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Abstract
A method for solving large-scale constraint satisfaction problems is proposed in the pres-

ent paper.  This method is stochastic (or randomized) and uses local information only, i.e., no
global plan is expressed in the program and the computation refer to no global information.
This method uses CCM (Chemical Casting Model) as a basis, which is a model for emergent
computation proposed by the author.  The original CCM-based method minimizes the num-
ber of constraint violations not directly but throught optimization of local functions, which
are called LODs (local order degrees).  This method sometimes falls into a “local maximum.”
This difficulty is solved by a type of annealing, which we call the frustration accumulation
method (FAM).  FAM also works only with local information.  No global functions is used in
FAM,  No global parameters such as temperature are used, and global control is thus unnec-
essary.  Experiments show that the performance of this method is not very sensitive to pa-
rameter values.  This means that parameter tuning is easy.  In several problems, the perform-
ance is comparable to conventional simulated annealing or GSAT, which are based on global
evaluation functions.  Because of the nonexistence of global information reference, CCM
with FAM can be parallelized very easily.  Thus, the performance is improved and is almost
linear in certain cases.

1. Introduction
Constraint satisfaction and optimization problems in the real world, such as production schedul-
ing or stock management, are not only large-scale and complex but also open to the human soci-
ety and/or the nature.  The problems themselves are continually changing and only incomplete
information is available for solving them, because the systems concerning the problem, the envi-
ronment, and even the requirements are changing.  The changes may sometimes be unexpected,
because the behavior of humans and other natural systems are sometimes unpredictable.

Conventional methods for problem solving, such as those used in operations research or vari-
ous search methods in artificial intelligence, such as the branch-and-bound method, alpha-beta
search, and so on, do not work well in such situations.  We believe that this is because global and
complete planning is necessary and global information is used in these methods.  Global plan-
ning and global information based computation are considered to be easily voided by small
changes in the information, requirements or environment.  Global information referencing also
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makes parallel processing difficult, because of the global reference creates a global data depend-
ence.

Toward solving these difficulties, a method of solving constraint satisfaction problems using
a type of optimization of local evaluation functions with a type of annealing is proposed in the
present paper.  This method is based on CCM (Chemical Casting Model) [Kan 92, Kan 94],
which is a stochastic computational model for emergent computation [For 91], or for local in-
formation based computation, which has deeply been investigated in Artificial Life [Lan 89-94].
Because computation in CCM does not depend on global information, it continues to work even
when information is changed dynamically and new information is added or removed.  Thus, it
seems to have the potential to process unexpected situations properly using implicit knowledge
that emerges from interaction between local computation processes.  New information may be
added or preexisting information may be dynamically changed by environmental changes while
solving problems.  The nonexistence of global information references also makes parallel proc-
essing much easier.

We experimented with solving combinatorial problems, such as the N queens problem
[Kan 94a], graph/map coloring problem [Kan 93, Kan 95], or fuzzy coloring problem [Kan 95]
using CCM without annealing.  However, we could not solve difficult and large-scale constraint
satisfaction problems (CSPs) using CCM, because the computational efficiency, which is inevi-
table for solving large-scale problems, and the escaping from “local maxima” of evaluation
functions were not compatible.  To solve this difficulty, a new type of annealing technique called
the frustration accumulation method (FAM) is introduced in the present paper.  Because the an-
nealing method must not violate the nature of CCM, FAM does not depend on global informa-
tion either.  No global parameter, such as temperature, is necessary.  No global control, such as
changing the value of a global temperature, is necessary, and the system thus works autono-
mously.  The absense of global informtion is different from the usual annealing methods.  FAM
has made solving large-scale problems using CCM possible.

The computational model, CCM, is briefly explained in Section 2.  The basic method of con-
straint satisfaction using CCM is explained in Section 3, and a method using CCM with FAM is
explained in Section 4.  A method of parallel processing the constraint satisfaction with FAM is
explained in Section 5.  The results of performance measurement of both sequential and parallel
processings are shown in Section 6.  Finally, our conclusion is given in Section 7.

2. Computational Model CCM
CCM [Kan 92, Kan 94a] is explained here.  Kanada [Kan 96] describes CCM in more detail.

CCM has been developed for computation using only local information.  CCM is based on a
forward-chaining production system [New 72], such as systems written in OPS5 [For 81].  The
forward-chaining production system is a computational model for bottom-up computation.  Pro-
duction systems are often used for developing expert systems or when modeling the human brain
in artificial intelligence or cognitive sciences.

However, CCM differs from conventional forward-chaining production systems in two
points.  Firstly, evaluation functions, which are called local order degrees (LODs). LODs are
similar to negated energy in chemical reaction systems, and are evaluated to decide whether to
apply a rule or not.  Rules and functions are computed using only local information.  Secondly,
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stochastic control or randomized ordering of rule applications, is applied.1  Because of these
features, we believe that CCM is much more similar and analogical to chemical reaction systems
than conventional production systems in AI.  Production systems in AI are completely symbolic.
However, CCM is more pattern-oriented because it is based on LODs that are numerical, and has
certain similarity to neural systems [Kan 96].  Because chemical reactions occur in parallel, it is
very natural to make reactions occur asynchronously in parallel in CCM, and the parallelization
is much easier in CCM than in conventional production systems.

The structural components in CCM are shown in Figure 1.  The set of data to which the rules
apply is called the working memory.  A unit of data in the working memory is called an atom.
An atom has a type and an internal state, and may be connected to other atoms by links.  Links
are similar to chemical bonds, but the difference is that links may have directions.  Any discrete
data structures such as lists, trees, graphs or networks can be represented using atoms and links.
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Figure 1.  The elements of CCM

A local state of the working memory is changed by a reaction rule.  “Local” means that the
number of atoms referred by a reaction rule is small.2  The reaction rules are written as forward-
chaining production rules, such as rules in expert systems.  However, reaction rules are at a
lower level, or more primitive, than rules in expert systems.  This means that the behavior of the
system is not (or should not be) directly programmed using rules but it should emerge from re-
peated rule applications.  Therefore, a reaction rule is more similar to the reaction formula of a
single reaction in compex chemical reactions, and thus, this model is called the chemical casting
model.  CCM has both symbolic and pattern-oriented properties, being similar to chemical reac-
tion systems; symbolic as reaction formulae and pattern-oriented as controlled by energy or en-
tropy.

The abstract syntax of reaction rules is as follows:

LHS → RHS.

                                                
1 It is possible to regard CCM-based computation as a probabilistic or randomized algorithm.  However, this is not
discussed here since our aim is to establish a method of solving problems open to the real world but not to solve
closed problems.
2 Because (physical) distance is not (yet) introduced in CCM as opposed to systems such as a chemical reaction
system, “local” does not mean that the distance is necessarily small.
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The left-hand side (LHS) and the right-hand side (RHS) are sequences of patterns.  For example,
the following reaction rule, which is a rough sketch, simulates the generation of water from oxy-
gen and hydrogen:

H–H, O=?  →  H–O–H, ? (This approximately means  H2 + 
1

2
O2 → H2O).

There are four patterns on each side of the rule: two H’s, an O, and a question mark, which is a
variable that means an unknown atom.  An O matches an atom of oxygen type, an H matches an
atom of hydrogen type, and a variable matches arbitrary data in the working memory.  This rule
can be visualized as shown in Figure 2.  Reaction rules must be coded S O O C (Self-
Organization-Oriented Computing), which is a computational language and a general problem
solver for CCM-based computation.1

O

H Hhydrogen
molecule

oxygen
molecule

H H

water molecule

? O

?

Figure 2.  A “water generation” rule

The reaction rule can be activated when there is a set of atoms that matches the LHS patterns.
If the reaction rule is activated, the matched atoms vanish and new atoms that match the RHS
patterns appear.  So an atom may be modified, bonded to another atom, removed, or created by a
reaction rule.  Just one reaction rule is enough for solving a simpler problem such as the 0–1 in-
teger programming problem or the graph vertex coloring problem as well as “water generation.”
There will be two or more reaction rules in more complex systems, in which there are two or
more ways of changing atoms.

Local order degrees (LODs) are evaluation functions, or local objective functions, whose
values are defined for a type of atoms or for a pair of types of atoms, using only local informa-
tion.  LODs are functions with one or two arguments.  The arguments are atoms.  LODs have a
larger value when the local state of the working memory is better.  An LOD may be regarded as
a negated energy.  For example, it is analogous to the bonding energy in chemical reaction sys-
tems.  Although LODs can be built into normal production rules, the separation of LODs from
rules causes a certain flexibility.  The separation causes bidirectionality of rules, i.e., LHS and

                                                
1 The same rule as shown in Figure 2 can be expressed in SOOC-94 (the current version of SOOC) as follows:

  (defrule water-generation ; rule name
    (var H1 H2 O1) ; Declaration of variables H1, H2 and O1.
    (exist H H1 :bond H2) ; A pattern.  H is a type and H1 is a label.
    (exist H H2 :bond H1) ; A pattern.
    (exist O O1) ; A pattern.  O is a type.
    -->
    (exist H H1 :bond O1) ; A pattern.
    (exist H H2 :bond O1) ; A pattern.
    (exist O O1 :bond1 H1 :bond2 H2)) ; A pattern.
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RHS may be interchanged.  The separation also makes performance improvement by adding
catalysts [Kan 94a] or rule composition possible.  (See Section 3.2 for the definition of catalyst.)

A reaction takes place when the following two conditions are satisfied.  Firstly, there exists
an atom that matches each pattern in the LHS.  Secondly, the sum of the LODs of all the atoms
that are involved in the reaction, i.e., the atoms that appear on either side of the reaction rule,
does not decrease as a result of the reaction.  For example, a water molecule will be generated by
the above rule, if the sum of LODs in the RHS, i.e., the negated energy of a water molecule, is
higher than that in the LHS, i.e., the negated energy of a hydrogen molecule and an oxygen atom.

Reactions repeatedly occur while the above two conditions are satisfied by a combination of
any rules and atoms.  The system enters a stationary state, or stops, when such a combination is
exhausted.  If the system is to solve a problem, this state must be the solution.  However, reac-
tions may occur again if the working memory is modified because of changes in the problem or
the environment.  A CCM-based system is a dynamical system rather than a problem solving
system.  Thus, a CCM-based system can solve dynamical problems without additional rules or
data.

Typically, there are two or more combinations that satisfy the two conditions at the same
time.  There are two possible causes that generates multiple combinations.  One cause is that
there are two or more collections of atoms that satisfy the LHS of a reaction rule, and the other is
that there are two or more reaction rules containing atoms that match the patterns in the LHS.  In
both cases, the order of the reactions (the selection order of such combinations) can be stochas-
tic, and whether they occur in parallel or sequentially is arbitrary.  Therefore, although the mi-
croscopic behavior of CCM, i.e., a reaction, is deterministic, the macroscopic behavior is non-
deterministic or randomized.  The same set of rules, LODs and initial state does not necessarily
cause the same final state.  The CCM-based systems that we have developed use random num-
bers for selecting rules and atoms.  The same set of rules and LODs can be used both in sequen-
tial and parallel processing.

For example, a computation process that generates two water molecules is shown in
Figure 3.  Water molecules are generated by two reactions.  There are four combinations of at-
oms for the first reaction; H1–H2 and O1 , H1–H2 and O2 , H3–H4 and O1 , and H3–H4 and O2 .  Al-
though the combination is selected randomly, the computation process always generates the
equivalent result: two water molecules.

H1 H2

H3 H4

O1 O2

H1 H2

H3 H4

O1 O2

H1 H2

H3 H4

O1 O2

reaction reaction

Figure 3.  A computation process — generation of water molecules
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3. Constraint Satisfaction Using CCM
The principle of problem solving using CCM is explained, and an example system that solves a
CSP is given in the present section.

3.1 Principle of problem solving using CCM
Problem solving can be regarded as an activity to find a better or best state in some sense.  The
meaning of words, better or best, may be varied according to the problems to be solved, and
“state” may mean the macroscopic (global), microscopic (local), or mesoscopic state.  In CCM,
LODs define what is a locally better state, and reaction rules determine the paths of transition to
neighbor states, or define the neighbor relationship.

A mean value of LODs is called a mean order degree (MOD), which can be regarded as a
negated mean energy.1  Although CCM-based systems do not compute MODs, they operate so as
to increase MODs or sums of LODs stochastically.  The data in the working memory can be di-
vided into small parts, into large parts, or into parts of any other scale.  MODs can also be de-
fined in each scale.  Figure 4 illustrates the relationship between MODs of different scales.
They may conflict.  For example, the macroscopic MOD can decrease when a microscopic MOD
increases, and vice versa.  A CCM-based system is called a cooperative system if no reaction that
decreases an MOD can occur, and it is called a conflicting system if a reaction that decreases an
MOD can occur [Kan 94a].  A conflicting system does not perform hill-climbing.

12

4
3

7

8

1

10

28

1

4

2
5

Microscopic MOD:
stochastically
increasing

Macroscopic MOD:
stochastically
increasing

Mesoscopic MOD:
stochastically
increasing

may
conflict

Figure 4.  Behavior of CCM-based systems

Although different MODs may behave differently, they increase in average in every scale if
the LODs and rules are defined appropriately.  Thus, CSPs can be solved if a state in which more
constraints are satisfied is defined to have a higher MOD value (or to be better), and combinato-
rial optimization problems can be solved if a more optimized state is defined to have a higher
MOD value.  A sample time sequence of MOD for the coloring of the USA mainland map (see
                                                
1 Kanada [Kan 94a] used the total of LODs, called global order degree (GOD).  GOD has been replaced by MOD,
because GOD has the same drawback as global objective functions used in conventional evolutionary computation
and other methods.  GOD cannot be properly defined in open or partially-informed situations.
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Figure 5), which is a typical example, is shown in Figure 6.  The MOD sometimes decreases,
because this is a conflicting system.  However, experiments show that this system never fails to
find a solution.

A certain solution can probably be found, even if what is a global optimum is not known, be-
cause the system can work only if what is locally better is known.  However, the system may be
unable to satisfy all the constraints, may be unable to find a global optimum solution, or can stop
at such a “goal” state by this method.  This is because the system may be trapped by a local
maximum and there is no assurance that the system stops in finite time in CCM.

Figure 5.  The USA map coloring
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Figure 6.  A sample time sequence of MOD in the USA map coloring

3.2 Basic method of Constraint Satisfaction
An example of non-fuzzy CSP and a method of solving it using CCM are demonstrated here.
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Kanada [Kan 94a] describes a method of problem solving using CCM, and uses the N queens
problem, which is a CSP, as an example.  In this case, each constraint is expressed as an LOD
between two atoms.  The value of an LOD is higher when the constraint is satisfied, and is lower
when the constraint is violated.  The global MOD, or the total of LODs, is optimized in this way.
This means that all the constraints can be satisfied by the system operation.  The same method
can be applied to other CSPs.  A CCM-based system to solve a coloring problem is described
below.

The problem is how to color the vertices of a graph using a specified number of colors, for
example, four.  Each pair of neighboring vertices must be given different colors.  A map coloring
problem can be converted to a graph coloring problem, if areas of the map are converted to verti-
ces and the area borders are converted to edges.  Thus, the map coloring problem can be solved
by the same rules and LODs as the graph coloring problems.  For example, the problem of col-
oring the graph with five vertices, shown in Figure 7, is equivalent to the problem of coloring
the map with five areas, which is also drawn in Figure 7.  The data structure used for solving the
problem is as follows.  Vertices are represented by atoms.  An atom of type vertex has a color as
its internal state.  In Figure 7, c1, c2, c3 and c4 are the colors.

vertex v1

vertex v3

vertex v5

vertex v4

ertex v2

c1

c3

c3

c2

c4

Figure 7.  An example of a graph coloring problem and its representation

The reaction rule and LOD to solve the problem are shown below.  The only reaction rule is
illustrated in a graphical form in Figure 8.  The same rule written in SOOC-94 is given in
Appendix 1.  This rule refers only to two neighboring vertices and the edge between them, and
changes the color of one of the vertices randomly.  The LHS of the rule contain two patterns;
vertex1 and vertex2.  C1 and C2 are variables to be matched to the colors of vertex1 and vertex2.
There is a link between the atoms, and this link represents the edge between the vertices.  Thus,
vertex1 and vertex2 can only match two vertices that have a link between them.  When a reaction
occurs, the internal state of the atom that matches vertex1 is rewritten.  That is, the color that was
equal to C1 before the reaction becomes equal to C3, which is generated randomly.  The value of
C3 is selected from a predefined set of colors.  Because there is no constraint between C1, C2 and
C3, these colors can either be the same or different.1

                                                
1 Because the color for variable C3 is generated randomly, the same color may be selected for C3 as for C1 or C2.
However, the sum of LODs does not increase in the case of such a reaction, so the reaction does not occur.  (See the
definition of LOD given later in the present section.)
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C1 C2 C3 C2

randomize C3
vertex1 vertex2 vertex1 vertex2

Figure 8.  The reaction rule for the graph coloring system

The definition of the LOD is shown below.  The LOD is defined between two vertices, v1
and v2.  Its value is 1 when the constraint between v1 and v2 is satisfied, and otherwise it is 0.

o(v1, v2)  = 1 if not connected(v1, v2) or v1.color ≠ v2.color
0 otherwise

The same LOD written in SOOC-94 is also shown in Appendix 1.  This definition means that
the value of the LOD is 1 (higher) if the vertices are not connected or have different colors, and
otherwise that it is equal to 0 (lower).  The value of LOD is 1 when the vertices are not con-
nected in this case.  The value is also 1 when the vertices are connected and have different col-
ors, because the constraint between the vertices is satisfied.  The value is 0 when the vertices are
connected and have the same color, because the constraint is violated.  In general, a CSP can be
expressed (but is not necessarily solvable) using CCM, if methods of state transition in the search
space can be expressed as reaction rules, and the problem consists of local constraints that can be
expressed by binary LODs.

A reaction occurs when two connected vertices, V1 and V2, are selected by the system, and
the following condition holds:

o(V1, V2)  ≤  o(V1’, V2),

where V1’ is V1 after the reaction (with the new color).  For example, an application of the rule
to the above graph is illustrated in Figure 9.  Vertices v3 and v4 are selected at random, and the
system matches v3 to vertex1 and v4 to vertex2.  v3 and v4 are the vertices in the graph and vertex1
and vertex2 are the patterns in the rule.  Then, the sum of LODs before the reaction is 0 because
the colors of v3 and v4 are the same, and the sum after the reaction is 1 because the colors will be
different.  Thus, this reaction actually occurs.

vertex1

vertex2

c1

c3

c2  = C3

c2

c4

vertex1

vertex2

c1

c3

c4  = C1

c2

c4  = C2

The sum of LODs
is increased by the
rule application

Before the reaction After the reaction

v3 v3

v4v4
10

Figure 9.  An application of the coloring rule

This is a conflicting system, and works stochastically.  Thus, the sum of LODs does not
monotonically increase, and the system does not necessarily find a solution in finite time.  How-
ever, experiments show that the computation time is always finite in practice unless the problem
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is too difficult.  When the system reaches a solution state, it becomes stationary, because no fur-
ther reactions can occur.

A complete termination test can be performed by testing all the combinations of rules and at-
oms, if the system is closed.  For example, it is sufficient to test four combinations for the water
generation system shown in Figure 2.  However, this method cannot be applied to open systems
because the number of combinations is not known and varies.  Also, this method maybe expen-
sive because the minimum number of tests is sometimes difficult to be estimated.  Thus, we usu-
ally use the following method for testing termination.  If the system fails to find a set of a rule
and matching data that can react by a fixed number of trials (10000 times, for example, depend-
ing on the problem to solve), then the system terminates.  This method may cause termination
before finding a solution.  However, premature termination can be mostly avoided by setting an
appropriate maximum number of trials, and the correctness of the result can easily be tested.1

The system can change the maximum number of trials adaptively.2

A pattern of atoms, whose value is not changed by the rule, is called a catalyst [Kan 94a].
An atom that is not changed by a reaction is called a catalyst of the reaction.  A pattern in a rule
is also called a catalyst if the same (unchanged) pattern appears in both the LHS and RHS of the
rule.  In the rule in Figure 8, vertex2 is a catalyst.  A rule with no catalyst is illustrated in
Figure 10 (a).  If this rule is used instead of the rule in Figure 8, a reaction occurs uncondition-
ally when the system selects a vertex for the reaction.  This is because there is only one vertex
pattern in the rule, and thus, there is no combination of atoms to compute in LOD.  A rule with
two or more catalysts can also be used.  A rule with two catalysts is illustrated in Figure 10 (b).
In this rule, vertex2 and vertex3 are the catalysts.  If this rule is used, a reaction occurs when three
connected vertices, V1, V2 and V3, are selected for vertex1, vertex2 and vertex3 respectively by the
system, and the following condition holds:

o(V1, V2) + o(V1, V3) + o(V2, V3)  ≤  o(V1’, V2) + o(V1’, V3) + o(V2, V3),

where V1’ is V1 after the reaction.  Simplifying this, we get

o(V1, V2) + o(V1, V3)  ≤  o(V1’, V2) + o(V1’, V3).

Addition or removal of catalysts changes the locality of the computation and changes the per-
formance [Kan 94a, Kan 95].  In the coloring problem, a system with only the no-catalyst rule
performs a complete random walk in the search space.  The performance is out of the question
because this system does not come to a stationary state even if a solution is found.  If more cata-
lysts are added, the number of reactions decreases, and the performance improves under certain
conditions.  The rules in Figure 8, and in Figure 10 (a) and Figure 10 (b) have a fixed number of
catalysts.  However, the number of catalysts can vary dynamically.  In the rule in Figure 10 (c),
                                                
1 The correctness can be checked using CCM by running an appropreate rule using a strict termination test method
after the termination of the main computation process.  This correctness check terminates rapidly in the coloring
problem.  Even if the number of tests in the termination test of the correctness check is much larger than the mini-
mum, this process does not spend too long time.  Thus, this method performs better than the method with strict ter-
mination test in the main computation process.
2 In our implementation, the maximum number of trials is increased to 1/20 of the total number of LHS tests since
the beginning of the computation when it is less.  This can avoid most of premature terminations without adding
significant overheads.
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all the neighboring vertices of vertex1 are the catalysts, and the number of catalysts depends on
the vertex matched to vertex1.

C1 C2

randomize C2
vertex1 vertex1

(a) With no catalyst

C2

C1

C2

C4

C3 C3

randomize C4
vertex2

vertex1

vertex3 vertex2

vertex1

vertex3

(b) With two catalysts

……

C1 C3

randomize C3

vertex1

vertex

vertex1

vertex vertex vertex

(c) With a variable number of catalysts

Figure 10.  The reaction rules with zero, two, or variable number of catalysts

A slightly modified version of the rule and LOD, which is more complicated but performs
better than the above rules and LODs, was coded by SOOC-94, and then executed.  The coloring
system on SOOC-94 was applied to the map of the USA mainland, consisting of 48 states
[Tak 92] (see Figure 5).  A correct solution was found in every run.  The performance was meas-
ured and the effect of catalysts was shown by Kanada [Kan 95].  The result can be summarized
as follows.  When the number of catalysts increases, the number of reactions decreases but the
execution time and the number of LHS matches does not necessarily decrease.

Coloring the USA mainland is a rather easy problem.  Thus, it can be solved using the rule
with only one catalyst.  However, if the problem is more difficult, more catalysts are necessary.
Otherwise, the computation time will be too long.  If more catalysts are used, the computation
can more easily fall into a “local maximum” of MOD [Kan 94a].1  For example, a solution can
usually be found by the rule with a variable number of catalysts and is more efficient than the
single-catalyst rule.  However, sometimes it fails to solve the problem but falls into a stationary

                                                
1 Actually, such a state is not a local maximum in its strict meaning, because a CCM-based system does not perform
hill-climbing, i.e., does not necessarily optimize a global function.  However, in this expression, “local maxima,”
seems to be intuitive.  Exactly the system may come into a set of states, from which it cannot move by any reactions
to a state that is not in the set.  This set is the set of “local maxima.”
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state, which is a “local maximum.”  Or, sometimes it flips randomly between several states,
which are “local maxima.”

4. FAM: An Annealing Technique
A method of escaping from “local maxima” in CCM is proposed here.  This method is called the
frustration accumulation method (FAM ) [Kan 94b].  In this method, the same rule and LOD
shown in the previous section are used.  However, the mechanism of computation, or the com-
piler of SOOC, must be modified.

Each atom, or vertex, has a type of energy called frustration, whose value is positive, in this
method.  The frustrations of all the atoms to be modified by the reaction are subtracted from the
sum of the LODs.  Thus, if a vertex has a non-zero frustration, reactions occur more easily.  For
example, if the rule with one catalyst (in Figure 8) is used, a reaction occurs when the following
condition holds:

o(V1, V2) – V1.frustration  ≤  o(V1’, V2) – V1.frustration’,

where V1.frustration and V1.frustration’ are the frustration of V1 before and after the reaction.
The frustrations of catalysts are not counted.  If the rule with two catalysts (Figure 10 (b)) is
used, the following condition is used instead:

o(V1, V2) + o(V1, V3) – V1.frustration  ≤  o(V1’, V2) + o(V1’, V3) – V1.frustration’.

Each vertex initially has a certain level of frustration, f0 , which is, for example, 10–5.  The
frustration is increased, when the application of a reaction rule fails but there are unsatisfied con-
straints.  That means that the frustration of an atom is increased when the following three condi-
tions hold.

1. The atom is tested for modification.

2. The reaction does not occur.

3. There are constraints, relating to the matched vertex which are not or will not be fully satis-
fied.

More specifically, if a rule and a set of atoms are tested for a reaction, if the reaction does not
occur, and if the sum of the LODs is less than the maximum, then the frustration of each atom to
be modified by the rule,  f,  is replaced by c f, where c (> 1) is a constant. This means that

f ’ = c f,

where f ’ is the frustration after the reaction.  The value of c is 2, for example.  Thus, the proce-
dure that runs after each test for a reaction can be described as follows.
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if a reaction occurred then1

fi  :=  f0 ; /* reset to the initial value */
else if not all the constraints are satisfied then

fi  := c fi ; /* increased */
end if;

Assume that the sum of the LODs of the vertices matched to patterns in the rule before the
reaction is represented by O, and that after the reaction is represented by O’.  The sum of the
frustrations before and after the reaction are represented by F and F’.  Then the reaction occurs
when

O – F  ≤  O’ – F’.

Thus, the reaction occurs more easily when the value of F is larger.
An example is shown in Figure 11.  The variable catalyst rule (Figure 10 (c)) is applied to

the state shown in the upper figure.  A reaction may or may not occur depending the color se-
lected by the RHS of the rule.  In case 1, no reaction occurs, and in case 2, a reaction does occur.
The rule is applied to vertex v3 and its three neighboring vertices.  The sum of LODs before the
reaction, o, is 2, because the colors of v1 and v3 are different, that of v4 and v3 are the same,
and that of v5 and v4 are different (See the upper figure in Figure 11).  The values labeled on the
edges in the figures, 0 or 1, are the LOD values.  The value of frustration is assumed to be 0.002,
the value increased once from the initial value, f0 = 0.001.  The value of c is 2.

In case 1, the randomly selected color for variable C3 (in Figure 8) is c1.  The sum of LODs
after the reaction, o’, is 1, because now the colors of v1 and v3 are the same.  That of v4 and v3
are different, and that of v5 and v3 are the same.  The sum of LODs would be decreased by the
reaction.  Thus, no reaction occurs, and the frustration of v3 is increased to 0.004.  The subtrac-
tion of frustration does not affect the comparison result in this case, i.e., o’ < o and o’ – f ’ < o – f.
If the value of frustration before the reaction were 1.002 or more, the subtraction of f ’ from o’
would change the comparison result, i.e., o’ < o but o’ – f ’ ≥ o – f, and a reaction would occur.

In case 2, the randomly selected color is c2.  The sum of LODs after the reaction, o’, is 3, be-
cause the colors of all the neighrors of v3 are different from that of v3.  The sum of LODs would
be increased by the reaction.  Thus, the reaction occurs, and the frustration of v3 is reset to the
initial value, 0.001.  A subtraction of frustration never changes the comparison result in cases
that a reaction occurs.

                                                
1 In this vertion of the algorithm, the frustration of an atom is not reset to f0 when the constraints are satisfied by
another reaction even if the atom is tested after the satisfaction.  This statement can be modified as follows:

if a reaction occurred or all the constraints are satisfied then
fi  :=  f0 ;

else fi  := c fi ;

end if
Then, the frustration is reset when the atom is tested after the constraints are satisfied.  This version also works.
However, the parameter tuning seems to be more difficult.
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Case 1  reaction does not occur.

c2 is randomly selected
for variable C3.
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for variable C3.

o' – f' = 0 + 1 + 0 – 0.001 = 0.999
 < o – f = 2 – 0.002 = 1.998
No reaction occurs.

o' – f' = 1 + 1 + 1 – 0.001 = 2.999
 > o – f = 2 – 0.002 = 1.998
Reaction occurs.

Case 2  reaction occurs.

c3  = C1
Before the

reaction

After the reaction

Figure 11.  The outline of FAM

Parameters, f0 and c, are constant during the execution, and they are considered to be proper-
ties of each atom or eac type of atoms.  Thus, this method works only with local information and
there are no global parameters, such as temperature used in simulated annealing.  Both f0 and c
are constant for all the vertices in our implementation.

The system works qualitatively as follows.  The average frustration increases rapidly when
there are constraints that are difficult to be satisfied.  This high frustration state corresponds to
high temperature state in simulated annealing (SA) and other annealing techniques.  If the values
of parameters, f0 and c, has been selected appropriately, the number of violations of constraints
decreases, and the average frustration thus decreases.  This frustration decrease corresponds to
temperature decrease in SA, but the decrease occurs autonomously.  No external control is re-
quired.  If all the constraints are satisfied and all the frustrations become low enough, no state
transition occurs anymore.  Then the execution stops.1

Two sample time sequences of average frustration are shown in Figure 12.  The problem
used is the USA mainland map coloring.  The horizontal axis shows the number of tests for reac-
tions (i.e., the number of executions of the LHS of the rule), and the vertical axis shows the aver-
age frustration.  The stars in the upper part of the graph show the reactions caused by frustration
                                                
1 The termination condition in the algorithm is replaced by “false.” This means that the network operates forever.
Then, the network once stops changing its state but begins changing its state again when the state of a neuron is
changed or new constraints are added externally.  Thus, a dynamic problem or open-ended problem can be solved
without an additional mechanism in this method.
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accumulation.  (Their vertical coordinate has no meaning.)  A solution was found by 110067
tests in the first case and by 19506 tests in the second case.  Average frustration sometimes in-
creases rapidly and this causes a reaction.  Then, the frustration decreases rapidly.1  Average
frustration sometimes decreases without a reaction caused by a frustration accumulation.
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Figure 12.  Two sample sequences of average frustration

                                                
1 The frustration of the neurons, in which all the constraints are satisfied, are regarded to be the initial value, al-
though the actual values stored are larger in this measurement.
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A hypothesis on the effect caused by FAM can be illustrated in Figure 13.  The vertical axis
of this figure conceptually shows the mean value of “LOD – frustration.”  This value is denoted
as MODf here.  It is assumed that there is a peak of an MODf , i.e., a local maximum.  The com-
putation process cannot pass throuth this peak.  So it is impossible to reach the solution using
CCM without annealing.  This peak is shaved by FAM, i.e., the frustration makes the peak lower.
Thus, the computation process can pass throuth this peak and find a solution.  Local maxima are
shaved because the computation process stays in states1 with a high MOD value more frequently
than states with a low MOD value, and the frustration of a state that the system stays in more
frequently is increased more.

This hypothesis is not yet proved, but it is likely to be true.  Selman and Kautz [Sel 93a] and
Morris [Mor 93] proposed methods of solving satisfiability problems (see Section 7).  They use
methods of avoiding local maxima by adding weights to clauses.  Selman and Kautz stated that
their method works as filling local minima.  Although the basic method of problem solving is
different, this method of “annealing” seems to have similarities to ours.

M
O

D
f

Peak of MOD

(MOD is less than 1)

0

1

Shaved peak

Impossible to
pass through

× Possible to
pass through

Effect of FAM

Figure 13.  A rough image of the effect of FAM

Frustrations may be increased additively instead of multiplicatively as above.  That means,
the frustration, f, may be replaced by f + k when f is to be increased, i.e.,

f ’ = f + k,

where k (> 0) is a constant.2  However, if the frustration increase is additive, the appropriate
range of parameters will become narrower, because it takes a long time to shave a deep valley of
MOD using additive frustration.  The additive frustration is mentioned again in the performance
evaluation (Section 6.3).

So far, FAM has been described along with CCM.  However, FAM can also be applied to
other local-function-based architectures such as neural networks.  For example, the frustration
can be the parameter of threshold function of neurons.

                                                
1 A state does not mean an element of the global state space here.  If the MOD or MODf is defined on a collection of
atoms.  The state is an element of the Cartesian product of the state spaces of these atoms.
2 Several variations of the method of increasing/decreasing frustrations are available.  Additive frustration is one of
them.  However, the method described above is the best tested so far.
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5. Method of Parallel Processing Using Annealed CCM
The parallel version of the method of constraint satisfaction using annealed CCM (i.e., CCM
with FAM) is shown in the present section.

Reactions may occur in parallel in CCM.  Thus, if the working memory is shared between
parallel processors, the computation is parallelized.1  This is shown in Figure 14.  However, if
two processes try to modify an atom concurrently, a wrong result may be obtained in general.
The analogy to chemical reaction systems is useful here.  In chemical systems, two reactions that
affect the same bond do not occur at the same time.  The same principle must be applied to
CCM.  Atoms to be modified by the reaction must be accessed exclusively.

Process 1

Processor 1

Process 2

Processor 2

Process M

Processor M

…

Communication Network / Shared Memory

WM Cache 1 WM Cache 2 WM Cache M

Working Memory

Figure 14.  Parallel processing of CCM-based computation

However, fortunately, because the rules of coloring modify only one atom at a time, no
wrong result can be obtained by parallel reactions without explicit mutual exclusion in this case.
The only possible new effect caused by parallel reaction is that the sum of LODs may be de-
creased accidentally by parallel reactions even when the frustration is small.  This is because,
after a process tested the reaction condition but before rewriting an atom, another process may
rewrite the atom.  This effect seems to be small because the probability of two or more reactions
occurring on the same atom concurrently is small, if there are enough atoms and the degree of
parallelism is not massive.  Thus, no mutual exclusion seems to be necessary here.  This non-
strictness in parallel processing is made possible by the stochastic nature of CCM.

The following problem has to be solved to improve performance.  Each parallel process
works independently in principle in this method.  A process tests termination condition without
testing the states of other processes if it follows the principle strictly.  However, this sometimes
causes premature termination.  Some processor (process) may run for long time after other proc-
essors terminate, because the termination test is stochastic.  This load imbalance lowers the de-
gree of parallelism, and causes performance degradation.  This actually occurred in our experi-
ments.

                                                
1 The sharing of working memory is conceptual.  Thus, it might not be shared physically but is implemented using
process communication.
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A typical example of this load imbalane is shown in Table 1.  The number of reactions and
the number of tests (of the LHS of the rule) until the process termination is listed in this table.
The processors except processor #3 terminated earlier, and thus, the processing is almost se-
quential.

Table 1.  Example of load imbalance
(DSJC125.1, 5 colors, 12 processors, f0 = 10–5, c = 2)

Processor # 0 1 2 3 4 5 6 7 8 9 10 11

# of reactions 171 242 215 23637 254 222 262 204 190 231 254 177

# of tests 12786 11060 13805 2646845 11390 13423 13986 10685 11502 10834 11739 12212

To solve this load imbalance problem, weak global communication is introduced.  The ter-
mination test is modified as follows.  A counter variable is allocated and is set to the number of
processes when the system is initialized.  Each process decrements the counter (where mutual
exclusion is necessary) when its local termination condition becomes satisfied.  However, the
process continues its task until the counter value becomes zero.  This technique avoids premature
termination and the consequent performance degradation.

6. Experiments on Large-scale Problems
The method of problem solving using annealed CCM has been applied to several large-scale
problems.  Both sequential and parallel performance, and the relationship between parameter
values and performance are shown here.

6.1 Sequential performance
The problems used to evaluate performance are chosen from DIMACS benchmarks [Tri][DIM].
Some have been used by Johnson, et al. [Joh 91] and also used by Selman and Kautz [Sel 93a].
These problems are static and not the real target of CCM, but are used here mainly for compari-
sons.

The results are shown in Table 2.  The graphs used here, which were randomly generated
and used by Johnson et al., have 125 or 250 vertices, and the probability of existence of edge, p,
is 0.1 to 0.9.  The performance of annealed CCM is comparable to GSAT or the methods tested
by Johnson et al. in several cases.  The parameters used here, which are kept constant during the
computation, are shown in the table.  Each case has been measured at least 20 times, and the re-
sults shown in the table are the averages except the cases in which the system failed to find a
solution.  The probability that the system fails to find a solution is less than 0.05 experimentally,
with appropriate parameter values.  Although a compiler and interpreter for SOOC-94 is avail-
able, a reaction rule and LOD coded using C are used in these measurements, for better perform-
ance of the program written by C.  The performance has been measured on a Cray Superserver
6400 (CS6400), which is a parallel computer with 60MHz SuperSPARC processors, but only
one CPU is used here.
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Table 2.  The performance of coloring by annealed CCM compared with several annealing
methods and GSAT (c = 2)

CPU time (sec)
Graph Name

(DSJC-
#vertices.p)

Num-
ber of
colors

Annealed CCM
(CS6400, Single CPU)

Annealed CCM
(CS6400, 12 CPUs)

Johnson et al.
(Best methods,

Sequent Balance
21000)

GSAT
(Best method,
MIPS R6000)

DSJC125.1 6 0.2 ( f0 = 10–5) 0.2 ( f0 = 10–5) < 360

DSJC125.1 5 13.2 ( f0 = 10–5) 1.5 ( f0 = 10–5) 720

DSJC125.5 18 34.0 ( f0 = 10–15) 2.4 ( f0 = 10–15) 360  44

DSJC125.5 17  3113 ( f0 = 10–30) 149 ( f0 = 10–30) 6700 1800

DSJC125.9 44 208 ( f0 = 10–30) 13.6 ( f0 = 10–30) 1080

DSJC125.9 43 Not solved Not solved Not solved

DSJC250.1 9 2.9 ( f0 = 10–4) 0.3 ( f0 = 10–4) < 360

DSJC250.1 8 298 ( f0 = 10–10) 17.6 ( f0 = 10–10) 9360

DSJC250.5 31 239 ( f0 = 10–35) 18.9 ( f0 = 10–35) 360

DSJC250.5 30 513 ( f0 = 10–35) 47.9 ( f0 = 10–35) 2900

DSJC250.5 29 5111 ( f0 = 10–45) 360 ( f0 = 10–45) 22000 4000

6.2 Parallel performance
The parallel performance of the same problems, as shown in the previous section, has been
measured on CS6400 with 12 processors.  It has been measured using a relatively small number
of processors because the performance will not improve much by using hundreds or thousands of
processors; only 125 atoms are used in these problems.

The performance of four problems, DSJC125.1 with 5 and 6 colors, and DSJC125.5 with 17
and 18 colors, is displayed in Figure 15.  The parameter values of FAM used in the evaluations
are fixed; q = 8, c = 1.05, f0 = 0.8.  Each case is measured at least 20 times, and the results are the
averages.  The performance of the 5 and 17 color problems is close to ideal.  They are acceler-
ated nearly linearly.  However, the performance of the 6 and 18 color problems is less than the
half the ideal.  The reason for this is not yet known, but the performance is known to be better for
some other parameter values.  For example, in the case of 18 colors with M = 12, c = 1.2 and f0 =
0.2, the acceleration ratio was 10.3.
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Figure 15. Performance of coloring problems by parallel annealed CCM

The effect of load balancing is measured for DSJC125.1 with 5 colors.  The result for 100
runs is shown in Table 3.  The standard deviation of CPU time is reduced to 40 %, and the aver-
age CPU time is reduced to 75 %.

Table 3.  The effect of load balancing
(DSJC125.1, 5 colors, 12 processors, f0 = 10–5, c = 2)

Load balance Average CPU time
(sec)

Standard deviation of
CPU time (sec)

Balanced 15.1 11.5

Not balanced 20.1 28.4

6.3 Relationship between parameter values and performance
The relationship between parameters, f0 and c, and the performance are measured.  The results in
the cases of sequential processing and parallel processing with 12 processors are shown in
Figure 16 and Figure 17.  Figure 16 shows that the range of f0 , in which the performance is
better, is wider, if c is large.  Figure 17 shows the complementary result that the range of c in
which the performance is better, is wider for small f0 .  This means that, if the value of c is large
enough and the value of f0 is small enough, the performance is not very sensitive to either c or f0 ,
and thus, parameter tuning is easy.

When c is smaller, the increase of frustration is almost linear.  Thus, this result also shows
that multiplicative frustration is better than additive frustration, as has been already mentioned in
Section 4.
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7. Related Work
The basic mechanism of neural networks works only with local information if the neurons are
connected locally, i.e., connected to a limited number of neurons.  However, for the purpose of
simulated annealing, The Boltzmann Machine [Ack 85] introduced a global mechanism.  The
behavior of the Boltzmann Machine is controlled by temperature, which is a global and top-
down parameter.  Thus, this mechanism is quite different from that of FAM in terms of locality
or emergence.  Most methods using annealing are similar to the Boltzmann Machine in this re-
spect.

CCM with FAM has some similarity to several problem solving methods for solving CSPs or
satisfiability problems (SATs) using a global evaluation function, as developed by Minton
[Min 92], Selman [Sel 92], Gu [Gu 93], and others.  For example, GSAT [Sel 92] is a greedy
search method for solving SATs using an evaluation function that represents the number of satis-
fied propositional clauses.  Very difficult SATs and difficult CSPs, which can be converted to
SATs, have been solved using improved versions of GSAT [Sel 93a, Sel 93b].  This method uses
a type of annealing, but does not require detailed knowledge on the problem domain.

However, these methods also depend on global information; the dynamics depend on a global
evaluation function.  Thus, these methods can only be applied to closed problems, and parallel
processing is difficult because of global data dependence.

8. Conclusion
A method for solving constraint satisfaction problems using the chemical casting model (CCM)
with the frustration accumulation method (FAM), which is a type of annealing method, is pro-
posed in the present paper.  FAM makes large-scale constraint satisfaction using CCM possible,
without spoiling the feature of CCM, i.e., local-information-based computation.  No global func-
tions or global parameters such as temperature are used in FAM.

Experiments show that the performance of this method is not very sensitive to parameter val-
ues, which means that parameter tuning is easy.  The performance is comparable to conventional
simulated annealing or GSAT, which are based on global evaluation functions, for several prob-
lems.  Because of the nonexistence of global information references, CCM with FAM can be
parallelized very ealily with little mutual exclusion.  The performance is improved nearly line-
arly by parallelization in cases such as graph coloring problems in DIMACS benchmarks.

There are several possible future research directions.  A method of tuning the parameter val-
ues of FAM must be developed.  Implementation and performance evaluation of the method on a
parallel computer without shared memory is also necessary.  Application of FAM to other archi-
tectures, such as neural networks, should be examined.  Finally, the statement that local-
information-based computation makes problem solving in open and changing environment much
easier must be proved.
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Appendix 1. The Coloring System in SOOC-94
The declarations of a type, a rule, and an LOD for the coloring problem in SOOC-94 is de-
scribed below.  The rule and LOD are equivalent to those shown in Section 3.2.

(defelement vertex

; Declaration of type vertex.  A type is called an “element” in SOOC-94.
  color ; vertex has an element named color.
  (* next) ; vertex has arbitrary number of (zero or more) elements named next.

(defrule coloring ; Declaration of rule named coloring.
  (var vertex1 vertex2 C1 C2 C3) ; variable declaration
  (exist vertex vertex1 :next vertex2 :color C1)

  (exist vertex vertex2 :next vertex1 :color C2)

; The link between vertex1 and vertex2 are bidirectional, rather than non-directional.
  -->

  (select C3 ‘(red yellow blue green)) ; random selection from four colors
  (exist vertex vertex1 :color C3)

  (exist vertex vertex2)); This pattern, a catalyst, can be ommitted from the RHS.

(deforder ((vertex v1) (vertex v2))1

; Declaration of LOD between two vertices.
  (if (or (connected v1 v2)

          (not (eql (vertex-color v1) (vertex-color v2))))

    1

    0))

                                                
1 Declarations of LODs between two or more atoms have not yet been implemented to the SOOC-94 compiler.
Thus, this declaration must be expressed in Lisp to be run.  The LOD can be declared as an LOD for a single vertex.
Then it can be expressed by SOOC-94.


