known form:

Tt = T0 + λ1t T1 + λ2t T2 + … + λ I
t TI

If λ2, λ3, …, λI are equal to zero, the probability that the
system is in a state other than the solution state, i.e., p(O(t)
< 1), decreases exponentially. Thus, the distribution of
computation time until the system becomes the stationary
state (solution state) is an exponential distribution. As
explained in the previous section, the MOD often becomes
close to 1 in an earlier stage of computation when solving a
CSP. In such a system,  λ 1 is close enough to 1, and
 λ2 , …,  λ I are far below 1. So, T t is approximately
equal to T0 + λ1t T1 when t » 0, and p(O(t) < 1) decreases
exponentially.

In the case of the eight queens problem, the eigen val-
ues are estimated to be as follows [Kan 93b] by measure-
ments:2

λ1 = 0.986, λ2 = 0.5, λ3 = 0.2, …

Thus, the above condition holds for the eight queens sys-
tem.

The probability of each MOD value is measured statis-
tically in the case of the eight queens problem. The result
is displayed in Figure 5 . The probabilities of the states
except the solution state, i.e., the state in which MOD = 1,
decreased almost exponentially as expected. The distribu-
tion of computation time is measured statistically. The
result is displayed in Figure 6 . The distribution is close to
an exponential distribution except when time (the number
of reactions) is near zero.

5. A Method of Independent Parallel
Processing

A method of parallel processing of CCM-based computa-
tion using non-communicating multiple processes is
explained in the present section. The reason of linear
acceleration is explained both intuitively and theoretically.

The method of parallel processing is as follows. (See
Figure 7 .) A parallel computer with at least M processors
is used. Only one process runs on each processor. Thus,
the processor and the process are identified in the present
section. The same reaction rule and LOD are stored in
each processor. The initial data may be the same or differ-
ent for all the processors. The computation of each proces-
sor, which is based on CCM, is performed independently.

2 It is currently not possible to estimate the eigen values only
from theories.

For ICPP ’95 95.1.9 7:20 PM

5

0 100 200 300

Number of Reactions (Time)

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

li
ty

MOD=0.607
MOD=0.643
MOD=0.679
MOD=0.714
MOD=0.750
MOD=0.786
MOD=0.821
MOD=0.857
MOD=0.893
MOD=0.929
MOD=0.964
MOD=1.000

Figure 5. Probabilities of the states in which MOD is
0.607 to 1 in the eight queens

0.
15

–0
.2

0

0.
20

–0
.2

5

0.
25

–0
.3

0

0.
30

–0
.3

5

0.
35

–0
.4

0

0.
40

–0
.4

5

0.
45

–0
.5

0

0.
50

–0
.5

5

0.
55

–0
.6

0

0.
60

–0
.6

5

0.
65

–0
.7

0

0.
70

–0
.7

5

0.
75

–0
.8

0

0.
80

–0
.8

5

0.
85

–0
.9

0

0.
90

–0
.9

5

0.
95

–1
.0

0

1.
00

–1
.0

5

Computation Time (sec)

0

50

100

150

200

250
Frequency
Exponential function

Figure 6. A sample distribution of the computation time
of the eight queens problem

Each processor generates independent random numbers for
selecting data to be reacted. This independence is very
important.1 When a process finishes the computation, the
solution found by the process is outputted, and all the pro-
cesses are killed. Communication between processors is
used only for this process termination, and is never used
during the computation. If the distribution of sequential

1 If the random numbers are not independent, the performance
degrades. For exapmle, if all the processors use the same dupli-
cated sequence of random numbers, they compute the same
result. Thus, the performance is the same as using one processor.

computation time is exponential, the performance will be
improved in proportion to M by this method.

The reason why the acceleration is linear can be intu-
itively explained as follows. The computation can be
regarded as a search of solution in combinatorial problem
solving. Processes probably search different places in the
search space, if the search space is large enough. So the
efficiency is in proportion to the number of processors.

The reason of linear acceleration is explained theoreti-
cally using the following theorem, in which the value of
each random variable is interpreted as execution time.

Theorem : If random variables, X1, X2, …, Xm, follows an
exponential distribution, whose density function is p1(x)
= λe–λx, then the random variable, min(X1, X2, …, Xm),
follows the exponential distribution, whose density
function, pm(x), is equal to mλe–mλx.

Proof : The probability that the value of the random vari-
able min(X1, X2, …, Xm) is larger than x is expressed as
follows.

∫x
∞

pm(y) dy

= P{x < min(X1, X2, …, Xm)}
where P{C} denotes the probability that condition
C is satisfied

= P{x < X1} * P{x < X2} * … * P{x < Xm}
because X1, X2, …, and Xm are independent random
variables, and the condition x < min(X1, X2, …, Xm)
means that x < min(X1) and x < min(X2) and … and
x < min(Xm)

= (∫x
∞

p(y) dy)
m

= e–mλx.

Thus,
d
dx ∫x

∞
pm(y) dy =

d
dx e–mλx,

which means pm(x) = mλe–mλx. ■
The distribution of the parallel processing time using M
processors is equal to pM(x) by this theorem. The expecta-
tion of random variable X’ that follows distribution pM(x’)
is 1/M of the expectation of X that follows distribution
p1(x). Thus, the average parallel processing time is 1/M of
the sequential processing time.

6. Experiments
The method proposed in the previous section is applied to
several combinatorial problems. The measured accelera-
tion ratios by the parallel processing are shown in the pre-
sent section.

Parallel processing time of the N queens problem by the
rule and LOD shown in Figure 2 has been estimated using
50 measurement results of sequential processing time.

For ICPP ’95 95.1.9 7:20 PM

6

Process 1

Initial data

Processor 1

Process 2

Random
number

generator

Initial data

Processor 2

Process M

Random
number

generator

Initial data

Processor M

…

…
Independent

Maybe the same or different

Communication Network —
used only for killing processes

Random
number

generator

Rules
and

LODs

Rules
and

LODs

Rules
and

LODs

The same

…

…

Figure 7. The method of parallel processing CCM-based computation

Namely, sequential processing time is repeatedly measured
using computational language called SOOC1 and its
interpreter, and the average of minimum values of 2 to 16
measured values are computed. The initialization time,
i.e., the time for making initial placement of queens, is
excluded from the measured time. The i-th measured exe-
cution time of the N queens problem is denoted by t(N, i)
here (i = 1, 2, …, 50). The average values of t(N, M, j) (j =
1, 2, …), which represents a measured value for the N
queens by M processors, are plotted for M = 1, 2, 4, …, 16,
and N = 4, 6, …, 14, in Figure 8 , where t (N, 2, 1) =
min(t(N, 1), t(N, 2)), t(N, 2, 2) = min(t(N, 3), t(N, 4)), …,
and t (N, 4, 1) = min(t(N, 1), t (N, 2), t(N, 3), t(N, 4)), …,
and so on. Because the distribution of the execution time
is close to an exponential distribution when N is larger, the
performance is accelerated nearly linearly.

Real parallel processing time has also been measured
using the same rule and LOD that are hand-coded using C
on Cray Superserver 6400 (CS6400). CS6400 has shared
memory, and thus, multiple threads (but not UNIX pro-
cesses), which run on different processors but share mem-
ory, are used for this measurement. However, the shared
memory is used only for initial data distribution, final data
output, and process termination. There is a parent thread
and it distributes the input data, i.e., the value of N , to M
child threads. Only the thread that finds the solution first
outputs the solution and synchronizes with the parent.
(The parent is busy-waiting for this synchronization.)
Then the parent terminates and other threads are killed by
the operating system. Thus, the threads are not explicitly
killed in the program. The measured time includes the

1 SOOC is a computational language designed for experiments of
CCM-based computation. SOOC is built on Common Lisp .

initialization time because the
initialization is also performed in
parallel and it is difficult to be
separated.

Each thread computes random
numbers independently (using
rand_r library routine). The ran-
dom number seed is generated
using both the time in micro second
and the address of input data for
each thread. I have chosen the
method of seed generation carefully
to guarantee the independence of
random numbers between threads.

The execution time has been
measured 50 times for each N . The
result of measurement is shown in
Figure 9 . The CS6400 used for the
measurement has 12 processors,
each of which a thread is assigned

0 2 4 6 8 10 12 14 16

M (number of processors)

0

2

4

6

8

10

12

14

16

P
er

fo
rm

an
ce

 R
at

io

Ideal Performance
N = 4
N = 6
N = 8
N = 10
N = 12
N = 14

Figure 8. Simulated performance of the N queens
problem

to, and there is a parent thread. Thus, the maximum value
of M is 11, where the parent is not counted. The
performance is worse than the simulation. When N = 14,
the acceleration is nearly linear in the simulation, but it is
far below linear in the real paral lel execution. However,
the acceleration is almost linear when N is 18 or 20. Thus,
the method shown in the previous section has been proved
to be effective for the N queens problem. The reasons that
the performance is worse than the simulation are probably
as follows.

(1) There is parallelization overhead, which is caused by

For ICPP ’95 95.1.9 7:20 PM

7

0 2 4 6 8 10 12

M (number of processors)

0

2

4

6

8

10

12

Pe
rf

or
m

an
ce

 R
at

io

Ideal performance
N = 12
N = 14
N = 16
N = 18
N = 20

Figure 9. Parallel performance of the N queens problem

0 2 4 6 8 10 12 14 16 18

M (number of processors)

0

2

4

6

8

10

12

14

16

18

Pe
rf

or
m

an
ce

 R
at

io

USA Mainland Map
DSJC125.1 (A DIMACS benchmark)
Leighton 5d (A DIMACS benchmark)
Leighton 5c (A DIMACS benchmark)
Ideal performance

Figure 10. Simulated performance of the graph/map
coloring problems

0 2 4 6 8 10 12 14 16

M (number of processors)

0

2

4

6

8

10

12

14

16

Pe
rf

or
m

an
ce

 R
at

io

Ideal performance
N = 10
N = 20
N = 30
N = 40
N = 50

Figure 11. Simulated performance of the N queens
problem using a less local rule

time for thread dispatching and final synchronization1.

(2) The measured time includes the initialization time,
which is not accelerated by the parallelization.

Both reasons make the distribution of execution time apart
from an exponential distribution.

Computation of solving the graph or map coloring
problem is also evaluated by the method using simulation.2

The simulated performance is shown in Figure 10 . The
performance of the USA mainland map [Tak 92] is not
good probably because the problem is too small for paral-
lelization. However, the performance of several problems
in the DIMACS benchmarks [Tri][DIM] is good, and this
method has been proved to be effective for the coloring
problems.

Not all constraint satisfaction problems are linearly
accelerated by this method. Even the performance of the
same problem can be different, if a different set of rules is
used. For example, a simulated performance of the N
queens problem has been measured and is shown in
Figure 11 . In this measurement, a rule that is different
from Figure 2 and that has less locality is used. This rule
refers a vertex and all its neighbors. This rule refers more
data than the rule shown in Figure 2, i.e., it is less local.
The ratio of performance improvement is less than 3 even
when M = 16 and N = 50. This result shows that the high
degree of locality in the computation is indispensable for
performance improvement. The real parallel performance
has not been measured because much improvement is not

1 Time for killing threads is not included in the measured time,
but it is known to be almost negligible when N is large. This
overhead is measured to be 1% (when N = 18) to 3% (when N =
12) in average.
2 A rule with variable number of catalysts [Kan 94, Kan 95a] is
used for this measurement.

expected.
Other problems, including exchange sort and traveling

salesperson problem (TSP), are also tested by simulation.
The execution time of exchange sort, which can be
regarded as a constraint satisfaction problem, is almost
constant. Thus, it is almost never accelerated. The simula-
tion results of TSP with 10 to 20 cities are shown in
Figure 12 . The acceleration ratio is far less than 2, even
when the number of processors is 16. No global optimiza-
tion problem that can be accelerated nearly linearly has yet
be found. It is probably difficult to improve the perfor-
mance of solving global optimization problems by this

For ICPP ’95 95.1.9 7:20 PM

8

0 2 4 6 8 10 12 14 16

M (number of processors)

0

2

4

6

8

10

12

14

16

Pe
rf

or
m

an
ce

 R
at

io

Ideal performance
Graph A
Graph B
Graph C
Graph E
Graph D

Figure 12. Simulated performance of TSP with 10 to 20
cities

method because of non-local nature of their computation;
they are global optimizations.

7. Related Work
Mehrotra [Meh 85] stated that super-linear acceleration is
made possible by a randomized parallel processing of tree
search problems. Mehrotra compared a deterministic
sequential version and a randomized parallel version of an
algorithm.1 However, Mehrotra did not compare the per-
formance of randomized parallel processing with different
numbers of processors.

8. Conclusion
The distribution of computation time is close to an expo-
nential distribution in some cases in CCM-based computa-
tion. In such cases, it is proved that almost linear perfor-
mance improvement is possible by both theory and prac-
tice. This method makes implicit and stochastic decompo-
sition of problems possible. Although the result shown in
the present paper is only one step toward the goal, we
believe that researches on such implicit stochastic divide-
and-concur methods will lead us to a new methodology of
problem solving and software development, which is not
only applied to parallel processing, in future.

Acknowledgment
The author thanks to Shoji Hatano from TRC (the Tsukuba
Research Center, RWCP), for showing a better proof of the
theorem described in Section 5. He also thanks to Susumu

1 The function of these two versions of programs are different.
Thus, it is not fare to state that a super-linear acceleration was
performed.

Seki and Hironobu Takahashi from TRC for tutoring him
the usage and programming techniques of CS6400.

References
[DIM] Center for Discrete Mathematics and

Theoretical Computer Science, http://dimacs.rutgers.-
edu/.

[For 91] Forrest, S., ed.: Emergent Computation , MIT
Press, 1991.

[Kan 92] Kanada, Y.: Toward a Model of Computer-
based Self-organizing Systems, Proc. 33rd Program-
ming Symposium, 1992 (in Japanese).

[Kan 93a] Kanada, Y.: Optimization using Production
Rules and Local Evaluation Functions, 11th Meeting of
the Technical Group on Software Engineering , The
Society of Instrument and Control Engineers (SICE),
1993 (in Japanese).

[Kan 93b] Kanada, Y.: Computations as Stochastic
Processes — Necessity and Examples of Macroscopic
Models of Computation Processes —, IEICE Technical
Groups on Computation / Software Science, COMP92-
93, SS92-40, 1–10, 1993 (in Japanese).

[Kan 94] Kanada, Y., and Hirokawa, M.: Stochastic
Problem Solving by Local Computation based on Self-
organization Paradigm, 27th Hawaii International Con-
ference on System Sciences, 82–91, 1994.

[Kan 95a] Kanada, Y.: Fuzzy Constraint Satisfaction
Using CCM — A Local Information Based
Computation Model, FUZZ-IEEE/IFES ’95.

[Kan 95b] Kanada, Y.: Large-Scale Constraint
Satisfaction by Optimization of Local Evaluation
Function with Annealing, submitted for IJCAI ’95.

[Koe 78] Koestler, A. : JANUS, Hutchinson and Co.
Ltd., 1978.

[Lan 89–94] Langton, C. G.: Artificial Life I , II and III ,
Addison Wesley, 1989, 1991 and 1994.

[Meh 85] Mehrotra, R., and Gehringer, E. F.: Superlinear
Speedup Through Randomized Algorithms, 14th Int'l.
Conf. on Parallel Processing , 291–300, 1985.

[Mor 93] Morris, P.: The Breakout Method For Escaping
From Local Minima, 12th National Conference on
Artificial Intelligence (AAAI-93) , 40–45, 1993.

[Sel 93] Selman, B., and Kautz, H. A.: An Empirical
Study of Greedy Local Search for Satisfiability Testing,
12th National Conference on Artificial Intelligence
(AAAI-93) , 46–51, 1993.

[Tak 92] Takefuji, Y.: Neural Network Parallel
Processing, Kluwer Academic Publishers, 1992.

[Tri] Tricks, M.: The Second DIMACS Challenge,
http://mat.gsia.cmu.edu/challenge.html .

